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Abstract: A novel damage model for concrete has been developed, which can reflect the complex 

hysteresis phenomena of concrete under cyclic loading, as well as other nonlinear behaviors such 

as stress softening, stiffness degradation, and irreversible deformation. The model cleverly trans-

forms the complex multiaxial stress state into a uniaxial state by equivalent strain, with few compu-

tational parameters and simple mathematical expression. The uniaxial tensile and compressive 

stress–strain curves matching the actual characteristics are used to accommodate the high asym-

metry of concrete in tension and compression, respectively. Meanwhile, an unloading path and a 

reloading path that can reflect the hysteresis effect under cyclic loading of concrete are established, 

in which the adopted expressions for the loading and unloading characteristic points do not depend 

on the shape of the curve. The proposed model has a concise form that can be easily implemented 

and also shows strong generality and flexibility. Finally, the reliability and correctness of the model 

are verified by comparing the numerical results with the three-point bending beam test, cyclic load-

ing test, and a seismic damage simulation of the Koyna gravity dam. 
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1. Introduction 

Concrete, as the most versatile construction material, has significant nonlinear char-

acteristics due to the microcracks that accompany its formation. Especially under uncon-

ventional loadings such as earthquakes, their high destructive and unique unpredictabil-

ity will make the nonlinear characteristics of concrete structures even more intense. The 

simulation of the nonlinear characteristics of concrete is usually based on fracture me-

chanics, plasticity mechanics, and continuum damage mechanics. Fracture mechanics fo-

cus on the local nonlinearity caused by macrocracks, which contradicts the distribution 

pattern of microcracks [1–6]. The crack evolution process is also different from that of 

metallic materials based on crystal slip or dislocation, so the plastic mechanics is difficult 

to apply [7–10] for the material of concrete. Continuous damage mechanics, on the other 

hand, captures the nonlinear behavior of concrete by introducing damage variables to 

characterize the dispersive evolution of cracks [11,12]. Some scholars have proposed a 

class of models called the elastic damage model, which can reflect the softening process 

of concrete and the phenomenon of stiffness degradation after unloading. However, the 

irreversible deformation after unloading is ignored, making it unsuitable for cyclic load-

ing [13–18]. Accordingly, the elastoplastic damage model is widely used to capture the 
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behavior of concrete under cyclic loading for its ability to account for irreversible defor-

mation after unloading [19–23]. For the traditional elastoplastic damage model, the un-

loading and reloading paths are expressed linearly, and the damage remains constant 

during this process, which cannot fully reflect the true damage pattern under cyclic load-

ing. The stiffness degradation and stress redistribution caused by damage accumulation 

and energy dissipation will inevitably affect the subsequent change process of the nonlin-

ear performance of the concrete. The accumulation of damage and energy dissipation 

from the continuous unloading and reloading process will form an obvious hysteresis ef-

fect. At present, there are few pieces of research on the hysteretic rules under concrete 

cyclic loading. Scholars mostly derive mathematical formulas based on experimental data 

to simplify the hysteretic behavior under cyclic compressive loading [24], and a few also 

study hysteretic rules under cyclic tensile loading [25–27]. Konstantinidis [28] performed 

statistics on the current constitutive model of concrete under cyclic compressive loads. 

Aslani [29] and Guo [30] summarized the characteristics of concrete hysteretic behavior. 

Traditional damage models usually simplify the hysteresis effect to a linear expression. 

This assumption of describing nonlinear phenomena in a linear form cannot fully reflect 

the damage accumulation process under cyclic loading. The delayed damage accumula-

tion cannot feedback the stress transfer of the degraded part in time. It will inevitably 

affect the subsequent simulation results. Li [31] combined the uniaxial stress–strain curve 

with the hysteretic model proposed by Yassin [32] and established a hysteretic constitu-

tive model for nonlinear analysis under cyclic loading. However, the reloading curve of 

the hysteretic rule in the model will return to the unloading point, which can represent 

the stiffness degradation but cannot accurately describe the damage accumulation pro-

cess. The applicability of the actual engineering needs to be further improved. Based on 

the existing four-parameter damage model of concrete, this paper combines the loading 

and unloading characteristic points and the loading and unloading path in the hysteretic 

rules to construct a four-parameter damage model considering the hysteretic effect under 

cyclic loading. The model contains complex nonlinear characteristics such as tension and 

compression anomalies, stiffness degradation, strength softening, irreversible plastic de-

formation, and hysteresis effects during the evolution of concrete under cyclic loading. 

Furthermore, through the concrete uniaxial cyclic load test and the earthquake damage 

simulation of the Koyna gravity dam, the correctness of the model in solving the nonlinear 

problem is verified. 

2. Fundamental Governing Equations 

2.1. Concrete Four-Parameter Damage Model 

As a simplification and modification of the Ottosen criterion, Hsieh-Ting-Chen’s 

four-parameter failure criterion [33] based on stress space exhibits a good convergence in 

numerical calculations. On the basis of the criterion, Li [34] established a four-parameter 

failure criterion based on strain space: 

       


'
' ' ' '2
1 2 0 2 1 1

0

, , 0
J
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1
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'
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J
，   

0
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E
 is the peak strain of the material, 

 '

3
( , , 1,2,3)

ij jk ki
J e e e i j k  is the third invariant of strain deviation, the four parameters A, 

B, C, and D are constants, which are obtained jointly by four characteristic strength values 

suggested in the literature [35]. 
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It is assumed that the four-parameter failure criterion is applicable in the strain-sof-

tening section, and the four parameters, A, B, C, and D, remain unchanged. The form is 

the same as the Equation (1), which is replaced by the equivalent strain: 




     



'
' '2
2 1 1

J
A B J C DI  (2)

where,     ' '

1 2 1

2 2 1
sin( )

3 33
J I  is the maximum principal strain, 

     '

1 1 2 3
( ) / 3I  is the first invariant of the strain tensor, 

                

2 2 2'

2 1 2 3

1

2 m m m
J  is the second invariant of strain deviation, 

  
'

3

'

2

3 3

2

J

J
,    '

3 1 2 3
J  is the third invariant of strain deviation,   

1 2 3
, ,  are the three 

principal strains of x, y, z. 

The four parameters, A, B, C, and D, are the same as those used in the failure criterion. 

The equivalent strain under a multiaxial stress state can be obtained by solving Equation 

(2) and taking into account that   0 : 


      

 

' ' ' ' 2 '

2 1 1 2 1 1 2
( ) ( ) +4

2

B J C DI B J C DI AJ
 (3) 

The above formula is simple and clear and can transform complex multiaxial prob-

lems into a simple uniaxial one in equivalent space. The model has been fully theoretically 

verified by previous work [34,36,37]. 

2.2. Stress Unloading Residual Strain Value 

The irreversible deformation, that is, residual strain, will occur when the concrete is 

unloaded after reaching the softening phase. It is usually ignored since the empirical for-

mula fitted by the test results is difficult to capture the critical value. However, when the 

load duration is long enough or the number of loading and unloading times is sufficient, 

it will eventually have a deviation, which is manifested ≤0
c

E  after exceeding the critical 

value. 

Many researchers have proposed different residual strain formulations for different 

constitutive models [38–40]. In this paper, the formula suggested by Vecchio and Palermo 

[25] is selected: 

 
   

 

    
    
     

2

0.166 0.132un un

p r

r r

 (4) 

where, 
p

 is the plastic residual strain, r  is the peak tensile or compressive strength 

corresponding to strain, un  is the strain at the unloading point. 

Let 





p

p

r

k , 




un

un

r

k , and compare 
p

k  with un
k , as shown in Figure 1, when 

 5.23
un

k , 
p un

k k , that is, unloading stiffness  0E . So take the critical value  4.5
un

k

, when ≥4.5
un

k ，  =0.85
p un

. 
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Figure 1. The critical value of residual strain. 

2.3. Uniaxial Stress–Strain Curve 

In this paper, the stress–strain curve proposed by Guo [30] was chosen. Considering 

the anisotropy of concrete in tension and compression, the uniaxial stress–strain curves 

were selected separately according to the tensile and compressive states. For the conven-

ience of description, the stress and the strain are expressed as a relative value: 

 
 


* *

0

,   
t

x y
f

 (5)

where, *  is equivalent strain, *  is equivalent stress, t
f  is the peak strength, 0  is 

the strain corresponding to peak strength. 

Whether in tension or compression, the stress–strain curve consists of two phases: 

the elastic phase and the softening phase. 

As is shown in Figure 2, for uniaxial tension, the elastic section   1x  can be ex-

pressed as: 

  61.2 0.2y x x  (6)

The softening phase   1x  is: 

 


 
1.7

1

x
y

a x x
 (7)

where, the factor 1.2 in the elastic phase is the ratio of the initial modulus to the cutline 

modulus at the peak point, the factor a in softening phase is obtained from the empirical 

formula,  20.312
t

a f , which follows the change of tensile strength. 
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Figure 2. Uniaxial tensile stress–strain curve. 

As is shown in Figure 3, for uniaxial compression, the elastic section   1x  can be 

expressed as: 

      2 3(3 2 ) ( 2)y x x x  (8)

The softening phase   1x  is: 

 

  

2
1

x
y

x x
 (9)

where, the factor   in the elastic phase is the ratio of the initial modulus to the cutline 

modulus at the peak point,   1.5 3 , the factor   in softening phase is    0 , 

when =0 ,  1y , the softening phase is plastic, when  = ,  0y , the softening phase 

is brittle. 

 

Figure 3. Uniaxial compressive stress–strain curve. 

2.4. Damage Variable Values 

According to the strain equivalence principle, the stress-strain relationship of con-

crete can be expressed as: 

        
0 0

( , , ) (1 )D E D  (10)

Based on the above uniaxial stress-strain curves, the damage values corresponding 

to each stage can be deduced as follows: 

O
ε*

σ*

O
ε*

σ*
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 


 
   0

0            1

1   1

x

D
x

E

 (11)

When it is a multiaxial state, the real stress and strain need to be replaced by the 

equivalent stress and strain: 

 


 
  

*

*

0

0             1

1   1

x

D
x

E

 (12)

When under cyclic loading, the residual strain will be taken into account: 



 

 


       0

0                          1

1     1
( )

p

x

D
x

E

 (13)

3. Implementation Process 

Through the observations of the concrete cyclic loading experiments, it was found 

that the stress–strain response under cyclic loading depends on the load history. At the 

same time, the hysteresis effect is not limited to complete unloading and complete reload-

ing. There are partial unloading cycles with incomplete unloading and partial reloading 

with incomplete reloading. Otter [41] established a set of mathematical, empirical formu-

las based on load history by observing test data to derive the loading and unloading char-

acteristic points under cyclic loading. The formula has good applicability to plain concrete 

and reinforced concrete and does not depend on the shape of the stress–strain skeleton 

line. 

3.1. Complete Loading and Unloading Cycle 

The complete loading and unloading cycle is shown in Figure 4. The hysteretic cycle 

consists of the unloading path ab and the reloading path bc. The degree of damage accu-

mulation during the hysteresis effect is reflected in the model as the strain on the skeleton 

line develops from the unloading point a to the reloading point c. 

O ε

σ

a

c

b

 

Figure 4. Complete unloading and reloading of the damage model (The letters a, b, c are points on 

the curve of the complete loading and unloading cycle). 

According to the unloading strain un  at unloading point a, the strain re  at the re-

loading point c will be obtained: 



Materials 2022, 15, 5062 7 of 19 
 

 

 
 

 
re un

r

r r

k  (14)

where, r
k  is the reloading coefficient, and the recommended value is 0.1. 

The curvature of the unloading curve in the hysteresis rule reflects the change in the 

stiffness, and the secant modulus changes continuously from large to small. The reloading 

curve can be simplified to linear, during which the secant modulus remains constant, and 

the damage value does not change during the period [27]. The complete unloading curve 

adopts the empirical expression of test fitting by Sima [42], in which the damage variable 

is included, which can reflect the damage accumulation in the unloading process: 

 
 
  
  
      

2 1

1

p

un p

c p
e E  (15) 

  
  

  

p

re

re p

 (16) 

where, 
 

 
1

1

1

un
r d

r
, 





un

p

r  ,
    

   
  

2

1 1
un

R d r
Ln

r
, 

un
d  is the damage value at 

the unloading point, 
re

 is stress value at the reloading point, 
p

c

E
R

E
, 

p
E  is the secant 

modulus when completely unloaded. 

The secant modulus will remain constant during the reloading stage, and the damage 

value at the residual strain point is the same as the damage value at the reloading point. 

Therefore, the cumulative change in damage caused by unloading is 
re un

d d , and the 

damage variable during unloading is: 

 


    
  

re un
un un

p un

d d
d d  (17) 

when unloading to the residual strain point, 
re

d d . 

3.2. Partial Reload Cycle 

The partial reloading cycle in the hysteresis rule is shown in Figure 5. The hysteretic 

cycle consists of the unloading path ad and the reloading path de. At this time, the load is 

not completely unloaded to the residual strain point b, and the corresponding reloading 

point e is different from the reloading point c in the complete loading and unloading cycle. 

The strain value will be the interpolation between point a and point c: 

 
  

          

-
pun

un u
rx un re un

un

 (18) 

where, 
rx

 is the strain value at the reloading point e, 
u

 is the stress value at the lowest 

point d of local unloading, 
pu

n  is an interpolation parameter, and the recommended 

value is 8 after test fitting and sensitivity analysis. 
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O ε

a

e

d (εu, σu)

 

Figure 5. Local reloading of the damage model: the letters a, d, e are points on the curve of the par-

tial reload cycle). 

The partial reload formula after unloading is the same as that for complete unload-

ing: 

  
  

  
u

rx

rx u

 (19) 

where, 
u

 is the strain value at the lowest point d of local unloading, 
rx

 is the stress 

value at the reload point e. 

3.3. Partial Unloading Cycle 

The partial unloading cycle in the hysteresis rule is shown in Figure 6. The hysteretic 

cycle is composed of the unloading path fg and the reloading path gh. In the figure, the 

strain value of the unloading point corresponding to the highest point f of the local loading 

will be the interpolation between point a and point c: 

 
  

           

-

-

prn

x u
ux un re un

re u

 (20) 

where, 
ux

 is the strain value at the unloading point corresponding to point f, 
x
 is the 

stress value at point f, 
pr

n  is an interpolation parameter, and the recommended value is 

8. 

O ε

σ

a

gb

f h(εx, σx)

 

Figure 6. Local unloading of the damage model: the letters a, b, f, g, h are points on the curve of the 

partial unloading cycle. 



Materials 2022, 15, 5062 9 of 19 
 

 

The unloading path in the partial unloading cycle is similar to the full loading and 

unloading cycle: 

 
 
  
  
      

2 1

1

p

x p

p
e E  (21) 

where, 
 


 
 

1

1
1

x

x
E r

, 
 

   
 

1
2

1

R
Ln , 



1

x

p

r , 
1

p

c

E
R

E
, 

p
 is the residual strain value 

corresponding to 
ux

. 

3.4. Numerical Realization of the Model 

The proposed model has been embedded in finite element software GEHOMadrid 

through Fortran90. Using the subscripts n and n−1 to indicate the relationship between 

the variable value and the time step. The specific implementation process is as follows: 

1. Calculating the equivalent strain *

n
 by the Equation (3); 

2. Judging the tensile and compressive state by '

1
I  to adopt different stress–strain 

curves; 

3. Determining the state of the element at the current time step. In this paper, the states 

of the elements can be divided into five situations: (a) the loading state of the skeleton 

line, denoted as  1S ; (b) the unloading state of the skeleton line, denoted as  2S ; 

(c) the reload state, denoted as  3S ; (d) the partial unloading state, denoted as 

 4S ; (e) the pull-compression conversion state, denoted as  5S  

 When   


    

1 maxn n
,  1

n
S , and computed 

re
; 

 When    


      

1 maxp n n
, and 




1
1

n
S  or 




1
2

n
S , computed  2

n
S ,    

u n

; 

 When    


      

1p n n re
, and 




1
1

n
S , computed  3

n
S ，    

x n
;  

 When     


       ＜

1 maxp n n x
, and




1
3

n
S  or 




1
4

n
S , computed  4

n
S ,

   
u n

; 

 When  


  

1n n
, and    

n p
 or  


  

1n n
, and 




1
5

n
S 时, computed  5

n
S . 

4. Calculating the equivalent *

n
 and the damage value 

n
d , so that the true stress can 

be obtained. 

4. Example Verification 

In this section, a series of classical tests were performed on concrete specimens to 

validate the model proposed in this paper, including the three-point bending beam test, 

uniaxial cyclic tensile test, the uniaxial cyclic compressive test, uniaxial reciprocating test, 

and dynamic damage process of the Konya gravity dam. Some of the material parameters 

in the tests are set to be fixed, as listed in Table 1. 

Table 1. Material parameters of tests. 

Test 
  

(kg/m3) 

E 

(GPa) 
t

f  

(MPa) 
  /

t c
f f  a    

Three-point bending beam 2400 31.6 5.2 0.2 0.10 8.44 -- 

Uniaxial cyclic tensile load 2400 31.7 3.4 0.17 0.10 3.76 -- 

Uniaxial cyclic compressive load 2400 22.4 4.0 0.2 0.10 -- 1.2 

Koyna gravity dam 
dam 2643 31.0 2.9 0.2 0.12 2.62 -- 

foundation 2700 20.0 -- 0.2 -- -- -- 
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4.1. Three-Point Bending Beam 

To demonstrate the performance of the model under complex stress states, the three-

point bending beam test unfolded by Toumi [43] was selected. A two-dimensional finite 

element model was established based on the test model shown in Figure 7. Three different 

meshes (Coarse mesh, Middle mesh, and Fine mesh) were conducted to examine mesh 

independence in terms of crack formation, and all of the meshes consisted of four-node 

quadrilateral elements. The bottom left pivot point of the model was constrained in both 

directions, the right pivot point was constrained normally, and the displacement was 

loaded in a graded manner at the top-center point position. 

320 mm 50 mm 50 mm

80
 m

m

4
0
 m

m

F

50 mm

(a) 

 
(b) (c) (d) 

Figure 7. The three-point bending beam test: (a) dimensions and boundary conditions; (b) Coarse 

mesh; (c) Middle mesh; (d) Fine mesh. 

The distribution of the damaged area by different meshes during the continuous 

loading process is shown in Figure 8. The dimensions and boundary conditions result in 

a stress concentration at the center of the bottom of the specimen. As the prefabricated 

cracks cannot bear the concentrated tensile stress, the stress will be transferred from the 

bottom of the specimen to the other end along the prefabricated crack path. For the coarse 

mesh, the cracks stop propagating first before the upper edge of the beam because the 

elements are too large to penetrate. As the mesh becomes progressively smaller, the path 

of damage becomes clearer and culminates in a penetration crack in the fine mesh. 

 
(a) (b) (c) 

Figure 8. Distribution of concrete damage by different meshes: (a) Coarse mesh; (b) Middle mesh; 

(c) Fine mesh. 
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The load–deflection curve calculated by different meshes is presented in Figure 9. As 

the mesh gets larger, the reaction force gradually becomes higher. The peak value of the 

load–deflection curve obtained from the different meshes are all between the results of 

the experiment and the reference model. The trends of the curves obtained from the three 

meshes are generally consistent, and the differences are acceptable. 
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Figure 9. Comparison of the load-deflection curve between test and numerical results. 

Overall, the numerical results in this section show a clear distribution pattern of dam-

age evolution, which can fit well with the experimental data and the simulation results of 

reference and can verify the accuracy and applicability of the proposed model for complex 

stress states. The effect of the mesh size on the specimen load–deflection curve is minor. 

4.2. Uniaxial Cyclic Tensile Loading 

Based on the cyclic tensile test carried out by Gopalaratnam [44], a three-dimensional 

eight-node element model was established to verify the concrete damage model in this 

paper. As is shown in Figure 10, normal constraints were applied to the nodes on the left 

and bottom sides, and the nodes on the right were subjected to strain grading loading 

according to the test data. 

u

u

u

u

 

Figure 10. Schematic diagram of finite element model. 

From Figure 11, it shows that the model in this paper can better reflect the hysteresis 

effect of the softening section of concrete, especially it fits well with the behavior 
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characteristic points in the hysteresis loop, that is, the lowest point of unloading and the 

starting point of reloading of each hysteresis loop, usually these two points are the real 

data collection points for experimental observation. 
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Figure 11. Comparison of stress–strain relationship under uniaxial cyclic tensile loading. 

As is shown in Figure 12, the damage history of different models and test data under 

cyclic tensile loading is compared. Since the test belongs to the staged loading and un-

loading, the data will overlap at the characteristic value of the staged loading and unload-

ing. However, because the hysteresis effect is not considered and the damage accumula-

tion during the unloading stage is ignored, there will be a big difference during the dam-

age accumulation process. In the actual engineering case, the structure will be Stress re-

distribution occurs with the evolution of damage, and ignoring the damage accumulation 

during the unloading period will cause the subsequent simulation results to be quite dif-

ferent. In the actual engineering case, the structure will have stress redistribution as the 

damage evolves and will cause the subsequent simulation results to be quite different. 
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Figure 12. Comparison of damage history under uniaxial cyclic tensile loading. 
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4.3. Uniaxial Cyclic Compressive Loading 

In this section, the uniaxial cyclic compression test carried out by Okamoto [45] was 

selected, and the model and constraint schematic is referred to in Figure 10. 
As can be seen from Figure 13, the proposed model is reliable in describing the stress–

strain relationship under uniaxial cyclic compressive loading, in which the hysteresis ef-

fect in the cyclic loading and unloading process is consistent with the experimental data, 

which is much better than the simulation results of the traditional elastoplastic damage 

model. A comparison of the damage history under cyclic compression loading is given in 

Figure 14. The damage accumulation process at each stage is fully reflected. Since the ex-

pressions of the hysteresis characteristic parameters in this model are mainly established 

based on cyclic compression tests, the simulation results fit the test data to a higher degree 

compared to that under cyclic tensile loading. 
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Figure 13. Comparison of stress−strain relationship under uniaxial cyclic compressive loading. 

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

D
am

ag
e 

v
al

u
e

Load step (%

 Experimental

 The traditional elastoplastic damage model

 The proposed model

 

Figure 14. Comparison of damage history under uniaxial cyclic compressive loading. 
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4.4. Uniaxial Reciprocating Loading 

Under reciprocating loading, the material will inevitably face the problem of conver-

sion between tension and compression, which is an indispensable part of the stress–strain 

curve. The purpose of this section is to validate the complete description of this model for 

the concrete stress–strain curve. The calculation model, material parameters, and bound-

ary conditions are referred to as a uniaxial cyclic loading test. 

The stress–strain curve and damage history under reciprocating loading are shown 

in Figures 15 and 16, respectively. The specimen is subjected to tension at the beginning, 

for the elastic phase (o-a) has not yet caused damage. After the stress value reaching to the 

uniaxial tensile strength, it turns to the softening phase and then is unloaded at point b to 

the stress zero-point c. At the same time (a-b-c), the damage value of the specimen begins 

to accumulate gradually. Subsequently, the specimen continues reverse loading along the 

tangential stiffness direction of the unloading point, and the force state changes from ten-

sile to compressive. During the elastic phase of reverse loading (c-d), the damage values 

remain constant. After reaching the peak compressive stress, the specimen again enters 

the softening phase (d-e), and the damage value continues to increase. Then, the specimen 

enters the tensile state again after unloading to the stress zero-point f and is loaded for the 

second time (f-g-h). 
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Figure 15. Stress−strain relationship under uniaxial reciprocating loading: the letters o, a, b, c, d, e, f, 

g, h are points on the curve of the uniaxial reciprocating loading. 
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Figure 16. Damage history under uniaxial reciprocating loading : the letters o, a, c, d, f, g, h are the 

positions of the corresponding points in Figure 15 during the damage process. 

4.5. Koyna Gravity Dam Seismic Conditions 

The Koyna gravity dam was selected as the research object for numerical verification 

of the engineering structure. The dam model is shown in Figure 17. The time history 

method was used for dynamic analysis, and the generalized Newmark method was used 

to determine the stress distribution and deformation of the dam and foundation at each 

moment. The fixed artificial boundary was used as the boundary condition of the founda-

tion. That is, in the massless foundation model, a normally fixed constraint was imposed 

on the truncated side boundary of the foundation, and a two-way fixed constraint was 

imposed on the bottom boundary. The inertial force was only applied to the dam, and the 

foundation was only considered for its stiffness. The seismic load was a Koyna seismic 

wave. The normalized acceleration time history curve is shown in Figure 18. The seismic 

wave time is 12.8 s, the horizontal peak acceleration is 0.474 g, and the vertical peak accel-

eration is 0.312 g. The Westgaard additional mass method was used to consider the hy-

drodynamic pressure of the reservoir water acting on the dam under the seismic loadings. 
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70.2 m
 

(a) (b) 

Figure 17. The Koyna dam: (a) geometry and dimensions and (b) finite element model. 
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(a) 

 
(b) 

Figure 18. Time history of seismic acceleration: (a) horizontal and (b) vertical. 

The damage evolution process is shown in Figure 19. The dam body enters the dam-

age at the corner of the dam slope at about 2.7 s. As it extends to the upstream surface, the 

upstream surface begins to be damaged and develops to the corner of the dam slope at 

about 3.4 s, and finally forms through failure. As illustrated in Figure 20, the result calcu-

lated by the proposed model is closer to the experimental result [46] than the traditional 

elastoplastic damage model [47]. After taking into account the concrete hysteresis effect, 

the damage accumulation during the unloading of the softening section will be consid-

ered. Furthermore, the local stress redistribution makes the overall dynamic response re-

sult more in line with the actual engineering seismic damage situation. 

 
(a) (b) 
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(c) (d) 

Figure 19. Damage distribution of the Koyna Dam at different times in the simulation results of the 

proposed model: (a) t = 2.7 s; (b) t = 4.0 s; (c) t = 4.26 s; (d) t = 4.5 s. 

 Experimental

 The traditional elastoplastic damage model
 The proposed model

 

Figure 20. Comparison of the final cracking failure mode. 

5. Conclusions 

Based on the four-parameter damage model of concrete, a concrete damage model 

considering the hysteresis effect under cyclic loading is established. On the basis of the 

principle of strain equivalence, the model converts the complex multiaxial force and de-

formation problem into a simple equivalent strain space for a solution. The damage vari-

able is solved by the uniaxial damage evolution equation with the equivalent effect as 

independent variables, and then the true stress in the multiaxial state is obtained. The 

complex nonlinear properties of concrete under cyclic loadings, such as conversion be-

tween tensile and compressive, stiffness degradation, strength softening, and irreversible 

deformation, can be considered. At the same time, hysteresis effects, including the result-

ing material stiffness degradation and damage accumulation, can be adequately de-

scribed. Through the comparison with the classical experimental test and the seismic con-

dition of the Koyna gravity dam, the model can well reflect the force state and deformation 

law of the concrete under the cyclic reciprocating load. The calculation process does not 

depend on the structure form, loading law, and material parameters. It can provide sup-

port for further research on the seismic performance of concrete structures. 
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