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Abstract: During the radial–axial ring rolling (RARR) process of super-large rings, abnormal defor-
mation states such as instability and out of circularity often lead to rolling termination and quality
fluctuation of ring products. In this work, an intelligent fuzzy closed-loop control method for RARR
process of super-large rings is proposed, i.e., the ring’s offset adaptive fuzzy control (ROAFC) based
on the regulation of the axial roll’s rotational speed and the ring’s circularity fuzzy control (RCFC)
based on the regulation of the mandrel’s feed speed. In addition, a recursive average filtering algo-
rithm is added to smooth the axial roll’s rotational speed and the mandrel’s feed speed according to
the actual situation. Using the ABAQUS/Explicit software and its subroutine VUAMP, the intelligent
fuzzy controller of the ring’s offset and circularity in the RARR process is designed, and the finite
element (FE) model for RARR process of a Φ10 m super-large ring with an integrated intelligent
fuzzy control algorithm is established. The variation laws of the ring’s offset and circularity error
in the RARR process are studied with regard to different control methods such as conventional
planning control (CPC), ROAFC, RCFC, and comprehensive control of ROAFC combined with RCFC
(ROAFC + RCFC). The results obtained show that, compared with the CPC, the ring’s offset is
reduced by 84.6% and the circularity error is decreased by 51.9% in the RARR process utilizing
comprehensive control of ROAFC + RCFC. The research results provide methodological guidance for
realizing the intelligent forming of super-large rings.

Keywords: super-large rings; radial–axial ring rolling; offset; circularity; fuzzy control

1. Introduction

Super-large ring products such as wind power bearing rings, nuclear power support-
ing rings, and rocket adapters are key structural components used in the field of energy,
aviation, aerospace, etc. Radial–axial ring rolling (RARR) is a well-known advanced rota-
tional forming technique to manufacture high-performance super-large seamless rings [1–3].
The principle of the RARR process is shown in Figure 1. The main roll rotates around its
own axis. The mandrel moves horizontally toward the main roll and passively rotates
around its own axis under the friction. The upper axial roll moves downward toward the
lower axial roll. Meanwhile, the upper and lower axial rolls make an active rotary motion.
The ring rotates due to the active rotation of the main roll and friction; its thickness is re-
duced by the radial pressure, and its height is reduced by the axial pressure. Consequently,
the ring’s diameter is enlarged. A pair of guide rolls, which hug the ring from both sides of
the main roll and adjust its position as the ring grows, are used to steer the ring and ensure
the ring’s stability during rolling. Synchronously, the upper and lower axial rolls move
horizontally backward as the ring is enlarged.
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Figure 1. Forming principle of RARR process. 
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process, the effects of different technological parameters such as rolling temperature, roll-
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nology of special material rings. Zhou et al. [4] revealed the effects of axial roll motion and 
workpiece size on the RARR process, and they studied the RARR process of a Φ9 m super-
large steel alloy ring by simulation and experiment. Cleaver et al. [5] established the me-
chanical models of ring rolling with variable wall thickness and curvature, and they in-
vestigated the influence of constraint rolls on temperature distribution and product prop-
erties in ring rolling for IN718 ring. Qian et al. [6] established the FE model combining the 
blank-forging and RARR process of AISI 4140 steel rings, and the evolution laws of strain, 
grain sizes, and dynamic recrystallization from workpiece to rolled ring during the pro-
cess were revealed. Lee et al. [7] derived an advanced feasible forming condition for re-
ducing ring spreads and maintaining process stability during the RARR process. Hua et 
al. [8] established a mathematical model of ring stiffness condition for RARR based on the 
force method and discussed the influence factors to ring stiffness. Guo et al. [9] proposed 
constant growth velocity condition (CGVC) of the ring as a design objective of the RARR 
process variables and developed a mathematical model of the steady forming condition 
for RARR based on the CGVC. Han et al. [10] put forward an innovative eccentric ring 
rolling (ERR) method for fabricating eccentric rings, which was verified by simulation and 
experiment. These studies provide a theoretical guide for realizing a successful and stable 
RARR process. 

FE modeling and numerical simulation have been proven to be a powerful and accu-
rate method to study the plastic deformation behavior of various complicated metal form-
ing processes [4,8,9]. From the forming principle of RARR process, we can know that the 
process is an extremely complex dynamic forming process with high flexibility. Recently, 
some significant studies on the RARR process by FE modeling and numerical simulation 
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However, the RARR process of a super-large ring takes a long time, and the geometric
dimension of the ring changes dramatically. For instance, the rolling process of a Φ10 m
aluminum alloy ring of the heavy launch vehicle needs about 30 min. Furthermore, in the
final rolling period, the ring’s wall thickness is 3–4 times less than the initial workpiece,
the ring’s diameter increases about five times that of the initial workpiece, and the ring’s
rotational inertia and stiffness condition change exponentially relative to the initial rolling
stage. These features bring challenges for the stability and circularity control of RARR
process of super-large rings [3].

To date, much work has been conducted on the plastic deformation laws of RARR
process, the effects of different technological parameters such as rolling temperature,
rolling speed, and roll dimensions on the ring’s deformation mechanism, and the rolling
technology of special material rings. Zhou et al. [4] revealed the effects of axial roll motion
and workpiece size on the RARR process, and they studied the RARR process of a Φ9 m
super-large steel alloy ring by simulation and experiment. Cleaver et al. [5] established
the mechanical models of ring rolling with variable wall thickness and curvature, and
they investigated the influence of constraint rolls on temperature distribution and product
properties in ring rolling for IN718 ring. Qian et al. [6] established the FE model combining
the blank-forging and RARR process of AISI 4140 steel rings, and the evolution laws of
strain, grain sizes, and dynamic recrystallization from workpiece to rolled ring during
the process were revealed. Lee et al. [7] derived an advanced feasible forming condition
for reducing ring spreads and maintaining process stability during the RARR process.
Hua et al. [8] established a mathematical model of ring stiffness condition for RARR based
on the force method and discussed the influence factors to ring stiffness. Guo et al. [9]
proposed constant growth velocity condition (CGVC) of the ring as a design objective of
the RARR process variables and developed a mathematical model of the steady forming
condition for RARR based on the CGVC. Han et al. [10] put forward an innovative eccentric
ring rolling (ERR) method for fabricating eccentric rings, which was verified by simulation
and experiment. These studies provide a theoretical guide for realizing a successful and
stable RARR process.

FE modeling and numerical simulation have been proven to be a powerful and ac-
curate method to study the plastic deformation behavior of various complicated metal
forming processes [4,8,9]. From the forming principle of RARR process, we can know that
the process is an extremely complex dynamic forming process with high flexibility. Recently,
some significant studies on the RARR process by FE modeling and numerical simulation
were reported. For instance, Hua et al. [11] proposed a stiffness model in the RARR process,
and its validity was evaluated by numerical simulation. Li et al. [12] established a plastic
instability criterion for the ultra-large RARR process with four guide rolls and investigated
the influence of guide force on the RARR process of an ultra-large aluminum alloy ring by
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intelligent FE simulation. Li et al. [13] investigated the influences of the material properties
and the forming parameters on the cold ring rolling process through 3D FE numerical
simulation. Han et al. [14] established a 3D elastic-plastic FE model for the cylindrical ring
rolling process and investigated the comparison between conventional ring rolling and
cylindrical ring rolling using this 3D FE model.

In terms of intelligent control of the metal part forming process, Polyblank et al. [15]
reviewed the closed-loop control of product properties and revealed its application for
controlling errors in geometry and residual stress. Allwood et al. [16] illustrated that
uncertainty in various metal forming processes would downgrade product quality and
pointed out that the closed-loop control of product properties was essential in metal form-
ing. Havinga et al. [17] used large experimental datasets from an industrial demonstrator
process to investigate the feasibility of control of a sheet bending process on the basis
of force measurements. Manabe [18] aimed at sheet stamping and tube hydroforming
processes, and he designed blank holder force and punch speed fuzzy control algorithm
to raise the forming quality of plate parts. Baseri et al. [19] proposed a new fuzzy learn-
ing backpropagation (FLBP) algorithm to predict the spring-back using the data gener-
ated from experimental observations. As for intelligent control of the RARR process,
Liang et al. [20] realized the temperature control of the RARR process of titanium alloy
rings by FE simulation. Jenkouk et al. [21] established the FE model of the RARR process
coupled with a precompiled industrial control package with all relevant sensors and actua-
tors, which led to more realistic simulation results in comparison to the machine behavior.
Peng et al. [22] proposed a new method of adaptive movement control of guide and conical
rolls. Li et al. [23] established a new mathematical model to control the guide rolls’ motion
during the intelligent simulation of the profiled ring rolling process. However, it seems
that there is no study on intelligent control for the RARR process of super-large rings. At
the same time, it is of great significance to apply intelligent control to the RARR process
of super-large rings to solve the product quality problems caused by the abnormal defor-
mation states of instability and out of circularity. Therefore, it is necessary to establish an
intelligent control method for the RARR process of super-large rings to provide guidance
for realizing intelligent forming.

In order to effectively describe and control some systems which cannot be modeled
mathematically, introducing fuzzy concept is a perfect choice. The fuzzy concept is particu-
larly widespread. For example, the mathematical model is often presented as a differential
equation when describing the variation of scalars in the continuous motion of some objects.
However, uncertainty of parameters often exists in the process of mathematical modeling.
Therefore, in engineering problems, control theory, and decision analysis, there often exist
some differential equations with fuzzy sets as parameters, which are called fuzzy differ-
ential equations [24,25]. In this study, the fuzzy concept is conveniently used to describe
the states of offset and circularity error of the ring during the RARR process, such as large,
medium, and small.

In this present work, utilizing the metal forming principle and intelligent control
theory, an intelligent fuzzy closed-loop control method for the RARR process of super-
large rings is proposed, as well as its FE modeling method with the integrated intelli-
gent fuzzy control algorithm. The ring’s offset adaptive fuzzy control (ROAFC) based
on the regulation of the axial roll’s rotational speed is designed. The ring’s circularity
fuzzy control (RCFC) based on the regulation of the mandrel’s feed speed is put forward.
In addition, a recursive average filtering algorithm is added to smooth the axial roll’s
rotational speed and the mandrel’s feed speed. A relevant control program is developed
using the ABAQUS/Explicit subroutine VUAMP, and the FE model for RARR process of a
Φ10 m super-large ring with integrated intelligent fuzzy control algorithm is established.
The variation laws of the ring’s offset and its circularity error during the RARR process are
studied with regard to different control methods.
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2. Materials and Methods
2.1. Influence Factors of the Ring’s Offset and Circularity during the RARR Process

During the actual RARR process of super-large rings, when the axial roll’s linear
velocity is inconsistent with that of the ring, the ring’s center will deviate from the center
line between the main roll and mandrel, and then fluctuate around it, as shown in Figure 2a.
On the other hand, the ring’s circularity will become worse when the mandrel’s feed speed
is fast and the ring’s growth rate is high, as shown in Figure 2b. Consequently, the ring’s
offset and out of circularity can destroy the stability of the RARR process.
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2.1.1. Influence of the Axial Roll’s Rotational Speed on the Ring’s Offset

In fact, the contact type between the axial rolls and ring belongs to the surface contact
and the interface is a part of the axial roll’s cone surface during the RARR process. There
are both forward slip zones and backward slip zones in this region [26], and the boundary
between the forward and backward slip zones is located where the linear velocity of the
axial roll’s cone surface is equal to that of the ring’s end face, as shown in Figure 3. In the
forward slip zone, the linear velocity of the ring is faster than that of axial rolls, and the ring
is affected by the sliding friction force F1, which hinders its rotation. In the backward slip
zone, the linear velocity of the ring is slower than that of axial rolls, and the ring is subjected
to the sliding friction force F2, which propels its rotation. When F1 6= F2, the ring will
deviate from the center line due to unbalance forces; that is, when F1 > F2, the hindering
effect is stronger than the propelling effect, which will lead to upward offset for the ring.
Conversely, the ring will be subjected to downward offset. To simplify the computational
model, the interface is projected to obtain approximately a rectangular trapezoid, as shown
in Figure 3c. For the convenience of analysis, it is assumed that the boundary between the
forward and backward slip zones is a straight line.
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In this model, the sliding friction forces F1 and F2 are proportional to the areas of the
forward and backward slip zone, respectively. Assuming that the area of the forward slip
zone is S1 and the area of the backward slip zone is S2, this can be respectively expressed
as follows: 

S1 =
b
√

2rc∆h− ∆h2( b
L k2 − 2k + 2− b

L )

2
,

S2 =
b
√

2rc∆h− ∆h2(− b
L k2 + 2k)

2

(1)

where L is the distance from the vertex of the axial rolls to the contact point between
the outside surface of the ring and the axial rolls, b is the wall thickness of the ring, rc is
the equivalent radius of the axial rolls at the outer diameter of the ring, ∆h is the axial
feed amount per revolution, and k is defined as a velocity matching coefficient (k = s/b).
Let S1 be equal to S2; then, a quadratic equation about k can be obtained, as expressed
by Equation (2).

k2 − 2L
b

k +
L
b
− 1

2
= 0. (2)

It is obvious that the variation range of the velocity matching coefficient k is from 0 to 1.
The solution of Equation (2) is defined as an optimal velocity matching coefficient k0 and
can be expressed by Equation (3).

k0 =
L
b
−

√
L2 − bL + b2

2

b
. (3)

The variation curves of the areas of forward and backward slip zone with velocity
matching coefficient k are shown in Figure 4 (L = 1228 mm, b = 544 mm, rc = 369 mm, and
∆h = 6.4 mm). As can be seen from the Figure 4, with the increase in velocity matching
coefficient k, the area of the backward slip zone increases continuously from 0 to the
maximum. Conversely, the area of the forward slip zone decreases continuously from the
maximum to 0. Moreover, when the area of the forward slip zone is equal to the area of the
backward slip zone, it can be found that the velocity matching coefficient k is about 0.43.
The variation curve of the optimal velocity matching coefficient k0 with the wall thickness
of the ring is shown in Figure 5 (L = 1228 mm). As can be seen from the Figure 5, with the
decrease in wall thickness of the ring, the optimal velocity matching coefficient k0 increases
approximately from 0.437 to 0.477.
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As discussed above, it can be known that the value of velocity matching coefficient k
can affect the areas of forward and backward slip zone, and the value of optimal velocity
matching coefficient k0 changes slightly in the RARR process. On the other hand, the
boundary position between the forward and backward slip zones changes accordingly with
the change in the axial roll’s rotational speed, which simultaneously represents a change
in the value of velocity matching coefficient k. Therefore, the rotational speed of the axial
rolls can directly affect the kinetic equilibrium of the RARR process, and the reasonable
adjustment of the axial roll’s rotational speed can effectively change the sliding friction
force F1 and F2, so as to suppress the ring’s offset in the RARR process and improve the
rolling stability.

2.1.2. Influence of the Mandrel’s Feed Speed on the Ring’s Circularity

Under the condition of the normal ring rolling process, the ring’s contour is composed
of an arc line in the deformed zone and a spiral line in the nondeformed zone, as shown
in Figure 6. According to the definition that the ring’s circularity error is equal to the
difference between the maximum and minimum of the ring’s diameter, the circularity error
of the ring’s outer and inner contour e1 and e2 can be expressed as Equation (4).{

e1 = Dmax − Dmin
e2 = dmax − dmin

. (4)

The radial feed amount per revolution ∆hr distribution to the outside surface is
denoted as ∆h1, while that to the inside surface is denoted as ∆h2. The relationship between
∆hr and ∆h1, ∆h2 can be expressed as follows [3,6]:

∆h1 =
∆hr(

1
R1

+
1
R
)

1
R1

+
1

R2
+

1
R
− 1

r

∆h2 =
∆hr(

1
R2
− 1

r
)

1
R1

+
1

R2
+

1
R
− 1

r

, (5)

where R1 is the radius of the main roll, R2 is the radius of the mandrel, and R and r are the
outer and inner radii of the ring, respectively. It is evident that the circularity errors of the
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ring’s outer and inner contours e1 and e2 are equal to the radial feed amount per revolution
∆hr distribution to the outside surface ∆h1 and to the inside surface ∆h2, respectively; that
is, e1 = ∆h1, e2 = ∆h2.
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Figure 6. Schematic diagram of the ring’s contour.

By now, it can be known that the ring’s circularity error is related to the radial feed
amount, the roll’s size, and the ring’s size. During the actual RARR process, the size of the
rolls and the ring is certain; hence, the ring’s circularity error mainly depends on the radial
feed amount per revolution. Therefore, when the circularity error of the ring increases,
decreasing the radial feed amount per revolution is beneficial to reduce the circularity
error. According to the relationship of the radial feed amount per revolution ∆hr and the
mandrel’s feed speed vm [27],

∆hr = πD
vm

vR1
, (6)

where D is the current outside diameter of the ring, and vR1 is the circumferential velocity
of the main roll; it can be known from the above equation that the radial feed amount per
revolution is proportional to the mandrel’s feed speed. Hence, decreasing the mandrel’s
feed speed is beneficial to reduce the circularity error of the ring.

2.2. Proposing of the Control Method ROAFC

The framework of the ring’s offset adaptive fuzzy controller was designed as shown
in Figure 7. Here, ya is the actual ring’s center ordinate during the RARR process, and it is
sampled as the feedback variable. yd is the desired value of the ring’s offset, and, in order
to control the ring’s offset in a relatively small range, yd is set to 0. The feedback variable ya
minus the desired value yd and the input variables of the fuzzy controller are produced as
the ring’s offset y0 and its change rate dy0. The quantitative factors Ga and Gda are used to
normalize y0 and dy0 within the ranges of −3 to 3 and −2 to 2, respectively. After the steps
of fuzzification, fuzzy inference, and defuzzification, the output variable of the adaptive
fuzzy controller Ua is obtained. Another scaling factor Gy is used to tune Ua proportionally
according to the actual requirements. The variable after tuning is denoted by wa, which
is the regulating variable of the axial roll’s rotational speed and sums the preset value of
the axial roll’s rotational speed wA. In practice, the radial stiffness of the ring decreases
and the rotational inertia of the ring increases exponentially as the RARR process proceeds;
thus, the acceleration and deceleration, as well as amplitude limitation, of the axial roll’s
rotational speed should be considered. Otherwise, the ring’s offset can be restrained rapidly,
but the ring’s circularity will become worse. Therefore, the regulating variable of the axial
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roll’s rotational speed wa is processed by the recursive average filtering algorithm and
imposed on the inverter motor of the axial rolls in the form of control command; thus, the
ring’s offset can be restrained gradually [28].
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2.2.1. Design of Adaptive Fuzzy Controller

(1) Fuzzification
The membership functions can be generalized as bell-, trapezoidal-, and triangular-

shaped [29,30]. According to the practical experience and convenience, the triangular and
trapezoidal membership functions are used in this research, and the fields of the input
variables (y0, dy0) and the output variable (Ua) are [−3, 3], [−2, 2], and [−3, 3], respectively.
The input variable y0 is described by seven fuzzy subsets {‘NL’, ‘NM’, ‘NS’, ‘ZO’, ‘PS’, ‘PM’,
and ‘PL’}, the input variables dy0 is described by five fuzzy subsets {‘NL’, ‘NS’, ‘ZO’, ‘PS’,
and ‘PL’}, and the output variable Ua is described by seven fuzzy subsets {‘NL’, ‘NM’, ‘NS’,
‘ZO’, ‘PS’, ‘PM’, and ‘PL’}, as shown in Figure 8.
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(2) Fuzzy control rules
The fuzzy rules are the most significant part of the fuzzy controller, which have a

great influence on the output [31,32]. The rule base of the fuzzy controller is based on the
operator’s knowledge and experiences. The most relational words commonly used are
‘if–then’ and ‘also’, whereas ‘and’ is used in a multivariable fuzzy controller [33]. When the
ring’s offset occurs, the proficient operators estimate the offset state by means of natural
language ‘upward offset’, ‘no offset’, and ‘downward offset’. Then, the operators regulate
manually the axial roll’s rotational speed, which can be represented by fuzzy quantities
such as ‘large’, ‘modest’, and ‘small’. On the other hand, the existing measurement and
control system of RARR mills can also record the data about the operators’ actions and
corresponding states of the ring. Therefore, a set of fuzzy control rules can be concluded
from the proficient operators or the acquired historical data. By analyzing the proficient
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operators’ actions and the influence factor of the ring’s offset in the RARR process, it is
known that, when the ring is subjected to ‘downward offset’, the axial roll’s rotational
speed is reduced by operators; when the ‘upward offset’ state is alleviated, the axial roll’s
rotational speed returns to the preset value. Hence, the if–then rules of ROAFC are extracted
from the following datasets: (1) if y0 > 0 and dy0 > 0, then Ua increases sharply; (2) if y0 > 0
and dy0 < 0, then Ua increases slightly; (3) if y0 < 0 and dy0 < 0, then Ua decreases sharply;
(4) if y0 < 0 and dy0 > 0, then Ua decreases slightly. The if–then rules of ROAFC can be
described in a fuzzy rules table (Table 1).

Table 1. Fuzzy control rules of ROAFC.

Ua
dy0

NL NS ZO PS PL

y0

NL NL

NM NL NM NS

NS NM NS ZO

ZO NS ZO PS

PS ZO PS PM

PM PS PM PL

PL PL

(3) Fuzzy inference and defuzzification
After designing the input and output membership functions and fuzzy control rules,

fuzzy inference and defuzzification are needed to calculate the output variable Ua.
Four fuzzy control rules were activated, and the Mamdani fuzzy method [34] was employed
for fuzzy inference, as shown in Figure 9.
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In this research, the weighted mean method [35] was adopted for defuzzification. The
output fuzzy subset was defuzzified to obtain the output variable Ua, as expressed by
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Equation (7). Finally, the regulating quantity of the axial rolls’ rotational speed wa was
obtained by multiplying the scaling factor Gy, as expressed by Equation (8).

Ua =

k
∑

i=1
Uaiµ(Uai)

k
∑

i=1
µ(Uai)

, (7)

wa = GyUa, (8)

where k is the number of the activated fuzzy rules, Uai is the abscissa of the center of gravity
for each fuzzy inference figure, and µ(Uai) is the membership degree of each fuzzy rule.

During the RARR process of super-large rings, when the rolling process proceeds, the
ring’s size and rotational inertia increase gradually, and the ring’s offset becomes larger
and larger. For the scaling factor Gy, if it keeps a constant value, it will not be able to adapt
to the influence for the offset control brought by the large range change of the ring’s size
and rotational inertia. Herein, a scaling factor that adaptively changes with the ring’s offset
is proposed, which can be mathematically presented as Equation (9).

Gy =

{
Gyb, |y0| ≤ Y0

k|y0|, |y0| > Y0
, (9)

where Gyb is the basic value of the scaling factor Gy, |y0| is the absolute value of the ring’s
offset y0, Y0 is a control threshold of the ring’s offset, and k is the adaptive parameter.

2.2.2. Smoothing Filtering Algorithm of the Axial Roll’s Rotational Speed

As mentioned above, the acceleration and deceleration, as well as amplitude limitation,
of the axial roll’s rotational speed should be considered, because they change slowly and
smoothly in the actual RARR process. This is primarily to alleviate the effect of the dramatic
change in the axial roll’s rotational speed on the ring’s circularity and oscillation. In this
study, the regulating variable of axial roll’s rotational speed wa was processed by a recursive
average filtering algorithm as follows:

wa f =
1
j

j+i−1

∑
m=i

wam, (10)

where waf is the arithmetic average value of the regulating variable of the axial roll’s
rotational speed wa in each sampling period, j is the sampling number, i is the serial number
of the sampling period, and wam is the value of the regulating variable of the axial roll’s
rotational speed wa arranged by the number m.

2.3. Proposing of the Control Method RCFC

The framework of the ring’s circularity fuzzy controller was designed as shown in
Figure 10. Here, ca is the actual value of the ring’s circularity error, which is sampled as
the feedback variable. cd is the desired value of the ring’s circularity error, and, in order to
control the ring’s circularity error in a relatively small range, cd is set to 0. The feedback
variable ca minus the desired value cd and the input variables of the fuzzy controller are
generated, i.e., the ring’s circularity error ce and its change rate dce. The quantitative factors
Ge and Gde normalize ce and dce within the range of 0 to 6 and −2 to 2. Meanwhile, Ue is
the output variable of the fuzzy controller, and the scaling factor Gc is used to adjust Ue
proportionally. The variable after adjusting is denoted by we, which sums the preset value
of the mandrel’s feed speed wE. Similarly, the summing value of the mandrel’s feed speed
we was processed by the recursive average filtering algorithm and imposed on the inverter
motor of the mandrel in the form of control command. Moreover, the process of fuzzy
inference and defuzzification was similar to the way of calculating the output variable Ua, and
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the process of the smoothing filtering algorithm for the mandrel’s feed speed was analogous
to the processing procedure of the regulating variable of axial roll’s rotational speed wa.
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The design of the fuzzy controller is described below.
(1) Fuzzification
In this study, the fields of the input variables (ce, dce) and the output variable (Ue)

were [0, 6], [−2, 2], and [−3, 0], respectively. The input variable ce is described by
four fuzzy subsets {‘ZO’, ‘PS’, ‘PM’, and ‘PL’}, the input variable dce is described by
five fuzzy subsets {‘NL’, ‘NS’, ‘ZO’, ‘PS’, and ‘PL’}, and the output variable Ue is described
by four fuzzy subsets {‘NL’, ‘NM’, ‘NS’, and ‘ZO’}, as shown in Figure 11.
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(2) Fuzzy control rules
By analyzing the relationship between the circularity error and the mandrel’s feed

speed, it can be known that the mandrel’s feed speed should be reduced when the circularity
error of the ring becomes poor. The rules of RCFC can be expressed as a fuzzy rules
table (Table 2).

Table 2. Fuzzy control rules of RCFC.

Ue
dce

NL NS ZO PS PL

ce

ZO ZO

PS NS NM

PM NM NL

PL NL
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2.4. Comprehensive Control Method of ROAFC Combined with RCFC

As shown in Figure 12, the comprehensive intelligent fuzzy control of ROAFC com-
bined with RCFC is proposed here, which is complementary to the conventional planning
control during the RARR process.
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Figure 12. Block diagram of comprehensive control of ROAFC combined with RCFC.

It can be seen from Figure 12 that the ring’s offset and circularity error can be obtained
by the measurement system of the RARR process. Therefore, it is crucial to understand the
principle of the measurement system during the actual RARR process. In this process, the
displacements of rolls are obtained by displacement sensors, and the real-time position
coordinate of each roll is calculated. Meanwhile, the coordinate of a certain point on the
outer wall of the ring is calculated by the noncontact measurement method of the laser
displacement sensor, as shown in Figure 13. The radii of the main roll and the mandrel
are constant. According to the four position coordinates of the main roll, the left and
right guide rolls, and the laser point, the three-point circle fixing method can be used to
determine four circles using these four points (point 1, point 2, point 3, and point 4). Then,
the center coordinates and radius of each circle can be obtained. Thus, the ring’s offset
can be represented by the average value of the ordinates of the four circle centers, and the
circularity error can be represented by the difference between the maximum and minimum
diameters of the four circles.
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2.5. Proposing of the Intelligent FE Modeling Method
2.5.1. Establishment of the FE Model with Integrated Intelligent Fuzzy Control Algorithm

During the actual RARR process, the ring’s offset and circularity are measured and
calculated by the roll’s position sensors. This study mainly focused on the controller design
and control method for RARR process of super-large rings using the FE simulation method.
Therefore, the ABAQUS/Explicit subroutine VUAMP was employed for the secondary
development. In order to acquire the information of the ring’s offset and circularity error,
several virtual sensors were established in ABAQUS to obtain the coordinates of the nodes
on the ring’s outer contour during the simulation [20], and the ring’s offset and circularity
error were calculated using the least square circle method [36]. Here, (xi, yi) is the coordinate
of node ni on the outer contour of the ring, while (xR, yR) and R are the center coordinate
and radius of the least square circle, respectively, as shown in Figure 14. Additionally, the
formula of the least square circle method can be expressed as Equation (11).

||σ||2= min∑n
i=1 [

√
(xi − xR)

2 + (yi − yR)
2 − R]

2
. (11)

Hence, the ring’s offset and its change rate can be represented by the values yR and
dyR, respectively. In particular, upward offset and downward offset are expressed as two
position statuses of the ring, correspond to yR > 0 and yR < 0, respectively. The circularity
error εt is defined by the difference between the maximum and minimum of the ring’s
outer diameter, as expressed by Equation (12).

εt = et
max − et

min, (12)

where
et =

√
(xi − xR)

2 + (yi − yR)
2 − R. (13)
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Therefore, the information of the ring’s offset and circularity error is measured by the
virtual sensors and is compared with the desired value of the ring’s offset and circularity
error, while the signal differences are transferred to the controllers. Subsequently, the
actuating signals are output from the controllers and imposed on the corresponding rolls,
and then the axial rolls’ rotational speed and the mandrel’ feed speed are regulated. Thus,
the intelligent fuzzy closed-loop control method of the ring’s offset and circularity for
RARR process was realized during the FE simulation. A 3D coupled thermo-mechanical
FE model of a Φ10 m super-large ring with integrated intelligent fuzzy control algorithm
was established to simulate the RARR process, as shown in Figure 15.
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2.5.2. Material and Technologies of the FE Model

In the FE model, the used ring material was 42CrMo steel, and its true stress–strain
curves [37] at different temperature T and strain rate

.
ε are shown in Figure 16. The ring

was regarded as deformable body, and the grid type was a coupled thermo-mechanical
hexahedron element with eight nodes, C3D8RT. The ring was meshed into 17,280 elements.
The rolls were treated as isothermal analytical rigid bodies, and each roll was individually
assigned a reference point RP to control its motion. The mass scaling parameter was 400.
Six contact pairs were defined between the ring and rolls. The contact pairs were defined
as surface-to-surface contact type, and the friction of the contact surfaces adopted the
Coulomb friction model. The other key technologies for the FE model of the RARR process
and the physical properties, including thermal conductivity, specific heat capacity, and
elevated temperature flow behavior, were referenced from Zhou [38]. The main parameters
of the FE simulation for RARR process are listed in Table 3. Additionally, under the control
methods CPC and ROAFC, the simulation time and CPU time were about 400 s and 15 h,
respectively. Under the control methods RCFC and ROAFC + RCFC, the simulation time
and CPU time were about 500 s and 21 h, respectively.

Table 3. Main parameters of FE simulation.

Parameters Value

Outer diameter of the main roll (mm) 1350
Outer diameter of the mandrel (mm) 600
Outer diameter of the guide roll (mm) 500
Cone angle of the axial rolls (◦) 35
Outer diameter of the ring blank (mm) 3500
Inner diameter of the ring blank (mm) 2412
Height of the ring blank (mm) 544
Outer diameter of the rolled ring (mm) 10,000
Inner diameter of the rolled ring (mm) 9546
Height of the rolled ring (mm) 394
Initial temperature of the ring blank (◦C) 1100
Temperature of the rolls (◦C) 80
Temperature of the environment (◦C) 20
Heat transmission coefficient
(N·s−1·mm−1·◦C−1) 10

Heat convection coefficient
(N·s−1·mm−1·◦C−1) 0.02

Heat radiation coefficient (N·s−1·mm−1·◦C−4) 0.7
Friction coefficient 0.35
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Figure 16. True stress–strain curves of 42CrMo steel at different temperature T and strain rate
.
ε:

(a)
.
ε = 0.01 s−1, (b)
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ε = 0.1 s−1, (c)
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ε = 1 s−1, (d)

.
ε = 10 s−1.

2.6. FE Model Verification

The developed FE model was verified by experiment in terms of the variations of
the outer diameter, the inner diameter, and the axial height of the ring. The experimental
conditions are summarized in Table 3. The ring rolling experimental process is shown
in Figure 17. Figure 18 shows the experimental and simulative variations of the outer
diameter and the inner diameter of the ring with rolling time, while Figure 19 shows the
experimental and simulative variation of the axial height of the ring with rolling time. It
can be seen that simulative results were in good agreement with the experimental ones.
This indicates that the accuracy of the developed FE model is sufficient for the simulation
of proposed control methods.
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Figure 19. Experimental and simulative variations of the axial height of the ring with rolling time.

3. Results and Discussion
3.1. FE Simulation Results of Forming Process

The offset of the ring has a certain impact on its stabilization, which can be used as a
standard of the rolling stability during the RARR process of super-large rings. Figures 20 and 21
show the FE simulation results of the ring’s forming process under the control methods of
CPC and ROAFC + RCFC, respectively. From the point of view of qualitative description, it
can be found from Figure 20c that there was an obvious deviation between the ring’s center
and the center line of the mills. Moreover, the overlap extent between the inner contour
of the ring and the ideal circle was poor. However, it can be seen from Figure 21c that the
inner contour of the ring had a superior overlap extent with the ideal circle, indicating
that the ring’s offset was smaller, and the circularity was satisfactory. Therefore, from
these two figures, it can be concluded that the comprehensive intelligent fuzzy closed-loop
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control method of ROAFC + RCFC realized the stable forming process of the ring with
better circularity.
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Figure 21. Forming process under the control method of ROAFC + RCFC: (a) 6 m; (b) 8 m; (c) 10 m.

3.2. Variation Laws of Offset and Axial Roll’s Rotational Speed

Figure 22 shows the variation laws of the ring’s offset and the axial roll’s rotational
speed under the different control methods, CPC, ROAFC, RCFC, and ROAFC + RCFC.
Under the control method of CPC, it is obvious that the extreme offset was maximal, which
could reach about 145 mm. Meanwhile, the variation range of the ring’s offset was the
largest at the end of rolling process. Compared with the control method of CPC, the
extreme offset was a relatively small value, and the variation range of the ring’s offset
was also relatively small at the end of the rolling process under the control method of
RCFC. This indicates that the control method of RCFC was beneficial to reduce the ring’s
offset. Moreover, the control methods of CPC and RCFC did not involve the adjustment
of the axial roll’s rotational speed; thus, the axial roll’s rotational speed remained almost
constant throughout the RARR process. Under the control method of ROAFC, the ring’s
offset was limited to a small range throughout the RARR process. This illustrates that the
control method of ROAFC was effective for decreasing the ring’s offset. Compared with
the control method of ROAFC, the ring’s offset was limited to a smaller range during the
later stage of the rolling process under the comprehensive control of ROAFC + RCFC, and
the extreme offset was about 15 mm. On the other hand, the variation trends of the axial
roll’s rotational speed all showed a small increase first, before gradually decreasing, and
then remaining within a certain range of fluctuation under the control methods of ROAFC
and ROAFC + RCFC. The variation trend was consistent with that of the offset under the
corresponding control method, verifying the accuracy of the fuzzy control rules.
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Figure 22. Variation curves under different control methods: (a) offset; (b) axial rolls’ rotational speed.

3.3. Variation Laws of Circularity Error and Mandrel’s Feed Speed

Figures 23 and 24 show the variation laws of the ring’s circularity error and the
mandrel’s feed speed under the different control methods, CPC, ROAFC, RCFC, and
ROAFC + RCFC. Under the control methods of CPC and ROAFC, the mandrel’s feed speed
remained normal; hence, the ring’s circularity error gradually increased at the end of rolling
process and the maximum of the ring’s circularity error exceeded 60 mm. Compared with
the control methods of CPC and ROAFC, the ring’s circularity error was kept within a
small range during the later stage of the rolling process under the control methods of
RCFC and ROAFC + RCFC, not exceeding 35 mm. Furthermore, the variation trend of the
mandrel’s feed speed was converse with that of the circularity error in some places under
the corresponding control method, as shown in Figure 24a,b, again verifying the accuracy
of the fuzzy control rules.
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Figure 23. Variation curves of circularity error under different control methods.
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Figure 24. Variation curves of mandrel’s feed speed under different control methods: (a) ROAFC + RCFC;
(b) RCFC; (c) CPC and ROAFC.

3.4. Comprehensive Evaluation

The ring’s average offset during the RARR process from 6 m to 10 m and the ring’s
average circularity error at the end of rolling process from 9 m to 10 m under the different
control methods were further analyzed, as shown in Figure 25. It could be obtained that,
compared with the control method of CPC, the ring’s average offset and circularity error
under the comprehensive control of ROAFC + RCFC were reduced by 84.6% and 51.9%,
respectively. The simulation results show that the controller had distinct control effects.
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4. Conclusions

In this paper, the influence factors of the ring’s offset and circularity error during the
RARR process were discussed. The control method of ROAFC for the ring’s offset and
RCFC for the ring’s circularity during the RARR process of super-large rings were proposed.
On this basis, the fuzzy controllers for the ring’s offset and circularity were designed, and
the FE model of the RARR process of a Φ10 m super-large ring with an integrated intelligent
fuzzy control algorithm was established. Simulations under the different control methods
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of CPC, ROAFC, RCFC, and ROAFC + RCFC were carried out. Moreover, the variation
laws of the ring’s offset and the corresponding axial roll’s rotational speed, as well as of the
ring’s circularity error and the corresponding mandrel’s rotational speed, were analyzed.
The results obtained showed that, the maximums of the ring’s offset and circularity error
were about 145 mm and 67 mm under the control method of CPC during the RARR
process of the Φ10 m super-large ring, respectively. Compared with the control method of
CPC, the ring’s average offset and average circularity error were decreased by 84.6% and
51.9%, respectively, under the comprehensive control of ROAFC + RCFC with the recursive
average filtering algorithm. In addition, the amplitudes of the change of the ring’s offset and
circularity error were gentler. The simulation results verified the feasibility of the intelligent
fuzzy closed-loop control method and corresponding controllers. Therefore, it can provide
valuable guidance for the intelligent control of the RARR process of super-large rings.
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