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Abstract: In this research, we studied the performance analysis of inductively coupled radiofrequency
plasma “RF-ICP” torch used in multi-material processing. A 2D numerical model built with COMSOL
Multiphysics was used to study the discharge behavior and evaluate the overall efficiency transmitted
into the plasma system. The temperature and velocity flow of the plasma were investigated. The
numerical results are consistent with previous experimental studies. The temperature and velocity
profiles are represented under a wide range of RF power and for different sheath gas flow rates. With
increasing power, the radial peak temperature typically shifts towards the wall. The resistance of the
torch rises whereas the inductance diminishes with increasing RF power. The overall dependency of
the coupling efficiency to the RF power is also estimated. The stabilization of the plasma flow depen-
dency to the sheath swirl flow was investigated. The incorporation of Helium (0.02%) into an Argon
gas was established to minimize the energy lost in the sidewall. The number and spacing of induction
coil numbers affects the temperature and flow field distribution. A valuable approach to designing
and optimizing the induction plasma system is presented in the proposed study. The obtained results
are fundamental to specify ICP torch design criteria needed for multi-material processing.

Keywords: performance analysis; energy efficiency; induction coupled plasma; computational fluid
dynamics; flow pattern; temperature; parameter optimization; material processing

1. Introduction

For the last two decades, considerable interest has been devoted to applying in-
ductively coupled radio frequency plasma (RF-ICP) in multi-material processing due to
its higher temperature and plasma density, as well as the absence of contaminating elec-
trodes [1,2]. Hence, the ICP thermal plasma torch has rapidly replaced flames, direct current
plasma, and other sources of ionization/excitation in various industrial fields, including
semiconductor, biomedical, clinical, environmental, and geological or geochemical [3–5].

The distinguishable performance of ICP compared to other plasma generation tech-
niques have been widely required during the production of high purity materials, thin
deposition [6,7], surface modification [8,9] and waste treatment [10–12], and chemical
synthesis and chemical processing [13–15]. For material processing in particular, ICP
thermal plasma covers numerous applications such as spectrochemical analysis, powder
spheroidization, etching, surface treatment, sintering, spray coating, and material synthesis
including nanoparticles, composites, and catalysts [16–19].

A commercially successful ICP technology requires the minimization of energy losses
and the optimization of the process parameter affecting the plasma appearance and mor-
phology [20]. Indeed, the estimation of the plasma resistance and plasma impedance
under different operating conditions is important to design a radiofrequency (RF) generator.
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Moreover, a proper estimation of the plasma heated area must be determined to reduce the
energy lost close to the sidewall. Therefore, to successfully implement an experimental RF-
ICP system, it will be crucial to have a profound understanding of its basic functionalization
and control its discharge conditions in detail [21].

Meanwhile, plasma is a multifunctional fluid characterized by high chemical reactivity,
energy density, and variable transport parameters. Furthermore, RF induction discharge
remains inherently unstable while applying a magnetic field making the plasma control
difficult. Hence, the experimental measurements inside the torch are very difficult to
perform due to the extremely high local temperature. A computational study is therefore in-
dispensable to ensure a better comprehension of the ICP’s chemical and physical properties
and to understand the strong coupling between the Maxwell equation, momentum, and
energy [22]. This will develop an excellent tool for diagnosing industrial system problems,
determining the plasma impedance, analyzing power dissipated in the ICP system, and
avoiding costly and time-consuming experimental processes [23].

Several experimental and computational models studying ICP discharge exist so far.
Boulos was the first to develop a thermal fluid electromagnetic thermo-fluid model for
thermal plasma induction in which he determined the thermal field and gas flow inside the
plasma [24]. In their study, Punjabi et al. simulated the ICP torch temperature distribution
under a variety of conditions and with high-frequency coil positions to study the heat
transfer using the computational fluid dynamics (CFD) method [25]. Linder and Bogaerts
introduced an ICP model at atmospheric pressure where they analyzed the great influence
on the ICP center due to Helium addition in pure Argon gas causing elongation of the
center channel [26]. A magneto-dynamic study of induction plasma discharges and their
interaction with power sources has been simulated using an integrated model [27,28]. A
new 2D model given by Xue et al. demonstrates that the coil angle changes highly influence
the flow field as well as the temperature distribution [29]. Later, a comparison of the He-ICP
discharge features at atmospheric pressure with those of Ar-ICP has been presented by
Cai et al. [30]. Bernardi et al. developed a method for studying the ICP electromagnetic field
distribution based on the comparison of three different techniques using Ansys Fluent [31].
A boundary element finite difference method is introduced by Fouladgar and Chentouf to
estimate the inductance and resistance dependency to temperature in RF-ICP torches [32].
Another mathematical simulation model of the temperature and flow distribution is carried
out later by Ye et al. in an RF-ICP torch to elucidate the basics of turbulence phenomena
and study the associated heat transfer effect [33].

Herein, the energy efficiency enhancement of the atmospheric pressure ICP torch
was investigated. A two-dimensional “2D” axisymmetric model of inductively plasma
discharge is presented through COMSOL Multiphysics [34]. First, a comparison of our nu-
merical results with previous experimental results is presented to demonstrate the accuracy
of our model simulation. Second, the temperature and velocity flow distribution inside the
ICP torch are analyzed. Then, a parametric study was carried out to identify which factors
affect the temperature and flow distribution. The plasma resistance is calculated based on
a variety of control parameters including radiofrequency power and gas flow rate. The
optimum conditions to minimize the energy loss close to the sidewall were determined.
Efficient material processing requires successfully implementing of RF-ICP in practice.

2. Torch Geometry and Operating Conditions

Figure 1 illustrates a simplified presentation of radiofrequency inductive thermal
plasma (ITP) system. Three nozzles are located on the gas inlet for central, plasma, and
sheath gases, respectively [35]. RF induction coils (3 MHz, 15 kW), produce an RF-ICP
discharge and maintain it inside the torch.

Table 1 summarizes the operational conditions, and the torch geometry dimensions
regarding an industrial RF-ICP torch [36].
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Table 1. Operating conditions and geometry dimension of ICP torch.

Dimensions Value

Nozzle radius r1 3.7 mm
Nozzle radius r2 18.8 mm
Inner torch wall radius rw 25 mm
Thickness inner tube d 2 mm
Radius to center coil rc 33 mm
Axial position of lower coil z1 63 mm
Coil length zc 58 mm
Reactor length z3 200 mm
Wall thickness δw 3.5 mm
Voltage waveform Sinusoidal
Gas Argon
Coil turn number N 3.0 turns
Ambient temperature T 300.0 K
Coil excitation power P 15.0 kW
Coil frequency f 3 MHz
Operational pressure p 1.0 atm
Injected flow rate Q1, Q2, Q3 1.0, 3.0, 21.0 lpm

3. Model Description
3.1. Basic Model Assumptions

The principal assumptions used in the developed model are as follows [37]:

(i). The plasma system is modeled by a two-dimensional axisymmetric configuration,
and the outer inductor is represented by a series of parallel conductive rings infinitely
thin. The significant voltage that appears in windings, acting as an axial electric field
inducing a dielectric barrier discharge type, can be avoided when placing the torch
vertically rather than horizontally.

(ii). The flow of working fluid is at a steady state, compressible, with a small Mach number
(Ma < 0.3).
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(iii). During torch operation, we consider moderate mass flow rates with a low Reynolds
number (Re ∼ 500) and laminar flow.

(iv). The plasma is in a state of local thermodynamic equilibrium (LTE).
(v). Optically thin plasma, so radiation reabsorption is negligible.
(vi). Plasma displacement current can be ignored as it is relatively small compared to

conductive current.
(vii). The heat generated by viscous dissipation is neglected in the energy equation.
(viii).Ohmic heating is responsible for volumetric power input.

3.2. Governing Equations and Boundary Conditions

Based on the previous assumptions and in two-dimensional axisymmetric cylindrical
coordinates, the governing equation could be written as: [38]

Continuity:
∂(ρu)

∂z
+

1
r

∂(rρv)
∂r

= 0 (1)

Axial Momentum

∂(uρu)
∂z

+
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+ 2
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+
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r
+ Fr (3)

Swirl momentum
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(
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)}
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+
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Enthalpy

∂(uρh)
∂z

+
1
r

∂(rvρh)
∂r

=
∂

∂z

{
κ

Cp

(
∂h
∂z

)}
+

1
r

∂

∂r

(
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κ

Cp

∂h
∂r

)
+ QP −Qrad (5)

where r and z are the distance in radial and axial direction, V, u, and w are the radial,
axial and azimuthal velocities, respectively. P is the pressure, h is the enthalpy, QR is
the volumetric radiation heat losses, and QP is the local energy dissipation rate. µ, ρ,
κ, and Cp are the viscosity, density, thermal conductivity, and specific heat at constant
pressure, respectively.

Maxwell’s equations govern the electromagnetic field as follows:

∇·E = 0 (6)

∇·H = 0 (7)

∇× E = −µ0
∂H
∂t

(8)

∇×H = J (9)

Here, E and H are the electric field vector and the magnetic field vector, respectively.
µ0 = 4π × 10−7 H m−1 represents the free space permeability and J denotes the total
current density.

The intensity of the magnetic field is given as

µ0H = ∇×A (10)
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where A is the magnetic vector potential.
Replacing Equation (10) into Equation (9)

∇×
(
∇×A
µ0

)
= J (11)

and using the relation ∇×∇×A = ∇(∇·A)−∇2A and ∇·A = 0, we get

∇2A = −µ0J (12)

Here, the total current density J is divided into two components, including the current
density created by the applied voltage at the coil that ends Jcoil, as well as the current
density developed by the induced electric field in the plasma and the coil Jind.

∇2A = −µ0(Jcoil + Jind) (13)

Assuming that the coil is consisting of parallel rings, the vector potential and the
electric field have only tangential components.

A = (0, Aθ, 0) (14)

Using Equation (14), Equation (13) can be given as

∇2Aθ −Aθ/r2 = −µ0(Jcoil + Jind) (15)

The θ component of the vector potential must consider real and imaginary additional scalars:

Aθ = AθR + iAθI (16)

where AθR is the real component of the vector potential, Aθ and AθI is the imaginary component.
The electromagnetic coupling equations are written as follows:

1
r

∂

∂r

(
r

∂AθR

∂r

)
+

∂2AθR

∂z2 −AθR/r2= −µ0(Jcoil+Jind) (17)

1
r

∂

∂r

(
r

∂AθI

∂r

)
+

∂2AθI

∂z2 −AθI/r2= −µ0(Jcoil+Jind) (18)

In the plasma region:
Jind = σE = −iωσAθ and Jcoil = 0, so that

∇2AθR − (1/r2 + iωµ0σ)AθR = 0 (19)

∇2AθI − (1/r2 + iωµ0σ)AθI = 0 (20)

where, σ denotes the electrical conductivity,ω (= 2 πf) represents the angular frequency,
and f is the induction current frequency.

In the coils:
Jind = 0 and Jcoil = Icoil/Scoil (where Icoil and Scoil are the coil current and the coil

cross-section, respectively)

∇2AθR −AθR/r2 = −µ0Jcoil (21)

∇2AθI −AθI/r2 = 0 (22)

Anywhere else, there is no current source, so that

∇2AθR −AθR/r2 = 0 (23)
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∇2AθI −AθI/r2 = 0

The electric field can be obtained from the Maxwell equations by substitution of
Equation (10) into Equation (8)

∇× E = −µ0

∂
(
∇×A
µ0

)
∂t

(24)

The scalar potential is zero in the absence of an electrostatic field. So, the intensity of
the electric field is calculated as:

E = −∂A
∂t

(25)

As a result, azimuthal electric field intensity Eθ, radial magnetic field component Hz,
and axial magnetic field component Hr are calculated as follows:

Eθ = −iωAθ where i2 = −1 (26)

µ0Hz =
1
r

∂

∂r
(rAθ) (27)

µ0Hr = −
∂

∂r
Aθ (28)

If we apply the Lorentz force to the momentum equations, we get:

FLz = −1
2
µ0σ Re[EθH∗r ] (29)

FLr =
1
2
µ0σ Re[EθH∗z ] (30)

where Re[z] and z* represent the real part and the conjugate part of the complex number
z, respectively.

The conversion efficiency can be given as

ηc =
Pdiss
Pcoil
×100 (31)

Pdiss is the RF dissipated power in plasma and Pcoil is the power supplied to the coil,
calculated as [39]:

Pdiss =
∫

Vd

QPdVd (32)

Pcoil =
1
2
πfµ0

∫
Vd

(H 2
r+H2

z)dVd (33)

where Vd is total discharge volume and QP is the local energy dissipation rate, given as:

QP =
1
2
σ[EθE∗θ] (34)

According to the ICP conservation equations, the boundary conditions are defined
as [40]:

For the inlet conditions (z = 0):

u =



Q1/πr2
1, r < r1

0, r1 ≤ r ≤ r1 + d
Q2/π

(
r2

2 − r2
1
)
, r1 + d ≤ r ≤ r2

0, r2 ≤ r ≤ r2 + d
Q3/π(r2

w − r2
2), r2 + d ≤ r ≤ rw
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v = 0

w = vθrw

T = 300 K
∂AθR

∂z
=

∂AθI

∂z
= 0

where Q1, Q2, and Q3 are central gas, plasma gas, and sheath gas flow rates, respectively.
r1, d, r2, rc and rw are the radius of the injection tube, the tube thickness, the radius of the
intermediate tube, the radius of the coil, and the radius of the confinement tube, respectively.
vθ indicates the swirl angular velocity.

For the torch axis (r = 0):

∂u
∂r

= v = w =
∂h
∂r

= AθR = AθI = 0

For the torch wall (r = rw):
u = v = w = 0

κ
∂T
∂r

=
κc

δw
(Ts − Tw)

where, κc is the quartz wall thermal conductivity (κc = 1.047 W/m K), and δw represents
the thickness of the tube wall. Tw and Ts are the temperature of the external surface of the
tube (Tw = 300 K) and the temperature of the inside the surface of the tube, respectively.

The real part AθR and the imaginary part AθI of the vector potential Aθ can be
expressed as:

AθR =
µ0I
2π

√
rc

rw
∑coil

i G(ki) +
µ0ω

2π ∑C.V
m

√
rp

rw
σpAθI,pspG

(
kp
)

(35)

The first summation is over the number of the coils and the second one covers the
current carried over the discharge region.

AθI = −
µ0ω

2π ∑C.V
m

√
rp

rw
σpAθR,pspG

(
kp
)

(36)

Considering:

G(k) =

(
2− k2

)
K(k)− 2E(k)

k

k2
p =

4rwrp(
rp + rw

)2
+
(
zb − zp

)2 , k2
i =

4rirw

(ri + rw)
2 + (zi − zb)

2

Here, sp, rp, and σp are the cross-section, radius, and electrical conductivity of the
mth control volume. zi and ri are the height and the radius of the ith coil and zb is the
boundary height. K(k) and E(k) are the first and the second kind of complete elliptic
integrals, respectively, and they are used to evaluate the magnetic vector potential at wall
boundary. The numerical calculation of these integrals is given in [41].

For the exit of the torch

∂(ρu)
∂z

=
∂v
∂z

=
∂w
∂z

=
∂h
∂z

=
∂AθR

∂z
=

∂AθI

∂z
= 0
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Based on azimuthal symmetry distribution, the plasma can be described as a collection
of eddy currents that are magnetically coupled to the induction coil. Hence, the coil voltage
can be determined as:

Vcoil =
coil

∑
i

Ui =
coil

∑
i

2πri

(
Icoil

σcoilScoil
+ iωAθi

)
(37)

The complex impedance of the torch can be obtained by combining Equation (37) and
Equations (35) and (36) and calculating the rate of the coil voltage to the coil current [42]:

|ZT| =
Vcoil
Icoil

= |Rtorch + iXtorch|

where Rtorch is the torch resistance and Xtorch is the torch reactance.
Finally, the torch resistance and torch inductance are performed as follows [43]:

Rtorch = Rcoil + Rplasma

Rtorch = ∑coil
i=1

(
2πri

σcoilScoil
+
ω2µ2

0
2π
×∑C.V.

m=1 riσp A∗θR,psp

√
rp

Ri
G
(
ki,p
))

(38)

In Equation (38), the first term represents the coil ohmic resistance (Rcoil), and the
second term denotes the plasma resistance of the plasma (Rplasma).

The torch inductance can be calculated as:

Ltorch =
Xtorch
ω

And we obtain:
Ltorch = Lcoil − Lplasma

Ltorch = ∑coil
i=1

(
∑coil

n=1 Λn −
ωµ2

0
2π
×∑C.V.

m=1 riσpA∗θI,psp

√
rp

Ri
G
(
ki,p
))

(39)

In Equation (39), the first term indicates mutual inductance of single-coil turn (i) with
the other turns of the coil, and the second one denotes mutual inductance between the
plasma and coil turn (i).

Where Λn =

{
riµ0

√
rn
ri

G(ki,n), i 6= n

N2riF0 × 1× 10−9, i = n
And Aθ

∗ = 2π Aθ
µ0Icoil

F0 is the shape factor in Grover’s self-inductance formula [44] and N is the number of
coil turns.

When i = n, the first term becomes the impedance due to the self-inductance, and Grove’s
self-inductance formula was utilized rather than Maxwell’s mutual inductance formulation.

3.3. Thermodynamic and Transport Properties

At high pressures, the plasma is considered in local thermodynamic equilibrium (LTE),
and the demixing of chemical elements can be neglected. So, the thermodynamic and
transport properties can be expressed as a function of temperature and pressure only.

The thermodynamics plasma properties including viscosity µ, specific enthalpy h, ther-
mal conductivity κ, mass density ρ, specific heat Cp, electrical conductivity σ for atmospheric
pressure Argon as a function of temperature and pressure, are obtained from reference [45].

In this case, the distribution function of thermal plasma constituents is Maxwellian [46].
For pure Argon, the radiative loss term is calculated according to the relation given by
Bernardi et al. [47]:

Qrad = 5600(T− 9500) + 181(T− 9500)2 (40)
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where T is the temperature (T > 9500).

3.4. Calculation Conditions

The computational model was simulated using the COMSOL Multiphysics software
5.4. Three physics modules were implemented in the model, including fluid dynamics, heat
transfer electric, and the magnetic field. Maxwell equations are solved by the magnetic
field module to determine the electromagnetic fields generated by an alternating current
within the coil. A 2D axisymmetric cylindrical geometry of the torch is incorporated into the
model, simplifying the mathematical simulation of the torch. The finite element method was
performed to resolve the governing equations using nonuniform triangular meshes [48].

To assure the accuracy of the calculation, the calculation domain was covered with a
minimum mesh size of 0.019 mm, a maximum mesh size of 0.09 mm, and a growth rate of
1.08. An independent grid study determined that a resolution of around 48 cells/mm was
optimal. An intel core i7-HP computer with 16 GB of RAM was used to run the simulation
for two to four hours. The details of the geometry and grid distribution have been shown
in Figure 2. Control volume and finite element formulation are combined in the numerical
framework [49]. Figure 2b shows the two-dimensional boundaries of the control volume.

Materials 2022, 15, x FOR PEER REVIEW 9 of 22 
 

To assure the accuracy of the calculation, the calculation domain was covered with a 
minimum mesh size of 0.019 mm, a maximum mesh size of 0.09 mm, and a growth rate of 
1.08. An independent grid study determined that a resolution of around 48 cells/mm was 
optimal. An intel core i7-HP computer with 16 GB of RAM was used to run the simulation 
for two to four hours. The details of the geometry and grid distribution have been shown 
in Figure 2. Control volume and finite element formulation are combined in the numerical 
framework [49]. Figure 2b shows the two-dimensional boundaries of the control volume. 

  

(a) (b) 

Figure 2. Computational domain of RF-ICP torch (a) and the intersection of finite element and con-
trol volumes (shaded areas) (b). 

4. Results and Discussion 
4.1. Comparison of Numerical and Experimental Plasma Characteristics 

Initially, we proceed by correlating numerical results and experimental measure-
ments obtained by Punjabi et al. [50] using optical emission spectroscopy under the same 
operational conditions. In Figure 3, the radial temperature profile is represented in the 
region of the coil’s centerline for plasma (z = 192 mm) at 7.5 kW with a 10 lpm sheath gas 
flow rate and a 60 mm diameter tube. Numerical and experimental results are in good 
accordance with a minor over-prediction of around 5% near the plasma edge. 

0.0 0.2 0.4 0.6 0.8 1.0
0

2,000

4,000

6,000

8,000

10,000

12,000

Te
m

pe
ra

tu
re

 (K
)

Reduced radius (R)

 Calculated results
 Experimental results

 
Figure 3. Comparison of calculated radial temperature profiles with experimental data of Punjabi 
et al. [50] in the centerline of the coil region (z = 192 mm). 

Figure 2. Computational domain of RF-ICP torch (a) and the intersection of finite element and control
volumes (shaded areas) (b).

4. Results and Discussion
4.1. Comparison of Numerical and Experimental Plasma Characteristics

Initially, we proceed by correlating numerical results and experimental measurements
obtained by Punjabi et al. [50] using optical emission spectroscopy under the same opera-
tional conditions. In Figure 3, the radial temperature profile is represented in the region of
the coil’s centerline for plasma (z = 192 mm) at 7.5 kW with a 10 lpm sheath gas flow rate
and a 60 mm diameter tube. Numerical and experimental results are in good accordance
with a minor over-prediction of around 5% near the plasma edge.
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In the same way, we investigated the variation of the numerical axial velocity profile
using a 50 mm diameter tube, 4.6 kW plasma power, and 63 lpm sheath gas rate (see,
Figure 4). Numerical results and experimental data obtained by Lesinski et al. [51] using
laser doppler anemometry seem to agree well with each other at all the axial locations
(z = 33, 58, and 82 mm).
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4.2. Analysis of Temperature and Velocity Flow Distributions in ICP Torch

An inductively coupled plasma torch operated in the same condition as Punjabi et al. [52]
using Argon gas under atmospheric pressure is computationally analyzed. The flow rate at
central Q1, plasma Q2, and sheath Q3, is equal to 1 lpm, 3 lpm, and 21 lpm, respectively.
Sheath gas flow is introduced under a swirl flow condition, where swirl angular velocity is
800 rad/s. The oscillation’s frequency is 3 MHz, and the discharge power is maintained at
15 kW.

As shown in Figure 5a, the axial temperature profile in the symmetry axis (r = 0),
indicates that plasma begins heating up as soon as it passes the coil’s first loop. Gradually,
the temperature rises until it reaches saturation.
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Figure 5. Axial temperature (r = 0) (a) and radial temperature (z = 92 mm) (b) distribution in ICP torch. Figure 5. Axial temperature (r = 0) (a) and radial temperature (z = 92 mm) (b) distribution in
ICP torch.

In Figure 5b, the radial distribution of temperature represented at the second coil
position (z = 92 mm) shows that near the central axis, the temperature is greater than 8000 K
and becomes the highest up at 20 mm from the axis. At the quartz wall, a cold boundary
layer is established, where the temperature is less than about 600 K [53].

The axial velocity profile along the torch axis represented in Figure 6a shows that
the velocity profile increases and then drops slowly close to the torch exit. Negative
velocity values resulting in significant circulating flow in pure Argon within the torch can
be attributed to energy dissipation. The distribution of axial velocity in the radial direction
in the region of the coil’s centerline (z = 92 mm) is illustrated in Figure 6b. The axial velocity
progressively rises until attending the wall associated with the elevation of the temperature,
where it reaches its maximum [54].
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4.3. Variation of Plasma Parameters

To enhance the torch performance, the most effective and efficient process would be to
control the geometrical and operational parameters. Therefore, we investigated the plasma
characteristics dependency on the RF power changes between 3 and 15 kW and the sheath
gas flow rate variation in the range from 5 to 31 lpm. This is to optimize the parameters
model, improving torch efficiency in material processing [55].
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4.3.1. Effect of RF Power

Figure 7 shows a zoomed view of the radial temperature profiles (from 10 to 24 mm) for
varied RF input powers (P = 7.5, 11, and 15 kW) at the same axial position z = 92 mm. The
elevation of input power raises the temperature, then, the plasma core expands along the axial
and radial direction due to the increase in the plasma core temperature. Herein, the plasma
core moves away from the centerline towards the wall, while reducing the skin depth.

Materials 2022, 15, x FOR PEER REVIEW 12 of 22 
 

10 12 14 16 18 20 22 24
0

2,000

4,000

6,000

8,000

10,000

12,000

R
ad

ia
l t

em
pe

ra
tu

re
 (K

)

Radial distance (mm)

 15 kW
 11 kW
 7.5 kW

 
Figure 7. Radial Temperature field (z = 92 mm) with different RF power (7.5, 11, and 15 kW) with a 
sheath gas flow rate of 21 lpm (zoomed view from 10 to 24 mm). 

The efficiency of plasma torch dependency on the RF power is represented in Figure 
8. By increasing the injection power, the coupling efficiency is enhanced resulting in a 
higher discharge volume and therefore a corresponding increase in the magnetic flux 
linked cross-section.  

Indeed, by dissipating the power in the plasma and the inductor resistance, the torch 
efficiency depending on their ratio is enhanced [57]. 

0 2 4 6 8 10 12 14 16

48

50

52

54

56

58

Ef
fic

ie
nc

y 
(%

)

RF power (kW)
 

Figure 8. Torch efficiency versus RF power. 

On other hand, the resistance and inductance variation with RF power are shown in 
Figure 9. At high power, the resistance rises with a simultaneous increase in the tempera-
ture (see, Figure 7). Although, the rise in temperature is commonly accompanied by a 
reduction in resistance. Such an adverse effect is imaged through the asymptotic behavior 
located in the resistance variation as a function of RF power (see, Figure 9a).  

On the other hand, Plasma inductance is one of the plasma characteristics highly de-
pendent on the coil’s magnetic flux association. In Figure 9b, the inductance slowly de-
creases with increasing RF power. Indeed, the temperature increases with rising RF power 
that simultaneously expands plasma core volume. This allows a higher magnetic flux pen-
etration into the plasma core, reducing the separation distance between the plasma and 
the coil, which is accountable for flux leakage. 

Furthermore, we studied the plasma resistance and inductance variation with the 
frequency changes. A higher value is found for the plasma resistance while increasing the 
plasma frequency (see, Figure 9a). Indeed, with elevated frequency, the Joule heating area 

Figure 7. Radial Temperature field (z = 92 mm) with different RF power (7.5, 11, and 15 kW) with a
sheath gas flow rate of 21 lpm (zoomed view from 10 to 24 mm).

Consequently, the plasma electric conductivity becomes important own to the higher
ionization. As a result of convective heat transfer, the temperature progressively diminishes,
far off the peak value, and electrical conductivity drops. On other hand, the plasma
temperature illustrates a decrease in its value while decreasing the plasma power [56].

The efficiency of plasma torch dependency on the RF power is represented in Figure 8. By
increasing the injection power, the coupling efficiency is enhanced resulting in a higher discharge
volume and therefore a corresponding increase in the magnetic flux linked cross-section.
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Indeed, by dissipating the power in the plasma and the inductor resistance, the torch
efficiency depending on their ratio is enhanced [57].

On other hand, the resistance and inductance variation with RF power are shown in
Figure 9. At high power, the resistance rises with a simultaneous increase in the temperature
(see, Figure 7). Although, the rise in temperature is commonly accompanied by a reduction
in resistance. Such an adverse effect is imaged through the asymptotic behavior located in
the resistance variation as a function of RF power (see, Figure 9a).
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On the other hand, Plasma inductance is one of the plasma characteristics highly
dependent on the coil’s magnetic flux association. In Figure 9b, the inductance slowly
decreases with increasing RF power. Indeed, the temperature increases with rising RF
power that simultaneously expands plasma core volume. This allows a higher magnetic
flux penetration into the plasma core, reducing the separation distance between the plasma
and the coil, which is accountable for flux leakage.

Furthermore, we studied the plasma resistance and inductance variation with the
frequency changes. A higher value is found for the plasma resistance while increasing the
plasma frequency (see, Figure 9a). Indeed, with elevated frequency, the Joule heating area
approaches the wall with a thinner accentuated electrical conductivity region and a higher
temperature zone closer to the wall. This is due to the skin effect linked to skin depth,
defined as the tendency for alternating current (AC) signals to flow near the outer edge of
the electrical conductor [58]:

δ = (πµ0σf)−
1
2 (41)

The Lorentz force also concentrates near the wall, and then the vortices near the coil
region are vanished.

Contrary, the plasma inductance reduces more with rising frequencies (see, Figure 9b).
This affects torch efficiency, which is related to the ratio of dissipated power to coil power.
Therefore, a high plasma frequency ensures a better torch efficiency.

4.3.2. Influence of Sheath Gas Flow Rate

The temperature changes of an ICP torch were investigated as a function of the sheath
gas flow rate (see, Figure 10). The plasma temperature decreases near the torch wall for
an elevated flow rate of sheath gas. This could be assigned to a wider diffusion of sheath
gas into the plasma resulting in high energy loss. Consequently, a decline in the peak
temperature observed is associated with a diminution of the skin depth defined as signal
penetration distance. At a high sheath gas flow rate, the maximum region of electrical
conductivity moves towards the wall, due to the skin effect [59].

In Figure 11, the velocity flow field shows a circulating region near the coil region
at a lower flow rate. This is due to the radial Lorentz force generated by the induction
electromagnetic fields in the plasma that pinch the plasma flow field. However, this
recirculating region disappears at a higher flow rate, since the Lorentzian pinch effect is
overridden by inertia force.
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As shown in Figure 12, the efficiency rises as the sheath gas flow rate augments. The
torch coupling efficiency is improved since a higher gas flow removes more heat from the
torch channel.
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Figure 12. Efficiency as a function of sheath gas flow rate.

Figure 13a illustrates the variation of plasma resistance as a function of the sheath gas
flow rate. Plasma resistance diminishes with increasing sheath gas flow rate due to the
drop of the plasma volume contrary to its diameter, which remains unchanged.
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Figure 13. Plasma resistance (a) and inductance (b) with varying sheath gas flow rate at
different pressures.

Figure 13b demonstrates the drop of the torch inductance while rising the sheath gas
flow rate. Indeed, a higher gas flow rate results in an important axial temperature value
at the upstream coil location, which increases electrical conductivity and simultaneously
decreases torch inductance. Hence, the plasma resistance rises while the corresponding
inductance decreases as the pressure augments.

According to the local thermodynamic equilibrium property of ICP thermal plasma,
the thermodynamic properties vary with temperature and pressure. A high-pressure
operating regime is characterized by lower variation of physical properties with pressure
as compared to low-pressure operating regime [60]. Thus, the influence of the pressure
variation on electric characteristic plasma is relatively small.

4.3.3. Nobel Sheath Gas Composition Effect on the Plasma Torch

Insulating the sidewall with a higher ionized sheath gas than Argon, like Helium and
Hydrogen, reduces the energy lost through the sidewall while moving the plasma heated
zone towards the center of the torch [61]. However, limited Helium quantity must be used
to avoid turning off the flame and inefficiency in material processing.

In Figure 14, adding Helium to Argon, a temperature decrease is observed, where the
plasma is cooled down (Figure 14a), the axial velocity is reduced, and the circulating flow
is eliminated (Figure 14b).
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This phenomenon could be assigned to the smaller atomic mass of Helium compared
to Argon. Then, Helium is more difficult to ionize than the operating gas Argon. So,
using Helium/Agon improves the ability of the sheath gas to transfer heat and allows for
the shift of the heated plasma zone away from the torch side wall. Consequently, both
drops of velocity and temperature observed here are originated from the collisional cooling
through the plasma. Furthermore, the striking effect of buffer gas addition eliminates the
circulating flow that consumes energy and improves the torch efficiency. This becomes
more pronounced while using 0.02% of Helium, resulting in the least energy loss. Above
this value, the temperature is reduced for comparing to a pure Argon case. However, the
velocity rises even more than in a pure Argon case. More energy is lost to the water cooling
in the side wall of the torch, and the plasma can be extinguished by excess of Helium.

4.3.4. Effect of Swirl Flow

Figure 15a represents the swirl flow effect on axial velocity. The swirl flow diminishes
the flow of axial velocity and thereby raises the material particles residence time. This
mainly favors nanoparticle synthesis [62]. Indeed, the swirl flow along the symmetry axis
reduces the axial velocity, but contrarily rises the radial velocity to the torch wall side. So,
as the swirl flow velocity increases, the tendency of flow separation decreases, and the
vortex size decreases.
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Figure 15. Effect of swirl flow on axial velocity (z = 92 mm) (a) and axial temperature (r = 0) (b).

The important convection heat transfer existing along the radial direction into the wall
highly reduces the temperature in the outlet (see, Figure 15b). Consequently, the wall heat
loss increases, and the torch efficiency decreases. Thus, sheath swirl flow plays a major role
in developing a free vortex that stabilizes plasma flow [63].

4.4. Effect of Geometry Torch
4.4.1. Variation of Coil Spacing

Coil spacing “Lc” was simulated at three different values in an ICP torch with three
coils, including Lc = 14.5 mm, 29 mm, and 39 mm to measure the effect of coil spacing on
the fluid flow. Coils are placed at 63 mm from the inlet for all variations of Lc.

Figure 16 illustrates the temperature distribution of the ICP torch at various coil spac-
ing. It appears that as we enlarge the separation distance between the coil, the maximum
temperature decreases. Herein, the torch becomes unable to form a continuous area of
high temperature. However, coils with a shorter spacing generate high local temperatures
closer to the centerline. Near the outer wall, the temperature was slightly higher, forming a
high-temperature ring-like area in the ICP torch when the temperature field stabilized [64].
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Figure 16. Temperature fields with varying turns coil spacing Lc = 14.5 mm (a), 29 mm (b), and
39 mm (c).

The velocity distribution at different coil separation distances is given in Figure 17.
A larger recirculation region appears in the last coil edge when the turn coil distance is
14.5 mm and becomes smaller as the turns get further apart.
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Figure 17. Velocity flow fields contours with varying turns coil spacing Lc = 14.5 mm (a), 29 mm (b),
and 39 mm (c).

Figure 18a represents the wall temperature tendency. The wall temperature is reduced
as the coil’s separation distance augments. The spacing must be greater than Lc = 14.5 mm
to avoid reaching the melting point temperature of the quartz tube that damages the torch
wall (melting point tube is 1683 K). The total dissipated power decreases, ranging from
11.6 kW to 4.5 kW simultaneously with the conversion efficiency that drops to 42% with
enlarging the spacing of the turns (see, Figure 18b).
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4.4.2. Effect of Turns Coil Number Variation

Herein, we admitted the same torch geometry characteristics. On the other hand, we
fixed the separation distance from the inlet to the first coil to 63 mm, where we will vary
the number of the coils “Nc” from 2 to 4 with a constant spacing equal to 29 mm. Figure 19
represents the temperature distribution dependency on the coil turn numbers; there is an
apparent increase in core temperature as the coil turns number rises.
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Figure 21. Wall temperature (a) and dissipated power and conversion efficiency (b) as a function of 
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Figure 19. Temperature distribution with varying turn coil number, Nc = 2 (a), 3 (b), and 4 (c).

The velocity flow field highly depends on the turns of the coil, as shown in Figure 20.
The high-velocity areas remain independent of the change of the coil number, which is
always positioned at the end of the last coil. The main vortex was observed at the inlet
for the different studied cases. This is assigned to the high pressure and strong axial body
force in the inlet. The second vortex appearing at the end of the last coil is influenced by
the radial body force moving towards the wall.
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Figure 20. Velocity flow fields contours with varying turn coil number, Nc = 2 (a), 3 (b), and 4 (c).

The wall temperature profile for Nc = 2, 3, 4 is found to be equal to 428 K, 1039 K, and
1230 K, respectively (see, Figure 21a). Nc equal to 2 and 3 is suitable for wall temperature
below the melting point of a quartz tube (≈1683 K).

On the other hand, Nc equal to 4 could be used only if water cooling was associated
with the quartz wall that reduces the temperature. Conversion efficiency increases from
25% to 68% as the coil number augments (see, Figure 21b).
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the separation distance between the turn of the coil.

5. Conclusions

In this work, the ICP torch was investigated. A practical focus was addressed on the
condition performance, thus ensuring better optimization of the plasma characteristics.
The major role of the efficient distribution of energy in the torch was highlighted. The
numerical results are in good agreement with previous experimental measurements. A rise
in the electrical conductivity of the plasma associated with a skin depth drop was observed
as the power level increased. These results were deduced through the temperature peak
shift from the centerline to the wall direction. Consequently, plasma resistance increases
while plasma inductance decreases with rising RF power. High induction frequencies were
found to be more efficient in transmitting power to the plasma. As the sheath gas flow rate
increases, while the power remains constant, the plasma heat is transferred effectively to
the sheath gas. The striking effect of the buffer layer addition shows that the 0.02% Helium
incorporation to Argon gas makes the torch more efficient. The vortex formation could be
diminished by the swirl sheath gas. This raises the wall heat transfer and decreases the
temperature along the central line. We found that the increase in the coil spacing decreases:
the wall temperature, the dissipated power, and the efficiency. Particularly, LC equal to
14.5 mm is not recommended experimentally because the wall temperature attains the
melting point of quartz. On other the other hand, the number of coils equal to 2 or 3 is
found practically suitable, contrary to Nc equal 4 which requires a water colling. The
present model ensures an enhancement of energy efficiency of inductively coupled plasma
torches, which can be accomplished at a higher power and frequency, by increasing mass
flow rate, an addition of 0.02% helium to Argon sheath gas with swirl flow, small coil
spacing, and having a number of coils equal to 2 or 3.
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