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Abstract: Considerable uncertainties in the mechanical properties of composites not only prevent
them from having efficient applications but also threaten the safety and reliability of structures. In
order to determine the uncertainty in the elastic properties of unidirectional CFRP composites, this
paper develops a probabilistic analysis method based on a micromechanics theoretical model and
the Monte Carlo simulation. Firstly, four commonly used theoretical models are investigated by
calculating the deterministic elastic parameters of three unidirectional CFRP composites, which are
compared with experimental outcomes. According to error analyses, the bridging model is the most
brilliant one, with errors lower than 6%, which suggests that it can be used in probabilistic analyses.
Furthermore, constituent parameters are regarded as normally distributed random variables, and the
Monte Carlo simulation was used to obtain samplings based on the statistics of constituent parameters.
The predicted probabilistic elastic parameters of the T800/X850 composite coincide with those
from experiments, which verified the effectiveness of the developed probabilistic analysis method.
According to the probabilistic analysis results, the statistics of the elastic parameters, the correlations
between the elastic parameters, and their sensitivity to the constituent’s properties are determined.
The moduli E11, E22, and G12 of the T800/X850 composite follow the lognormal distribution, namely,
ln(E11)~N[5.15, 0.0282], ln(E22)~N[2.15, 0.0242], and ln(G12)~N[1.48, 0.0382], whereas its Poisson’s
ratio, v12, obeys the normal distribution, namely, v12~N(0.33, 0.0122). Additionally, the correlation
coefficients between v12 and E11/E22/G12 are small and thus can be ignored, whereas the correlation
coefficients between any two of E11, E22, and G12 are larger than 0.5 and should be considered in the
reliability analyses of composite structures. The developed probabilistic analysis method based on
the bridging model and the Monte Carlo simulation is fast and reliable and can be used to efficiently
evaluate the probabilistic properties of the elastic parameters of any unidirectional composite in the
reliability design of structures in engineering practice.

Keywords: composites; elastic property; micromechanics theoretical model; probabilistic analysis
method; Monte Carlo simulation

1. Introduction

Carbon-fiber-reinforced polymer (CFRP) composites have been widely used in various
engineering fields due to their high specific stiffness, high specific strength, outstanding
designability, etc. Among the different types of CFRP composites, the unidirectional (UD)
continuous carbon-fiber-reinforced resin matrix composite lamina, which is the basic build-
ing block of multidirectional laminates, is the most popular one that has been greatly
developed until now. However, severe uncertainty exists in the mechanical properties of
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the composite lamina because of the inherently scattered mechanical properties of the con-
stituent, the misaligned fiber distribution, the uncertain volume fraction of the constituent,
etc. [1,2]. Generally, in order to ensure the safety and reliability of composite structures,
large safety factors are used in traditional deterministic design [3]. This inefficient and
uneconomical design leads to overweight structures. In other words, the superiority of
advanced composite materials in weight savings is greatly reduced.

In order to give full play to the potential of composites and obtain an efficient design
of composite structures under the premise that high structural reliability and safety are
guaranteed, probabilistic design methodologies have been developed and gradually ap-
plied to the design of engineering structures [4,5]. Multiscale methodologies have been
developed to simulate the probabilistic mechanical properties of composite structures
because of the uncertainty in the mechanical properties’ transfers from the micro-level to
the structural level [6–8], as presented in Figure 1. Therefore, in probabilistic analyses of
complex composite structures, the determination of the probabilistic mechanical properties
of composite laminae is of great importance [9–12].
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Figure 1. The transfer of uncertain mechanical properties from the constituent level to the full vehi-
cle level. 
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structures [15]. Furthermore, the large quantity of specimens required in this method in-
dicates the high cost and long time period. To solve this problem, Sepahvand and Mar-
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composites from limited experimental modal data. However, correlations between the 
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question arises: will the statistical correlations between the material properties affect the 
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indicated that correlations between the lamina’s mechanical properties are significant for 
the reliability estimates of composite structures and that neglecting the correlations can 
lead to an inefficient or unsafe design. Zhang et al. [21] found that correlations between 
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Up till now, the probabilistic mechanical properties of composite laminae have been in-
vestigated by two methodologies, which are the macro-level-started experimental method
and the micro-level-started theoretical or numerical method. The former determines the
statistics of mechanical properties based on numerous experimental data and probability
distribution models [13–18]. For example, Jeong and Shenoi [14] obtained thirty-five ex-
perimental values of each mechanical parameter of composite laminae and determined
their statistical characteristics by assuming that they follow the normal or Weibull distribu-
tion. However, the probability distribution type of the mechanical properties of composite
laminae is found to influence the probabilistic strength of composite structures [15]. Fur-
thermore, the large quantity of specimens required in this method indicates the high cost
and long time period. To solve this problem, Sepahvand and Marburg [18] proposed a
method for the optimal estimation of uncertain elastic parameters of composites from
limited experimental modal data. However, correlations between the material properties
still cannot be determined from this method. Therefore, the following question arises: will
the statistical correlations between the material properties affect the mechanical reliability
of composite structures? Shaw et al. [19] and Smarslok et al. [20] indicated that correlations
between the lamina’s mechanical properties are significant for the reliability estimates of
composite structures and that neglecting the correlations can lead to an inefficient or unsafe
design. Zhang et al. [21] found that correlations between the lamina’s stiffness significantly
affect the reliability of composite laminates, while the effect of correlations between the
lamina’s strength is minimal.

In contrast, the micro-level-started theoretical or numerical method can not only de-
termine the statistics of the material parameters but also obtain the correlations between
these parameters. This method employs a micromechanics numerical model or theoretical
model to calculate the probabilistic mechanical properties of the composite lamina while
considering the randomness of the constituent’s properties. Lee et al. [22] and Mustafa
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et al. [23,24] combined micromechanics finite element models with statistical models of
the constituents to determine the random mechanical properties of composite laminae.
Jin et al. [25] used the micromechanics finite element, accompanied by a Monte Carlo
simulation, to perform a probabilistic analysis of a plain weave carbon/epoxy composite.
Bhattacharyya et al. [26] proposed a new micromechanics finite element model to achieve
computational efficiency. Pitchai et al. [27] developed a homogenization technique based on
the variational asymptotic method, coupled with the Monte Carlo method, to carry out an
uncertainty and sensitivity analysis of the effective properties of unidirectional composites.
Compared with the micromechanics finite element or other numerical models, microme-
chanics theoretical models are investigated more extensively, and advanced models have
been developed in recent years. For example, Lezgy-Nazargah [28] proposed a microme-
chanics theoretical model based on iso-field assumptions to compute the effective coupled
thermo-electro-elastic material properties of MFCs. In later studies, Lezgy-Nazargah and
Eskandari-Naddaf [29] extended this model to estimate the material coefficients of three-
phase piezoelectric structural fiber composites. The accuracy of the model was validated
via comparison with the results of the rule of the mixture and a finite element model.
Therefore, more researchers have used micromechanics theoretical models, including the
rule of mixture [30], the model proposed by Halpin et al. [31], the model presented by
Chamis et al. [32], and the bridging model proposed by Huang [33], to conduct probabilistic
analyses of the mechanical properties of composite laminae [19–22,34,35]. As is well-known,
the accuracy of a micromechanics theoretical model is the premise for obtaining the reliable
probabilistic mechanical properties of composite laminae. However, little comparison has
ever been made between micromechanics theoretical models to provide evidence for the
selection of a model, which makes the existing probabilistic analysis method unsound.

To solve the above problem, this paper developed a novel probabilistic analysis method
for the elastic properties of unidirectional CFRP composites on the basis of comprehensive
comparisons being drawn between four commonly used micromechanics theoretical mod-
els. Firstly, the four models were employed to predict the deterministic elastic parameters
of three unidirectional CFRP composites, and a detailed error analysis was conducted by
comparing the predicted results with the experimental outcomes. Furthermore, a novel
probabilistic analysis method that combines the bridging model, which was screened out of
the four models, with the Monte Carlo simulation (MCS), was proposed. Basic constituent
parameters, including the elastic parameters of the fiber and matrix as well as the volume
fraction of the fiber, were regarded as random variables, and corresponding statistical
models were established. The probabilistic elastic parameters obtained from the proposed
method were compared with experimental outcomes to provide verification. Finally, the
statistics of the elastic parameters, the correlations between the elastic parameters, and
their sensitivity to the constituent’s properties were analyzed.

2. Methodology

The uncertainty in the mechanical properties of composites is caused by the uncer-
tainty in the mechanical properties of their constituents. When random variables are used
to describe the uncertainty in the mechanical properties of the constituent, the randomness
in the mechanical properties of composites can be obtained. Therefore, a novel probabilistic
analysis method that integrates a micromechanics theoretical model with the Monte Carlo
simulation was developed to predict the random elastic parameters of unidirectional com-
posites. The theoretical micromechanics model was used to calculate the elastic parameters,
and the Monte Carlo simulation was utilized to obtain samplings of the constituent param-
eters based on statistics of the constituent parameters. Compared with the micromechanics
finite element model or other numerical-model-based probabilistic analyses, the developed
method based on the theoretical model is fast and reliable, and it can be used to efficiently
evaluate the probabilistic properties of the elastic parameters of any unidirectional composite in
the reliability design of complex structures in engineering practice.
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The flowchart of the proposed method is shown in Figure 2, and the main steps are
described as follows:

Step 1: Identify the input random variables, namely, the material properties of the constituent.
Step 2: Determine the statistics of the input random variables, including the probability

distribution type and the distribution parameters.
Step 3: Perform random sampling using the Monte Carlo simulation.
Step 4: Use an accurate theoretical micromechanics model to calculate the elastic properties.
Step 5: Obtain the statistics of the elastic properties based on the output data.
Step 6: Acquire the correlations between the elastic properties.
Step 7: Evaluate the sensitivity of the elastic properties to the input constituent’s properties.
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3. Comparisons of Micromechanics Models

Four commonly used micromechanics theoretical models were introduced and were
utilized to calculate the elastic properties of three typical unidirectional CFRP compos-
ites. Detailed error analyses were conducted by comparing the calculated results with
the experimental outcomes to screen out the most accurate one, which can be used in
probabilistic analyses.

3.1. Descriptions of the Micromechanics Models

The unidirectional continuous carbon-fiber-reinforced resin matrix composite lamina
is the fundamental form of laminated composite structures. In the UD CFRP lamina, the
carbon fibers are arranged in the same direction, as shown in Figure 3. As is well-known,
the UD CFRP lamina is transversely isotropic because the carbon fiber is transversely
isotropic and the resin matrix is isotropic. The material principal coordinate system O-123
of the lamina is also illustrated in Figure 3. The directions of the three principal axes of the
lamina coincide with those of the carbon fibers.
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The micromechanics theoretical models are established based on the assumptions that:
(1) the fiber is uniformly distributed in the matrix; (2) the fiber and matrix are connected
directly without relative sliding; (3) the volume fraction of the void is very small and thus
can be ignored. Four micromechanics theoretical models that are widely used to predict
the elastic constants of the UD CFRP composite lamina are introduced and investigated in
this paper.

• Rule of mixture (numbered as Model I).

Among the micromechanics models, the rule of mixture [30] is the simplest one that
has been used for a long time. The equations are the following:

E11 = Vf E f
11 + VmEm

v12 = Vf ν
f
12 + Vmνm

E22 =
Em

1−Vf

(
1− Em/E f

22

)
G12 =

Gm

1−Vf

(
1− Gm/G f

12

)
(1)

where E f
11, E f

22, G f
12, and ν

f
12 are the longitudinal elastic modulus, the transverse elastic

modulus, the longitudinal transverse shear modulus, and the longitudinal transverse
Poisson’s ratio of the fiber, respectively. Em, Gm, and νm are the elastic modulus, the
shear modulus, and the Poisson’s ratio of the matrix, respectively, among which the shear
modulus is calculated by Gm = Em/2(1 + νm). Vf and Vm are the volume fractions of the
fiber and the matrix, which satisfy Vf + Vm = 1 because the volume fraction of the void
is ignored.

• Chamis model (numbered as Model II).

Chamis [32] obtained a new model by simplifying the model proposed by Hopkins
and Chamis [36]. The equations are expressed as follows:

E11 = Vf E f
11 + VmEm

v12 = Vf v f
12 + Vmvm

E22 =
Em

1−
√

Vf

(
1− Em/E f

22

)
G12 =

Gm

1−
√

Vf

(
1− Gm/G f

12

)
(2)

It can be seen from Equation (2) that the equations for E22 and G12 are similar to those
in the rule of mixture because only the Vf is replaced with

√
Vf .

• Halpin–Tsai model (numbered as Model III).

Halpin et al. [31] summarized the Halpin–Tsai equations in detail, in which the equa-
tions for the elastic parameters are the following:
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E11 = Vf E f
11 + VmEm

v12 = Vf v f
12 + Vmvm

E22 = Em

(
1 + 2αVf

1− αVf

)
α =

(
E f

22/Em
)
− 1(

E f
22/Em

)
+ 2

G12 = Gm

(
1 + βVf

1− βVf

)
β =

(
G f

12/Gm
)
− 1(

G f
12/Gm

)
+ 1

(3)

• Bridging model (numbered as Model IV).

Huang established the bridging model [33], which can predict both the elastic and the
strength parameters of unidirectional composites. The equations for the elastic parameters
are the following:

E11 = Vf E f
11 + VmEm

v12 = Vf v f
12 + Vmvm

E22 =

(
Vf + Vma11

)(
Vf + Vma22

)
(

Vf + Vma11

)(
Vf S f

22 + a22VmSm
22

)
+ Vf Vm

(
Sm

21 − S f
21

)
a12

G12 = Gm

(
G f

12 + Gm
)
+ Vf

(
G f

12 − Gm
)

(
G f

12 + Gm
)
−Vf

(
G f

12 − Gm
)

(4)

where a11 = Em/E f
11, a22 = 0.5

(
1 + Em/E f

22

)
, a12 =

(
S f

12 − Sm
12

)
(a11 − a22)/

(
S f

11 − Sm
11

)
,

S f
11 = 1/E f

11, S f
22 = 1/E f

22, S f
12 = S f

21 = −ν
f
12/E f

11, Sm
11 = Sm

22 = 1/Em, and
Sm

12 = Sm
21 = −νm/Em. It can be found from a derivation that the equation for G12 is

the same as that in the Halpin–Tsai model.
As discussed above, the equations for E11 and v12 are the same in the four microme-

chanics models, whereas the equations for E22 and G12 are different. When the four basic
elastic parameters are obtained, the other elastic parameters of the unidirectional compos-
ite lamina can be determined according to the transversely isotropic assumption, except
that v23 is calculated by the equation of Christensen [37]. The equations are formulated
as follows:

E33 = E22
G13 = G12
ν13 = ν12
ν23 = ν12(1− ν12E22/E11)/(1− ν12)
G23 = E22/2(1 + ν23)

(5)

3.2. Results and Analyses

The four micromechanics theoretical models were utilized to predict the elastic pa-
rameters of three typical unidirectional CFRP composites. As shown in Table 1, the three
unidirectional carbon-fiber-reinforced epoxy resin matrix composites chosen are all exten-
sively applied in the aerospace field as well as other engineering fields. For example, the
T800/X850 composite, fabricated from T800 carbon fiber and CYCOM X850 epoxy resin, is
widely utilized in the primary structures of large aircraft. The fiber volume fractions and
the elastic properties of the constituents of the three composites are listed in Table 1.
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Table 1. Material properties of the constituent of the three unidirectional composites.

Title
Fiber Volume Fraction Elastic Properties of the Fiber Elastic Properties of the Matrix

Vf Ef
11 (GPa) Ef

22 (GPa) Gf
12 (GPa) ν

f
12 Em (GPa) νm

AS4/3501−6 [38] 0.60 207.5 25 95 0.240 4.5 0.34
T300/BSL914C [39] 0.60 227 25 28 0.245 4.0 0.35
T800/X850 [40] 0.58 295 17.1 40.9 0.32 3.52 0.35

The elastic properties of the three composites calculated by the four micromechanics
models as well as the experimental results are presented in Figure 4. The experimental
results of the AS4/3501−6 and T300/BSL914C composites are from [41]. The experimental
results of the T800/X850 composite are the means of fifteen test values provided by the
manufacturer. It is worth noting that the experimental data of the three composites are
obtained by using the lamina with a regular pattern of fibers, which indicates that the fiber
can be considered to be uniformly distributed in the matrix. As illustrated in Figure 4,
small differences are observed between the theoretical and experimental values of E11 and
v12. The theoretical E22 and G12 obtained from Model I differ greatly from the experimental
values, while those obtained from Models II to IV show relatively small differences from
the experimental values. Model I, namely, the rule of mixture, is accurate in calculating
E11 and v12, but seriously underestimates E22 and G12. This is consistent with the findings
in [22,23,42], which pointed out that when using the rule of mixture, the values for E22
and G12 showed a large difference. Models II–IV modified the formulae of E22 and G12
and therefore can evaluate the values of E22 and G12 more accurately. This conforms to
the findings in [19–23,34]. For example, Model II is used to obtain the elastic parameters
of unidirectional composites in [20,35]. Model III is used to validate the results of finite
element models in [22,23], which suggests the accuracy of Model III. Furthermore, Model
IV is widely used in obtaining the random elastic parameters of unidirectional composites
when the multiscale uncertainty of laminated structures is investigated [19,21], which
demonstrates the precision of Model IV.
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values, while those obtained from Models II to IV show relatively small differences from 
the experimental values. Model I, namely, the rule of mixture, is accurate in calculating 
E11 and v12, but seriously underestimates E22 and G12. This is consistent with the findings 
in [22,23,42], which pointed out that when using the rule of mixture, the values for E22 and 
G12 showed a large difference. Models II–IV modified the formulae of E22 and G12 and 
therefore can evaluate the values of E22 and G12 more accurately. This conforms to the 
findings in [19–23,34]. For example, Model II is used to obtain the elastic parameters of 
unidirectional composites in [20,35]. Model III is used to validate the results of finite ele-
ment models in [22,23], which suggests the accuracy of Model III. Furthermore, Model IV 
is widely used in obtaining the random elastic parameters of unidirectional composites 
when the multiscale uncertainty of laminated structures is investigated [19,21], which 
demonstrates the precision of Model IV. 
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Figure 4. Comparisons between the calculated elastic properties and the experimental values of the
three composites. (a) E11; (b) v12; (c) E22; (d) G12.

Furthermore, the relative errors, ε, obtained by comparing the theoretical values with
the experimental values are depicted in Figure 5a–c. Since the equations for E11 and v12
are the same in all four models, their theoretical values are equal. Additionally, the errors
of E11 and v12 are very small, except that the E11 of the T800/X850 composite has an error
greater than −10%. The E22 obtained from Model I is remarkably smaller than the test
values, with errors up to −27%, while those obtained from Models II to IV are larger than
the experimental values, with decreasing errors in sequence, which are below 12%. The
G12 obtained from Model I is also far less than the test values, with errors higher than
−35%; however, those obtained from Model II are larger than the test values, with errors
below 8.5%, and those acquired from Models III to IV are smaller than the test values,
with errors below −10%. To conclude, for the three composites, the errors of Model I are
unacceptably large, and the errors of Models II–IV remain approximately below 10%. This
is in accordance with the findings in [19–23,34,35,42], which demonstrated that Model I
shows large differences from the experimental or numerical results, whereas Models II–IV
differ slightly from the experimental or numerical results.
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As discussed above, Models II–IV show similar high precision in calculating the
elastic parameters of unidirectional composites. In order to pick out the most accurate
one, the mean of the absolute values of the errors, εmean, is calculated by
εmean = (|εAS4|+ |εT300|+ |εT800|)/3. According to Figure 5d, the E11 and v12 obtained
from the four models show small errors of 3.87% and 1.80%, respectively. The E22 and G12
determined by Model I have remarkable errors, higher than 23%, whereas those acquired
from Models II–IV have small errors, lower than 7%. Concerning Models II–IV, the errors
of E22 decrease in sequence, and the errors of G12 are similar. Therefore, Model IV, namely,
the bridging micromechanics model, is the most brilliant one, which can obtain relatively
accurate E22 and G12, with errors of 2.73% and 5.87%, respectively. For this reason, the bridging
model is widely used in mechanical analyses of unidirectional structures [19,21,43–45]. There-
fore, the bridging model was used in the probabilistic analysis of the elastic parameters of
unidirectional composites.

4. Predictions of Random Elastic Properties

In order to verify the proposed method, the probabilistic elastic properties of the
T800/X850 composite were predicted and compared with the experimental outcomes.
Furthermore, the statistics of the elastic parameters, the correlations between these elastic
parameters, and their sensitivity to the constituent’s properties were analyzed.

4.1. Validation

All of the involved constituent properties of the T800/X850 composite are considered
random variables. There are seven mutually independent random variables. The statistics
of these random variables are presented in Table 2. The constituent’s properties are assumed
to follow the normal distribution. The coefficients of variance (COVs) of the moduli and
fiber volume fraction are 0.02, and the COVs of the Poisson’s ratios are 0.05 [19,21,23,34,46].
Furthermore, 105 samples of the random variables are obtained using the ziggurat method
in the MATLAB® software. According to the bridging micromechanics model, 105 samples
of the four elastic parameters are acquired.

Table 2. Statistics of the constituent’s properties of the T800/X850 composite.

Random Variable Mean COV Distribution Type

E f
11 (GPa) 295 0.02 Normal

E f
22 (GPa) 17.1 0.02 Normal

G f
12 (GPa) 40.9 0.02 Normal

ν
f
12

0.32 0.05 Normal
Em (GPa) 3.52 0.02 Normal

νm 0.35 0.05 Normal
Vf 0.58 0.02 Normal
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Figure 6 represents the calculated cumulative distribution probabilities of the four
elastic parameters. The cumulative probabilities obtained from the experiments, which are
also shown in Figure 6, are calculated by the following [15]:

Pexp = m/(n + 1) (6)

where m denotes the sequence number of the value when fifteen test values of each param-
eter are arranged in ascending order, and n is the number of the specimens. It can be seen
from Figure 6 that the predicted cumulative probabilities of v12, E22, and G12 agree well with
the experimental outcomes, whereas the predicted cumulative probability of E11 shows a
substantial discrepancy from that of the experiments. As shown in Figure 6a, the predicted
data are horizontally translated until arriving at the point determined by the experimental
mean and the cumulative probability, 0.5. Then, the predicted result coincides well with the
experimental outcome. It is in fact the case that the remarkable deviation happens because
the predicted E11 in the deterministic analysis (approximately corresponding to the mean
of E11 in the probabilistic analysis) is remarkably smaller than the test values. This provides
evidence that the proposed method can efficiently evaluate the probabilistic properties of
the elastic parameters of the composites with adequate accuracy under the premise that the
deterministic elastic parameters can be accurately predicted.
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4.2. Statistics of Elastic Parameters

In order to determine the statistics of the four elastic parameters, the cumulative
distribution functions (CDFs) of the normal, lognormal, and Weibull distributions were
employed to fit the cumulative distribution probabilities calculated from the proposed
method. The fitting equations are the following:

F(x)|Normal =
1
2

[
1 + erf

(
x− µ√

2σ

)]
F(x)

∣∣∣Lognormal =
1
2

[
1 + erf

(
ln x− µ√

2σ

)]
F(x)|Weibull = 1− exp

[
−
( x

λ

)κ]
(7)

where the error function is erf(x) =
2√
π

∫ x
0 e−t2

dt. The fitting curves of the four elastic

parameters are shown in Figure 6. The CDFs fitted by the normal distribution are almost
consistent with those fitted by the lognormal distribution, and both of them agree well with
the predicted data, which demonstrates that these two distributions are almost equivalent
for describing the statistics of the elastic parameters. The CDFs fitted by the Weibull
distribution deviate slightly from the predicted data at the middle part but exhibit notable
differences from the predicted data in the lower and upper tails. Consequently, the four
random elastic parameters are inclined to obey the normal or lognormal distribution.

Moreover, Table 3 presents the fitted distribution parameters as well as the adjusted
coefficient of determination, R2, which denotes the goodness of a fit. An adjusted R2 close
to 1.0 suggests that the fit is the best one of the three distributions. The adjusted R2 values
of the Weibull distribution are smaller than those of the normal and lognormal distributions.
According to the comparisons made between the adjusted R2 values of the normal and
lognormal distributions, E11, E22, and G12 tend to follow the lognormal distribution, while
v12 inclines to obey the normal distribution.

Table 3. Statistical models of the elastic properties of the T800/X850 composite.

Random Variable
Normal Distribution Lognormal Distribution Weibull Distribution

µ σ Adj. R2 µ σ Adj. R2 λ κ Adj. R2

E11 (GPa) 172 4.83 0.99999 5.15 0.028 1.00000 174 42.10 0.99760
v12 0.33 0.012 1.00000 −1.10 0.036 0.99997 0.34 33.12 0.99781

E22 (GPa) 8.55 0.202 0.99998 2.15 0.024 1.00000 8.63 49.85 0.99736
G12 (GPa) 4.41 0.167 0.99996 1.48 0.038 1.00000 4.47 31.19 0.99771

Furthermore, the histograms of the four elastic parameters are shown in Figure 7. The
probability density functions (PDFs) of the normal, lognormal, and Weibull distributions
are applied to fit the histograms of the four parameters, as presented in Figure 7. The PDFs
of the Weibull distribution show substantial discrepancies from the histograms. Although
the PDFs of both the normal and lognormal distributions coincide with the histograms,
subtle differences can be observed between them. As for E11, E22, and G12, the PDFs
of the lognormal distribution agree better with the histograms than those of the normal
distribution. Additionally, an opposite tendency appears for v12.

Based on the above discussions, E11, E22, and G12 obey the lognormal distribution,
whereas v12 follows the normal distribution.
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4.3. Correlation Analysis

The scatter plots of the calculated 105 samples of the four elastic parameters are shown
in Figure 8. The distribution of the data reflects the correlations between the two parameters.
The circle-like distributions in Figure 8a,d,e suggest weak correlations between v12 and the
other three elastic parameters. The ellipse-like distributions in Figure 8b,c,f denote strong
correlations between any two of the three moduli.

Further, the Pearson correlation coefficient was employed to quantitatively represent
the correlations between the elastic parameters. The Pearson correlation coefficient is
calculated using Equation (8). The value of the correlation coefficient is in the range of
[−1.0, 1.0]. When it is close to 0, the two variables, X and Y, are not or weakly relevant.
The closer it gets to −1.0 or 1.0, the stronger the correlation is. A value in the range of (0, 1]
means a positive correlation, whereas a value in the range of [−1, 0) suggests a negative
correlation, as follows:

ρ(X, Y) =
∑ XY− ∑ X∑ Y

N√(
∑ X2 − (∑ X)2

N

)(
∑ Y2 − (∑ Y)2

N

) (8)

where X and Y are random variables, whereas N is the sampling number of the variable.
As shown in Figure 9, the correlation coefficients between v12 and the other three elastic
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parameters are small and therefore can be ignored. However, the correlation coefficients
between E11 and E22, between E11 and G12, and between E22 and G12 are larger than 0.5,
indicating that the correlations between these three elastic parameters should be considered
in reliability analyses of the composite structures.
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4.4. Sensitivity Analysis

The probabilistic sensitivities were evaluated according to the Pearson correlation
coefficients between a particular output parameter and all of the input random variables.
The analysis results are illustrated in Figure 10, where the absolute values larger than 0.3
are marked. The longitudinal elastic modulus, E11, has strong relations with E f

11 and Vf .

The transverse elastic modulus, E22, depends on Vf , Em, vm, and E f
22 in sequence. The shear

modulus, G12, is highly related to Vf , Em, and vm. The Poisson’s ratio, v12, mainly relates to

v f
12 and vm.
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5. Conclusions

A novel probabilistic analysis method was proposed to determine the uncertainty
in the elastic properties of unidirectional CFRP composites. The method integrates a mi-
cromechanics theoretical model with the Monte Carlo simulation. Firstly, comprehensive
comparisons between four commonly used theoretical models were made by comparing
the calculated deterministic elastic parameters of three unidirectional CFRP composites
with experimental outcomes in the literature. According to detailed error analyses, the
bridging model is the most accurate one, with errors lower than 6%, which suggests that
it can be used in probabilistic analyses. Moreover, constituent parameters, including the
elastic parameters of the fiber and the matrix as well as the volume fraction of fiber, were
regarded as normally distributed random variables, and the Monte Carlo simulation was
used to obtain samplings according to statistics of the constituent parameters. The proposed
method was used to predict the random elastic parameters of the T800/X850 composite,
and the predicted results were compared with the experimental outcomes to provide vali-
dation. Additionally, correlations between the elastic parameters and their sensitivity to the
constituent’s properties were also determined. The following conclusions can be drawn:
(1) Among the four micromechanics theoretical models, the bridging model is proven to
be the best one that can accurately predict the elastic properties of unidirectional CFRP
composites. (2) The proposed probabilistic analysis method, based on the bridging model
and the Monte Carlo simulation, can efficiently evaluate the random elastic parameters of
unidirectional CFRP composites with adequate accuracy. (3) The moduli E11, E22, and G12
of the T800/X850 composite follow the lognormal distribution, while its Poisson’s ratio,
v12, obeys the normal distribution. Namely, ln(E11)~N[5.15, 0.0282], ln(E22)~N[2.15, 0.0242],
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ln(G12)~N[1.48, 0.0382], and v12~N(0.33, 0.0122). (4) The correlation coefficients between v12
and E11/E22/G12 are small and thus can be ignored, whereas the correlation coefficients
between any two of E11, E22, and G12 are larger than 0.5 and should be considered in multi-
scale uncertainty analyses of composite structures. (5) The longitudinal elastic modulus,
E11, has strong relations with E f

11 and Vf . The transverse elastic modulus, E22, depends on

Vf , Em, vm, and E f
22 in sequence. The shear modulus, G12, is highly related to Vf , Em, and

vm. The Poisson’s ratio, v12, mainly relates to v f
12 and vm.

In the future, to obtain an efficient design of composite structures, multiscale un-
certainty design and analysis of complex composite structures will be widely applied.
Additionally, the determination of uncertainty in the mechanical properties of a composite
lamina is of great importance because the uncertainty in the mechanical properties trans-
fers from the micro-level to the structural level. This paper provides a fast and reliable
probabilistic analysis method for the uncertainty evaluation of the elastic parameters of
any unidirectional composite. The method is based on the theoretical bridging model and
the Monte Carlo simulation, and it can be easily packaged and embedded in software via a
programming language, which suggests its great potential in applications in engineering practice.

Author Contributions: Conceptualization, methodology, data curation, formal analysis, M.S.; Con-
ceptualization, supervision, resources, L.Z.; Investigation, validation, writing—review & editing, J.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: The research work is supported by the National Natural Science Foundation of China (Nos.
12072005, 11772028, U1864208) and the China Postdoctoral Science Foundation (No. 2020M680325).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sriramula, S.; Chryssanthopoulos, M.K. Quantification of uncertainty modelling in stochastic analysis of FRP composites. Compos.

Part A 2009, 40, 1673–1684. [CrossRef]
2. Chiachio, M.; Chiachio, J.; Rus, G. Reliability in composites—A selective review and survey of current development. Compos. Part

B 2012, 43, 902–913. [CrossRef]
3. Zhou, X.Y.; Qian, S.Y.; Wang, N.W.; Xiong, W.; Wu, W.Q. A review on stochastic multiscale analysis for FRP composite structures.

Compos. Struct. 2022, 284, 115132. [CrossRef]
4. Long, M.W.; Narciso, J.D. Probability Design Methodology for Composite Aircraft Structures; DOT/FAA/AR-99/2; Office of Aviation

Research: Washington, DC, USA, 1999.
5. Lin, K.Y.; Styuart, A.V. Probabilistic approach to damage tolerance design of aircraft composite structures. J. Aircr. 2007, 44,

1309–1317. [CrossRef]
6. Chamis, C.C. Probabilistic simulation of multi-scale composite behavior. Appl. Fract. Mech. 2004, 41, 51–61. [CrossRef]
7. Naskar, S.; Mukhopadhyay, T.; Sriramula, S. Spatially varying fuzzy multi-scale uncertainty propagation in unidirectional fibre

reinforced composites. Compos. Struct. 2019, 209, 940–967. [CrossRef]
8. Peng, Z.; Wang, X.; Wu, Z. Multiscale strength prediction of fiber-reinforced polymer cables based on random strength distribution.

Compos. Sci. Technol. 2020, 196, 108228. [CrossRef]
9. Sánchez-Heres, L.F.; Ringsberg, J.W.; Johnson, E. Influence of mechanical and probabilistic models on the reliability estimates of

fibre-reinforced cross-ply laminates. Struct. Saf. 2014, 51, 35–46. [CrossRef]
10. Gadade, A.M.; Lal, A.; Singh, B.N. Stochastic buckling and progressive failure of layered composite plate with random material

properties under hygro-thermo-mechanical loading. Mater. Today Commun. 2020, 22, 100824. [CrossRef]
11. An, H.; Youn, B.D.; Kim, H.S. Reliability-based design optimization of laminated composite structures under delamination and

material property uncertainties. Inter. J. Mech. Sci. 2021, 205, 106561. [CrossRef]
12. Sharma, N.; Nishad, M.; Maiti, D.K.; Sunny, M.R.; Singh, B.N. Uncertainty quantification in buckling strength of variable stiffness

laminated composite plate under thermal loading. Compos. Struct. 2021, 275, 114486. [CrossRef]
13. Lin, S.C. Reliability predictions of laminated composite plates with random system parameters. Probab. Eng. Mech. 2000, 15,

327–338. [CrossRef]

http://doi.org/10.1016/j.compositesa.2009.08.020
http://doi.org/10.1016/j.compositesb.2011.10.007
http://doi.org/10.1016/j.compstruct.2021.115132
http://doi.org/10.2514/1.26913
http://doi.org/10.1016/j.tafmec.2003.11.005
http://doi.org/10.1016/j.compstruct.2018.09.090
http://doi.org/10.1016/j.compscitech.2020.108228
http://doi.org/10.1016/j.strusafe.2014.06.001
http://doi.org/10.1016/j.mtcomm.2019.100824
http://doi.org/10.1016/j.ijmecsci.2021.106561
http://doi.org/10.1016/j.compstruct.2021.114486
http://doi.org/10.1016/S0266-8920(99)00034-X


Materials 2022, 15, 5090 16 of 17

14. Jeong, H.K.; Shenoi, R.A. Probabilistic strength analysis of rectangular FRP plates using Monte Carlo simulation. Comput. Struct.
2000, 76, 219–235. [CrossRef]

15. Zhao, L.; Shan, M.; Liu, F.; Zhang, J. A probabilistic model for strength analysis of composite double-lap single-bolt joints. Compos.
Struct. 2017, 161, 419–427. [CrossRef]

16. Liu, F.; Shan, M.; Zhao, L.; Zhang, J. Probabilistic bolt load distribution analysis of composite single-lap multi-bolt joints
considering random bolt-hole clearances and tightening torques. Compos. Struct. 2018, 194, 12–20. [CrossRef]

17. Liu, F.; Fang, Z.; Zhao, L.; Zhang, J.; Hu, N. A failure-envelope-based method for the probabilistic failure prediction of composite
multi-bolt double-lap joints. Compos. Part B 2019, 172, 593–602. [CrossRef]

18. Sepahvand, K.; Marburg, S. Identification of composite uncertain material parameters from experimental modal data. Probab.
Eng. Mech. 2014, 37, 148–153. [CrossRef]

19. Shaw, A.; Sriramula, S.; Gosling, P.D.; Chryssanthopoulos, M.K. A critical reliability evaluation of fibre reinforced composite
materials based on probabilistic micro and macro-mechanical analysis. Compos. Part B 2010, 41, 446–453. [CrossRef]

20. Smarslok, B.P.; Haftka, R.T.; Ifju, P.G. Correlation model for composite elastic properties using only measurements from a single
specimen. Probab. Eng. Mech. 2012, 29, 64–69. [CrossRef]

21. Zhang, S.; Zhang, C.; Chen, X. Effect of statistical correlation between ply mechanical properties on reliability of fibre reinforced
plastic composite structures. J. Compos. Mater. 2015, 49, 2935–2945. [CrossRef]

22. Lee, S.P.; Jin, J.W.; Kang, K.W. Probabilistic analysis for mechanical properties of glass/epoxy composites using homogenization
method and Monte Carlo simulation. Renew. Energy 2014, 65, 219–226. [CrossRef]

23. Mustafa, G.; Suleman, A.; Crawford, C. Probabilistic micromechanical analysis of composite material stiffness properties for a
wind turbine blade. Compos. Struct. 2015, 131, 905–916. [CrossRef]

24. Mustafa, G.; Suleman, A.; Crawford, C. Probabilistic first ply failure prediction of composite laminates using a multi-scale M-SaF
and Bayesian inference approach. J. Compos. Mater. 2018, 52, 169–195. [CrossRef]

25. Jin, J.W.; Jeon, B.W.; Choi, C.W.; Kang, K.W. Multi-scale probabilistic analysis for the mechanical properties of plain weave
carbon/epoxy composites using the homogenization technique. Appl. Sci. 2020, 10, 6542. [CrossRef]

26. Bhattacharyya, R.; Mahadevan, S.; Basu, P.K. Computationally efficient multiscale modeling for probabilistic analysis of CFRP
composites with micro-scale spatial randomness. Compos. Struct. 2022, 280, 114884. [CrossRef]

27. Pitchai, P.; Jha, N.K.; Nair, R.G.; Guruprasad, P.J. A coupled framework of variational asymptotic method based homogenization
technique and Monte Carlo approach for the uncertainty and sensitivity analysis of unidirectional composites. Compos. Struct.
2021, 263, 113656. [CrossRef]

28. Lezgy-Nazargah, M. A micromechanics model for effective coupled thermo-electro-elastic properties of macro fiber composites
with interdigitated electrodes. J. Mech. 2015, 31, 183–199. [CrossRef]

29. Lezgy-Nazargah, M.; Eskandari-Naddaf, H. Effective coupled thermo-electro-mechanical properties of piezoelectric structural
fiber composites: A micromechanical approach. J. Intel. Mater. Syst. Struct. 2018, 29, 496–513. [CrossRef]

30. Tsai, S.W.; Hahn, H.T. Introduction to Composite Materials; Technomic Publishing Co.: Westport, CT, USA, 1980.
31. Halpin, J.C.; Kardos, J.L. Halpin-Tsai equations–Review. Polym. Eng. Sci. 1976, 16, 344–352.
32. Chamis, C.C. Mechanics of composite materials: Past, present and future. J. Compos. Technol. Res. 1989, 11, 3–14.
33. Huang, Z.M. Micromechanical prediction of ultimate strength of transversely isotropic fibrous composites. Inter. J. Solids. Struct.

2001, 38, 4147–4172. [CrossRef]
34. Toft, H.S.; Branner, K.; Mishnaevsky, L., Jr.; Sørensen, J.D. Uncertainty modelling and code calibration for composite materials. J.

Compos. Mater. 2013, 47, 1729–1747. [CrossRef]
35. Alazwari, M.A.; Rao, S.S. Modeling and analysis of composite laminates in the presence of uncertainties. Compos. Part B 2019, 161,

107–120. [CrossRef]
36. Hopkins, D.A.; Chamis, C.C. A Unique Set of Micromechanics Equations for High Temperature Metal Matrix Composites. NASA

TM 87154. In Proceedings of the First Symposium on Testing Technology of Metal Matrix Composites Sponsored by ASTM,
Nashville, TN, USA, 18–20 November 1985.

37. Christensen, R.M. Tensor transformation and failure criteria for analysis of fiber composite materials. J. Compos. Mater. 1988, 22,
874–897. [CrossRef]

38. Mayes, J.S.; Hansen, A.C. Composite laminate failure analysis using multicontinuum theory. Compos. Sci. Technol. 2004, 64,
379–394. [CrossRef]

39. Li, Y.; Liu, F.R. A micromechanics based method for obtaining transverse mechanical properties of fibers. Compos. Part B Eng.
2015, 58, 241–246.

40. Zhao, L.; Li, Y.; Zhang, J.; Zhou, L.; Hu, N. A novel material degradation model for unidirectional CFRP composites. Compos. Part
B 2018, 135, 84–94. [CrossRef]

41. Soden, P.D.; Hinton, M.J.; Kaddour, A.S. Lamina properties, lay-up configurations and loading conditions for a range of
fibre-reinforced composite laminates. Compos. Sci. Technol. 1998, 58, 1011–1022. [CrossRef]

42. Hyer, M.W.; Waas, A.M. Micromechanics of Linear Elastic Continuous Fiber Composites; WCB/McGraw-Hill: New York, NY, USA, 1999.
43. Huang, Z.M. Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model. Compos. Part

A 2001, 32, 143–172. [CrossRef]

http://doi.org/10.1016/S0045-7949(99)00171-6
http://doi.org/10.1016/j.compstruct.2016.11.074
http://doi.org/10.1016/j.compstruct.2018.03.100
http://doi.org/10.1016/j.compositesb.2019.05.034
http://doi.org/10.1016/j.probengmech.2014.06.008
http://doi.org/10.1016/j.compositesb.2010.05.005
http://doi.org/10.1016/j.probengmech.2011.08.008
http://doi.org/10.1177/0021998314558098
http://doi.org/10.1016/j.renene.2013.09.012
http://doi.org/10.1016/j.compstruct.2015.06.070
http://doi.org/10.1177/0021998317704708
http://doi.org/10.3390/app10186542
http://doi.org/10.1016/j.compstruct.2021.114884
http://doi.org/10.1016/j.compstruct.2021.113656
http://doi.org/10.1017/jmech.2014.73
http://doi.org/10.1177/1045389X17711787
http://doi.org/10.1016/S0020-7683(00)00268-7
http://doi.org/10.1177/0021998312451296
http://doi.org/10.1016/j.compositesb.2018.10.052
http://doi.org/10.1177/002199838802200906
http://doi.org/10.1016/S0266-3538(03)00219-7
http://doi.org/10.1016/j.compositesb.2017.09.038
http://doi.org/10.1016/S0266-3538(98)00078-5
http://doi.org/10.1016/S1359-835X(00)00142-1


Materials 2022, 15, 5090 17 of 17

44. Huang, Z.M. Correlation of the bridging model predictions of the biaxial failure strengths of fibrous laminates with experiments.
Compos. Sci. Technol. 2004, 64, 529–548. [CrossRef]

45. Huang, Z.M.; Zhang, C.C.; Xue, Y.D. Stiffness prediction of short fiber reinforced composites. Inter. J. Mech. Sci. 2019, 161–162, 105068.
[CrossRef]

46. Shiao, M.C.; Chamis, C.C. Probabilistic evaluation of fuselage-type composite structures. Probab. Eng. Mech. 1999, 14, 179–187.
[CrossRef]

http://doi.org/10.1016/S0266-3538(03)00222-7
http://doi.org/10.1016/j.ijmecsci.2019.105068
http://doi.org/10.1016/S0266-8920(98)00027-7

	Introduction 
	Methodology 
	Comparisons of Micromechanics Models 
	Descriptions of the Micromechanics Models 
	Results and Analyses 

	Predictions of Random Elastic Properties 
	Validation 
	Statistics of Elastic Parameters 
	Correlation Analysis 
	Sensitivity Analysis 

	Conclusions 
	References

