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Abstract: Regular laser-induced periodic surface structures (LIPSS) were efficiently fabricated on
indium tin oxide (ITO) films by femtosecond laser direct writing with a cylindrical lens. It was found
that randomly distributed nanoparticles and high spatial frequency LIPSSs (HSFL) formed on the
surface after a small number of cumulative incident laser pulses per spot, and regular low spatial
frequency LIPSSs (LSFL) appeared when more laser pulses accumulated. The mechanism of the
transition was studied by real-time absorptance measurement and theoretical simulation. Results
show that the interference between incident laser and surface plasmon polaritons (SPPs) excited
by random surface scatterers facilitates the formation of prototype LSFLs, which in turn enhances
light absorption and SPP excitation following laser pulses. The effects of scanning velocity and laser
fluence on LSFL quality were discussed in detail. Moreover, large-area extremely regular LSFL with a
diameter of 30 mm were efficiently fabricated on an ITO film by femtosecond laser direct writing
with the cylindrical lens. The fabricated LSFLs on the ITO film demonstrate vivid structural color.
During LSFL processing, the decrease of ITO film thickness leads to the increase of near-infrared
optical transmittance.

Keywords: laser-induced periodic surface structures; femtosecond laser direct writing; ITO film;
structural coloring; cylindrical lens

1. Introduction

Ultrafast laser has become an effective tool for micro/nano-processing [1–5]. Versatile
methods are offered for cutting, drilling and modification of different kinds of materi-
als [6–8]. In the large variety of subfields related to ultrafast laser micro/nano-processing,
laser-induced periodic surface structures (LIPSS) have received considerable attention over
the past decades [9,10]. The formation of LIPSSs is a universal phenomenon observed on
semiconductors, dielectrics, metals and thin films [2,5,11–18]. According to the relationship
between incident laser wavelength λ and the period of induced surface structures Λ, LIPSS
can be classified as high spatial frequency LIPSS (HSFL, Λ < 0.5λ) and low spatial fre-
quency LIPSS (LSFL, 0.5λ < Λ < λ) [5,18–26]. LIPSSs exhibit great potential for applications
in many fields, such as structural colors [18,27–29], color-based anti-counterfeiting [30],
superhydrophobicity [31,32] and birefringence [33–36].

Indium-tin oxide (ITO) films have a wide bandgap of 3.5–4.3 eV. As a semiconductor,
ITO has high carrier concentration, low electrical resistivity and high optical transparency
at visible wavelengths [37,38], and is widely used as a transparent electrode in organic
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light emitting devices (OLED), liquid crystal displays, thin film solar cells, etc. [39–44].
However, the transmittance of untreated ITO film in the infrared band is low, which will
significantly reduce the light absorption efficiency of thin-film solar cells [45,46] and limit
the application of ITO film as a transparent electrode in the infrared band.

Nanostructures fabricated on the ITO film can effectively modulate its electric and op-
tical properties, especially surface resistance and optical transmittance [10,16,41,47–51], and
can be used for application in film solar cells and OLED devices. Reinhardt et al. enhanced
the robustness of an ITO film in a severe environment (i.e., strong acid) by fabricating
LIPSS with a nanosecond laser, and the incorporation of silicon into ITO is considered to
be the reason for the robustness of this sub-pattern against acidic environments [52]. Liu
et al. reported that LIPSSs were processed on ITO film by picosecond laser, which ensured
low resistance and improved IR transmittance [53]. At present, the efficient fabrication of
large-area regular nanostructures on ITO films has attracted great attention.

In this paper, regular LSFLs on ITO thin films were efficiently fabricated by femtosec-
ond laser direct writing with a cylindrical lens. It was found that the number of cumulative
laser pulses per spot played a crucial role in LSFL formation. Unlike semiconductor and
metal surfaces, such as silicon and copper, randomly distributed nanoparticles and HSFL
parallel to the incident laser polarization appeared on the surface with only a few incident
laser pulses. With more incident laser pulses accumulated, surface geometry turned into
regular LSFLs. Through real-time absorptance measurement and theoretical simulation,
it was found that the formation of regular LSFLs was caused by the interference between
incident light and surface plasmon polaritons (SPPs) excited by random surface scatterers.
Large-area extremely regular LSFLs were efficiently fabricated on an ITO film with a diam-
eter of 30 mm by a femtosecond laser focused with a cylindrical lens. The linear focusing of
the cylindrical lens greatly improves the processing efficiency, and the LIPSSs fabricated
are extremely regular. The fabricated LSFLs on the ITO film demonstrate great potential in
structural color. During LSFL processing, the decrease in ITO film thickness leads to an
increase in near-infrared optical transmittance.

2. Materials and Methods
2.1. Laser Direct Writing Setup and Sample Characterization

Figure 1a shows the experimental setup for laser direct writing. A commercial fem-
tosecond laser (Light Conversion Ltd., Vilnius, Lithuania) was used in the experiment,
which produced laser pulses of wavelength 1030 nm, pulse width 250 fs and pulse energy
1 mJ with a repetition rate of 1 kHz. The laser power and polarization were adjusted
through a combination of a half-wave plate and a Glan prism. A mechanical shutter was
used to control the laser irradiation time. The femtosecond laser was incident vertically
on the sample through a cylindrical lens with a focal length of 50 mm. The focal spot was
15 µm wide along the minor axis (1/e2 intensity) and 4.0 mm long along the major axis.
Compared with a common circular lens with the same focal length (focal spot diameter of
15 µm), the fabrication efficiency is 266 times higher. Moreover, the LIPSSs produced with
a cylindrical lens are also more regular [29,36]. An electronically controlled half-wave plate
was used to continuously rotate the direction of laser polarization. A colinear monitoring
system consisting of a white light source, a dichroic mirror and a charge-coupled device
(CCD) were built to monitor the femtosecond laser direct writing in real-time. Figure 1b
shows the schematic of the laser polarization, focal spot and scanning direction.

A glass substrate with a diameter of 30 mm coated with ITO film of thickness
175 ± 10 nm (MTI-group, Jiangsu, China) was used in the experiments. The sample was
mounted on an x/y/z/θ translation stage. After femtosecond laser direct writing, the
samples were cleaned in an ultrasonic bath with deionized water, isopropanol and, finally,
acetone [16]. The surface morphology was examined using a scanning electron microscope
(SEM, Sigma 300, ZEISS, Oberkochen, Germany) and an optical confocal microscope (Smart-
proof 5, ZEISS, Oberkochen, Germany). The resolution of the optical confocal microscope
was 5 nm on the Z axis and 100 nm on the X/Y axis. Semi-quantitative measurement of the
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chemical composition was performed using energy-dispersive X-ray spectroscopy (EDS)
(SEM, Sigma 300, ZEISS, Oberkochen, Germany). The EDS instrument was an accessory of
the SEM and had an information depth of 600 nm. The transmittance spectra of the ITO
film were measured using an ultravioletivisible-NIR spectrophotometer (LAMBDA 950,
PerkinElmer, Waltham, MA, USA).
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Figure 1. (a) Schematic of the laser direct writing setup. HWP is a half-wave plate, GP is a Glan
prism and WL is a white light source. (b) Schematic of the laser polarization, focal spot and
scanning direction.

2.2. Real-Time Absorptance Measurement Setup

The laser was focused onto the surface of the sample at an inclination angle of 70◦

(the angle between the incident laser and the sample surface). The laser fluence and
polarization were adjusted through a combination of a half-wave plate and a Glan prism.
Two energy meters were placed on the reflected and transmitted light path to measure the
reflected and transmitted energy of each laser pulse in real-time. The absorptance A could
be calculated as

A = 1 − R − T, (1)

where R is reflectance and T is transmittance. The reflectance and transmittance could be
calculated by taking the ratio between the measured and the incident pulse energies.

The transmitted and reflected lasers were focused on the energy meter through a
quartz lens with a focal length of 50 mm and a diameter of 75 mm in order to collect all
the laser energy scattered and diffracted by the sample structure. The lens had a collection
angle of 70◦ (the corresponding collection angle of the reflected light was in the range of
35−105◦). The scattered light beyond the collection angle was also measured using an
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energy meter, but its energy was too small and below the energy meter measurement range.
Therefore, most of the scattered light has been included in the measurement of absorption.

The real-time reflectance measurement should be carried out at an appropriate angle.
For a normal incident laser, the detector cannot directly receive the reflected light in real-
time. Therefore, an incident angle of 70◦ was set for the absorption measurement, and the
detector could receive the reflected light well.

It is known that the LIPSS periods vary with the incident angle [54–56]. However, the
incident angle of 70◦ was very close to 90◦, and the periods of the LIPSSs were only 50 nm
different from those when using a normal incident laser [56]. The periods of the two cases
were very close, and the LSFL formation processes were basically the same. Therefore, it
is feasible to use an incident angle of 70◦ to replace normal incidence in the absorption
measurement during LIPSS formation.

2.3. Structural Color Measurement Setup

Figure 2 shows a schematic diagram of the measurement setup to characterize the
structural color of the samples from different viewing angles [18,29]. A wide spectral
light source (a tungsten halogen lamp with a spectral range of 400–2200 nm) illuminated
vertically on the sample surface, and structural colors were measured at different viewing
angles using a CCD moving in the Y-Z plane (perpendicular to the LIPSS direction). The
angle between the CCD and the Z axis was defined as the observation angle α. The
diffraction equation reveals the relationship between the diffraction wavelength λ and the
observation angle α:

nλ = d sin α, (2)

where the integer n is the diffraction order and d is the period of LIPSS.
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Figure 2. Schematic of the setup for structural color measurement.

3. Results and Discussion
3.1. Formation of LSFL on ITO Film

The formation process of regular LSFLs on the ITO film is shown in Figure 3, in which
the laser scanning velocity decreased from 12 to 3 mm/s with the pulse fluence fixed at
0.66 J/cm2. Large differences can be observed across different scanning velocities. When
the scanning velocity was 12 mm/s, the average number of cumulative pulses per spot
was only 1.2. As shown in Figure 3a, slight ablation appeared on the ITO film with some
randomly distributed nanoparticles. Due to the high scanning velocity, loosely spaced burnt
regions were formed. When the scanning velocity decreased to 6 mm/s, the number of
cumulative pulses increased to 2.4 on average. The original random nanoparticles evolved
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into many short and irregular HSFLs parallel to the laser polarization (Figure 3b). Figure 3c
shows the 2D Fourier transform (FT) images of the SEM image of Figure 3b. Figure 3g,h are
the corresponding FT spectrums for kx = 0 µm−1 and ky = 0 µm−1 in Figure 3c, respectively.
As shown in Figure 3g, the peak of the FT spectrum was 3.0 ± 1 µm−1, which indicated that
the HSFL period was 330 ± 100 nm. Meanwhile, some fuzzy prototype LSFLs perpendicular
to the laser polarization were formed. As shown in Figure 3h, the peak of the FT spectrum
was 1.5 ± 0.4 µm−1, which indicated that the LSFL period was 660 ± 150 nm. The LSFL
produced was very irregular and had a wide range of periodic fluctuations.
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Figure 3. SEM images of micro/nanostructures on the ITO film after laser irradiation for scanning
velocity of (a) 12, (b) 6, (d) 4 and (e) 3 mm/s with pulse fluence fixed at 0.66 J/cm2. The scale bars are
10 µm in (a) and (d) and 2 µm in (b) and (e). The insets in (a) and (d) are the enlarged SEM images
for the red square areas. (c) and (f) are the 2D Fourier transform (FT) images of the LSFL in (b) and
(e), respectively. (g) and (h) are the corresponding FT spectrums for kx = 0 µm−1 and ky = 0 µm−1 in
(c), respectively. (i) is the corresponding FT spectrum for ky = 0 µm−1 in (f). (j) is the confocal optical
microscope image of (e).
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It was reported that HSFLs parallel to the laser polarization were formed on the LSFL
ridge of the metal surface, which was attributed to the cavitation instability in the molten
surface layer [57–59].

When the scanning velocity further decreased to 4 mm/s, the LSFL perpendicular to
the laser polarization direction became clearer and more regular (Figure 3d). Only short
HSFLs appeared on the stripes of the LSFL. However, since the number of accumulated
pulses per spot was still less than 4, the LSFLs were rather curved and irregular. Finally,
when the scanning velocity decreased to 3 mm/s, very regular LSFLs formed on the surface
as shown in Figure 3e. Figure 3f depicts the 2D Fourier transform (FT) image of the LSFLs
and Figure 3i is the corresponding FT spectrum for ky = 0 µm−1. As shown in Figure 3f,
the peak of the FT spectrum was 1.075 ± 0.008 µm−1, which indicated that the LSFL period
was 930 ± 5 nm.

Since the scanning velocity directly determines the number of cumulative laser pulses
per spot, it is helpful to examine the optical response of the ITO film for each consecutive
laser pulse. Figure 4 shows the measured reflectance, transmittance and absorptance of the
ITO film irradiated by 20 consecutive laser pulses with the pulse fluence fixed at 0.66 J/cm2.
For the first laser pulse radiation, the reflectance and transmittance of the ITO film were
20% and 62% respectively, corresponding to a very low absorptance value of only 18%. The
absorptance was enhanced rapidly to 32% of the radiation by the 5th laser pulse. However,
the absorptance began to decrease with further laser pulse radiation. It was only 15% of
the radiation by the 20th laser pulse, which indicated that most of the ITO film had been
ablated off.
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Figure 4. Measured (a) reflectance, transmittance and (b) absorptance of the ITO film for each
consecutive femtosecond laser pulse. The pulse fluence was fixed at 0.66 J/cm2.

Under femtosecond laser irradiation, ITO was rapidly excited to form a surface plasma
layer, and the properties of the material changed from dielectric to metallic. After the initial
laser pulse irradiation, periodic ablation stripes covering random defects were formed
on the ITO film, as shown in Figure 3a [18]. These ablation stripes and random defects
would lead to the uneven absorption of subsequent laser pulses on ITO film, resulting in
an irregular distribution of nanoparticles and HSFLs. These surface patterns served as
scattering sites for the following laser pulses, and surface plasmon polarizations (SPPs)
could be excited on the surface [5,18,19,25,60], which is studied in detail in Section 3.2
and the corresponding descriptions. The interference between the incident laser and
SPPs led to the periodic distribution of energy and electronic temperature. The electrons
then transferred the energy to the crystal lattice through electro-phonon coupling, which
caused the ablation of the material and the formation of prototype LSFLs [5,11,25,60]. The
appearance of LSFLs due to SPPs further enhanced light absorption and SPP excitation for
subsequent laser pulse irradiation, causing the enhanced absorption for following pulses
(Figure 4b). This led to an absolute advantage of periodic light absorption compared with
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the original non-uniform absorption [19], forming a self-enhancing process. Therefore, for
a lower scanning velocity, more pulses accumulated on a single spot and the LSFL became
straighter and more regular.

3.2. Theoretical Simulation of Light Field Distribution

To further validate the LSFL formation mechanism we proposed, COMSOL Multi-
physics software was used to calculate the electric field distribution by solving Maxwell’s
equations. Figure 5 presents the schematic of the simulation setup [61,62]. The simulation
domain was 15 × 10 × 0.875 µm3 in volume, where four layers of air (0.5 µm), the ITO
film in the excited states (0.075 µm), ground states (0.1 µm) and the glass layer (0.2 µm)
were enclosed. The dielectric permittivity of ITO in the ground states is 3.6159 + 0.0085i,
which is taken from reference [63]. The dielectric permittivity of ITO in the excited states is
calculated to be −4.45 + 0.35i according to the Drude model, in which the carrier density is
calculated from the Boltzmann’s transport equation [25,64]. The details are shown in the
Supplementary Materials.
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shows the laser polarization.

Figure 3a,b show that random defects and irregular HSFLs formed on the ITO film
with high scanning velocity. The sizes of the HSFLs are 500 × 100 nm2, with orientation
parallel to the laser polarization. The depths of the HSFLs were measured to be in the range
of several tens to hundreds of nanometers [65–67]. In order to simplify the simulation, the
ablated regions were represented by rectangular grooves with sizes of 500 × 100 × 75 nm3.
The selection of other sizes such as 600 × 120 × 60 nm3 will not have a great influence
on the simulation results. The positions and numbers of these rectangular grooves are
randomly distributed according to the experimental results. However, the orientation
changes after being irradiated by a series of laser pulses.

Plane waves irradiated the sample in the normal direction. The boundary conditions
in the X directions were periodic boundary (PBC) conditions, while in other directions
scattering boundary conditions (SBC) were implemented [61,62].

We first simulated the light field distribution on the upper surface irradiated by the
initial laser pulse, in which HSFsL parallel to the laser polarization were formed. As
shown in Figure 6a, the magnified image of the black square region shows nanogrooves
with orientations parallel to the laser polarization. Some periodic distribution of the light
field occurred on the surface as a result of the interference between the incident light
and SPPs excited by the HSFL nanostructures. The 2D FT image in Figure 6d shows that
periodicity parallel to the laser polarization was stronger than that in the vertical direction.
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These light intensity distributions would lead to prototype LSFLs perpendicular to the
laser polarization. In order to further analyze the evolution of light intensity distribution
caused by the formation of the prototype LSFLs, the grooves were placed separately at
different angles from the polarization direction, as shown in Figure 6b. The 2DFT image in
Figure 6e shows that periodicity parallel to the laser polarization was obviously reduced
and became lower than that in the vertical direction. The FT spectrum in kx direction was
1.43 ± 0.35 µm−1, corresponding to a period of 700 ± 160 nm. The ripple-distributed light
intensity was significantly enhanced, in agreement with the discussion in the previous
section that the formation of LSFL will further enhance SPP excitation. With the groove
directions completely perpendicular to the polarization direction as shown in Figure 6c,
the light intensity distribution was very regular with a period of 930 ± 15 nm (Figure 6f),
and the periodicity parallel to the laser polarization almost completely disappeared.
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Figure 6. Surface light intensity distribution for different nanogroove orientations. Nanogrooves are
(a) parallel to laser polarization (initial horizontal HSFLs), (b) mostly and (c) completely perpendicular
to laser polarization (prototype LSFLs). (d–f) are the 2D FT images of the light field distributions in
the red boxes of (a–c). The arrow E shows the laser polarization in (a). The color bars in (a–c) indicate
the normalized light intensity.

3.3. Effects of Scanning Velocity and Laser Fluence on LSFL Quality

The scanning velocity and laser fluence have a great influence on the LSFL quality, so
a detailed study of the effects of these two parameters is necessary for the fabrication of
desirable LSFLs. Figures 7 and 8 show the SEM images and ripple depth of LSFLs fabricated
at different scanning velocities from 4 to 1 mm/s. As shown in Figure 7a, when the laser
scanning velocity was 4 mm/s, the number of cumulative laser pulses per spot was only
3.5 on average. The LSFLs formed on the surface show fuzzy and irregular shapes with an
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average depth of 12 nm. When the scanning velocity was reduced to 3 mm/s, very regular
LSFLs appeared as shown in Figure 7b with the FT spectrum peak at 1.075 ± 0.008 µm−1

corresponding to a LIPSS period of 930 ± 5 nm. Figure 7e shows the depth profile along the
red line in Figure 7b. The depth of each ripple fluctuated in a very small range, which shows
that the LSFLs are very regular. The average depth reached a maximum value of 48 nm.
Further decrease in the scanning velocity results in the LSFLs being ablated off (Figure 7c,d).
When the scanning velocity was reduced to 1 mm/s, the LSFLs almost disappeared. Very
thin and shallow ripples (10 nm) appeared on the surface of the glass substrate.
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Figure 7. SEM images of LSFLs on the ITO film after laser irradiation under scanning velocities of
(a) 4, (b) 3, (c) 2 and (d) 1 mm/s with a fixed pulse fluence of 0.66 J/cm2. The scale bars are all 2 µm.
The FT of (b) is highlighted in the inset. (e) shows the depth profile along the red line in (b).

The main components of the ITO film are indium, tin and oxygen. Therefore, the
weight percentage of indium ions can be used to characterize the removal of the ITO film.
Figure 9a–h shows the SEM images of the geometry and the distribution of the indium
ion content for the LSFL fabricated under scanning velocities from 4 to 1 mm/s with the
pulse fluence fixed at 0.66 J/cm2. When the scanning velocity was 4 mm/s, as shown
in Figure 9e, the indium ion content was relatively high, reaching 39.3%, indicating that
the main component of the surface was ITO. When the scanning velocity was reduced to
3 mm/s, very regular LSFLs formed and the indium ions were evenly distributed in the
vertical direction (Figure 9b,f). Figure 9k shows the distribution of indium ions along the
red line in (b) and the indium ion content distribution was very regular. The whole ITO film
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was gradually ablated off with further decreases in the scanning velocity. With a scanning
velocity of 1 mm/s, the indium ion content on the surface was reduced to merely 2.42% as
shown in Figure 9h,j.
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Figure 9. SEM images of LSFLs on the ITO film after laser irradiation under scanning velocities of
(a) 4, (b) 3, (c) 2 and (d) 1 mm/s with fixed pulse fluence of 0.66 J/cm2. (e–h) Distributions of indium
ion content measured by EDS corresponding to (a–d) respectively. The scale bars are all 2 µm. (i) and
(j) are the sum spectra of (a,d), respectively. (k) is the distribution of the indium content along the red
line in (b).

Figures 10 and 11 show the SEM images and ripple depth of the LSFLs fabricated on
the ITO film for different pulse fluences at a fixed scanning velocity of 3 mm/s. As shown
in Figure 10a, when the laser fluence was 0.55 J/cm2, sprototype LSFLs formed on the
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ITO film surface. Due to the low laser fluence, the ITO film in the gap regions was not
completely removed and the formed LSFLs were very irregular. There were some HSFL
patterns parallel to the laser polarization direction. The average depth measured by a
confocal microscope was 24 nm, as shown in Figure 11. When the laser fluence increased
to 0.66 J/cm2, very regular LSFLs with a period of 930 ± 5 nm were formed. Figure 11
shows that the depth reached a maximum value of 48 nm at this pulse fluence. With further
increasea in the pulse fluence, LSFLa began to be ablated off. When the pulse fluence
increased to 0.89 J/cm2, LSFL almost disappeared, and the depth of the ripples was only
9 nm.
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Figure 10. SEM images of LSFLa on the ITO film after laser irradiation under pulse fluences of (a) 0.55,
(b) 0.66, (c) 0.75 and (d) 0.89 J/cm2 with a fixed scanning velocity of 3 mm/s. The scale bars are all
2 µm. The FT image of (b) is highlighted in the inset. The double arrow in (a) indicates the laser
polarization direction.
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In order to better study the formation process of LSFLa, we studied different types of
micro/nanostructures depending on the laser fluence and scanning velocity, as shown in
Figure 12. When the scanning velocity was in the range of 3–4 mm/s and the laser fluence
was in the range of 0.64–0.79 J/cm2, regular LSFLs covered the entire ablation area. When
the laser fluence exceeded 1.3 J/cm2, LSFLs were ablated off. When the laser fluence was
lower than 0.3 J/cm2, loosely spaced burnt regions were formed on the ITO film.
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Figure 12. Different types of micro/nanostructures depending on the laser fluence and scan-
ning velocity.

The formation of LSFLs on ITO films with different thicknesses (such as 50 nm, 175 nm
and 600 nm) was also studied. LSFLs can be prepared on all these ITO films with different
thicknesses, but the quality varies greatly. For ITO films with a thickness of 50 nm, they
were easily completely ablated before regular LSFLs formed. While for ITO films with
a thickness of 600 nm, the laser fluence required for processing LSFLs was higher than
1.0 J/cm2 at a scanning velocity of 3 mm/s. The heat accumulation during laser processing
was very serious, which resulted in irregular LSFLs [5,52,53,68]. ITO film with a thickness
of 175 nm was suitable for processing LSFLs with extreme regularity.

4. Large-Area LSFL Fabrication and Applications
4.1. Fabrication of Large-Area LSFL

Based on the study of the LSFL formation mechanism and effects of the fabrication
parameters, large-area extremely regular LSFLs with a diameter of 30 mm were prepared
efficiently on the ITO thin film by femtosecond laser direct writing with a cylindrical
lens [29]. The laser fluence was 0.66 J/cm2 and scanning velocity was 3.0 mm/s, indicating
that the interval between adjacent scanning lines was 1.5 mm and the number of cumulative
pulses per spot was about five. As shown in Figure 13a, the LSFLs were extremely straight
and regular with a period of 930 nm. Figure 13b shows the optical image of the LSFLs
prepared. Different colors due to diffraction can be clearly observed. Note that large-area
LSFLs on the ITO film with a diameter of 30 mm can be fabricated very efficiently within
4 min using cylindrical lens focusing.

4.2. Structural Color Patterning

Various patterns of LSFLs were fabricated by placing masks of different shapes on the
ITO sample and the measurement setup shown in Figure 2 was used to characterize the
structural color from different viewing angles [29]. Due to the diffraction of the uniform
LSFLs, different structural colors could be displayed on the CCD by observing from
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different angles, as shown in Figure 14a–i. Figure 14j shows the diffraction spectra of the
pattern composed of extremely regular LSFLs with peaks at 470, 540 and 660 nm, where
the full widths at half-maximum (FWHM) are 32.7, 30.6 and 35.2 nm, respectively. Each
diffraction spectrum has only one peak, and the FWHM values are all less than 36 nm.
Therefore, all the structural colors were very bright and pure because the fabricated LSFLs
were extremely straight and regular.
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4.3. Increasing Near-Infrared Optical Transmittance

Figure 15 shows light transmittance spectra of ITO films with LSFLs in the wavelength
range of 300–2000 nm. The transmittance only changed slightly with laser fluences in the
wavelength range of 300–1000 nm. In the near-infrared region of 1200–1900 nm, the average
transmittance of the original ITO film was 37.96% in Table 1. With femtosecond laser
direct writing of LSFLs, the transmittance in the near-infrared region increased. When the
pulse fluence was 0.66 J/cm2, very regular LSFLs formed, and the average transmittance
increased to 71.3%. When the fluence further increased to 0.89 J/cm2, the ITO film was
almost completely removed, and the transmittance increased to 91.0%. The near-infrared
optical properties of the ITO film can be tuned by femtosecond laser writing of LSFLs at
different fabrication parameters. The increase in transmittance was mainly caused by the
decrease in ITO film thickness. LSFL processing is accompanied by material removal and a
corresponding increase in transmittance.
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Figure 15. Light transmittance spectra of ITO films with LSFLs fabricated by femtosecond laser direct
writing with different pulse fluences. The scanning velocity was fixed at 3.0 mm/s.

Table 1. The average transmittance in the near-infrared band from 1200 to 1900 nm for LSFL fabricated
by femtosecond laser direct writing with different pulse fluences (0~0.89 J/cm2).

Fluences (J/cm2) 0 0.32 0.41 0.66 0.75 0.82 0.89

Light transmittance (%) 37.96 56.83 65.30 71.32 76.91 81.32 90.96

5. Conclusions

In this paper, regular LSFLs were efficiently prepared on ITO films by femtosecond
laser direct writing with a cylindrical lens. It was found that a small number of cumulative
laser pulses per spot led to the formation of randomly distributed nanoparticles and HSFLs
parallel to the incident laser polarization, while more accumulated pulses induced regular
LSFLs perpendicular to the laser polarization. The transition mechanism was studied by
real-time absorptance measurement and theoretical simulations. The results demonstrate
that the interference between incident laser and SPPs excited by random surface scatterers
facilitates prototype LSFL formation, which in turn enhances light absorption and SPP
excitation for the following laser pulses. The effects of scanning velocity and laser fluence
on LSFL quality were studied in detail. Large-area extremely regular LSFLs on ITO film
with a diameter of 30 mm were efficiently fabricated by femtosecond laser direct writing
with a cylindrical lens. The fabricated LSFLs on the ITO film demonstrated vivid structural
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color. During LSFL processing, a decrease in ITO film thickness leads to an increase in
near-infrared optical transmittance.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ma15155092/s1, Supplementary Materials presents how the permittivity
values used in the simulation were obtained.
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