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Abstract: Additive manufacturing (AM) is dynamically developing and finding applications in
different industries. The quality of input material is a part of the process and of the final product
quality. That is why understanding the influence of powder reuse on the properties of bulk specimens
is crucial for ensuring the repeatable AM process chain. The presented study investigated the
possibility of continuous reuse of AlSi7Mg0.6 powder in the laser powder bed fusion process (LPBF).
To date, there is no study of AlSi7Mg0.6 powder reuse in the LPBF process to be found in the literature.
This study aims to respond to this gap. The five batches of AlSi7Mg0.6 powder and five bulk LPBF
samples series were characterised using different techniques. The following characteristics of powders
were analysed: the powder size distribution (PSD), the morphology (scanning electron microscopy—
SEM), the flowability (rotating drum analysis), and laser light absorption (spectrophotometry). Bulk
samples were characterised for microstructure (SEM), chemical composition (X-ray fluorescence
spectrometry—XRF), porosity (computed tomography—CT) and mechanical properties (tensile,
hardness). The powder was reused in subsequent processes without adding (recycling/rejuvenation)
virgin powder (collective ageing powder reuse strategy). All tested powders (powders P0-P4) and
bulk samples (series SO-S3) show repeatable properties, with changes observed within error limits.
Samples manufactured within the fifth reuse cycle (series S4) showed some mean value changes of
measured characteristics indicating initial degradation. However, these changes also mostly fit within
error limits. Therefore, the collective ageing powder reuse strategy is considered to give repeatable
LPBF process results and is recommended for the AlISi7Mg0.6 alloy within at least five consecutive
LPBF processes.

Keywords: additive manufacturing; powder reuse; aluminium alloy; porosity; mechanical properties

1. Introduction

Additive manufacturing (AM) is dynamically developing and finds applications in
industries such as aerospace, automotive, and medicine. The main benefits of AM are
the freedom of design, a low level of waste, a decrease in the number of technological
operations, the production time, and the supply chain cost in low series production [1,2].

However, certain limits slow down the complete implementation of AM technologies
in the industry. For example, a lack of standardization, problems with repeatability, the
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possibility of quickly moving the process from one machine to another, and insufficient
knowledge about powder reuse.

Powder reuse is critically essential for laser powder bed fusion (LPBF). According
to ISO/ASTM 52900:2021 [3], LPBF is used to produce objects from powdered materials
and uses one or more lasers to fuse or melt the deposited layers of powder particles
selectively. Therefore, the possibility of reusing powder in more than one process makes
PBF technologies more sustainable and decreases production costs. It is an accepted practice
to use the unmelted powder material more than once for the process. Usually, for powder
reuse in LPBF, manufacturers use powder recycling /regeneration procedures. However, it
is a time- or number-limited usage due to quality and material concerns. Besides that, the
authors in the paper [4] explain the difference between recycling (rejuvenation) and reuse.
They are limiting the second term to the repetitive use of the same powder, without or with
minimal post-processing, such as sieving/screening.

Many authors [5-8] have been investigating the effect of powder particle size and
oxygen content during the LPBF process on the results of its processing. All the researchers
agreed that the powder used in consecutive processes must be free of contamination, e.g.,
oxidation and cross-contamination, which can occur accidentally by mixing metal powders
of different chemical compositions [9]. Even spatters formed during the metal powder
processing can be treated as contamination, even though the chemical composition remains
the same. However, the oxygen content very often increases [10]. These findings push the
researchers working on process LPBF development to consider the effect of powder reuse,
applied strategies of operating powder between the processes, and the changes of powder
characteristics on the result of the AM process.

Various strategies for reusing powders for LPBF can also be found in the literature.
For example, the authors of [11] described two of them: (1) continuous refreshing and
(2) collective ageing. The first approach states that the powder volume for each build job
should be the same. Therefore, all remaining powder is filled with fresh powder after
the process, eliminating the powder losses caused by manufactured parts and supports,
powder loss due to spatter formation, and machine operation. On the other hand, the
collective ageing strategy is about using the once-loaded powder in a machine till the
remaining powder amount is insufficient for the next job. Then, the remaining powder
volume is filled with a used powder that was sieved and loaded into the main machine
tank. Both methods are different in terms of how much powder can be operated in total
and how much powder is needed to sieve and mix after every process.

There are many studies on powder reuse in LPBF, including nickel-based alloys [10],
iron-based alloys [12], titanium-based alloys [13], and aluminium-based alloys. Recently,
published works on aluminium-based alloys focus on the AlSil0Mg [14] and Al-Si-Sc-
Zr [15]. The main findings of [15] have pertained to the mechanical properties (ultimate
tensile strength (UTS) and elongation at the break of specimens, respectively, built with
virgin and reused powder are 565 MPa, 13% and 537 MPa, 11%) and porosity (0.06% for
samples made from virgin powder compared to 0.15% for samples made for the reused
powder). In addition, the authors of [16] analysed properties of AlSi10Mg alloy aged
in air and used for direct-energy deposition (DED); they found out that the increase in
oxygen content influences the processability of the powder and the properties of the
final specimens.

Aluminium alloys cover about 1/4 of the AM powder market by volume [17]. There-
fore, the interest in the effective use of these materials and the possibility of reusing the
aluminium alloy powders remains at a high level [4]. Understanding the powder degra-
dation mechanism of Al alloy in the LPBF process is essential. The AlSi7Mg0.6 alloy is
gaining more and more attention in the AM industry [18-20]. However, to date, there is no
study of AlSi7Mg0.6 powder reuse in the LPBF process to be found in the literature. This
study aims to respond to this gap.

The goal of this study is to evaluate the influence of AlSi”Mg0.6 powder reuse on the
material properties of LPBF samples. The powder will be reused in subsequent processes
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without adding (reuse/rejuvenation step) virgin/fresh powder, using only a double sieving
procedure to eliminate the oversized powder particles.
The objectives of this study are:
e  To verify the eventual changes in powder morphology and chemical composition
during the continuous reuse;

o  To evaluate the influence of eventual powder degradation on the quality of LPBF bulk
specimens.

2. Materials and Methods
2.1. Materials and Processing

The AlSi7Mg0.6 powder with the chemical composition as listed in Table 1 is used.
The powder is supplied by SLM Solutions Group AG (Liibeck, Germany).

Table 1. Chemical composition of the AlSi7Mg0.6 powder used in this study.

Standard Al Si Mg Ti Fe Cu Mn Zn Other Total
EN AC42200 acc. to
EN-1706, wt.% Bal. 6.5-7.5 0.45-0.70 - 0.15-0.19 0.03-0.05 0.1 max 0.07 0.10
SLM Solutions, wt.% Bal. 6.5-7.5 0.45-0.70 0.25 0.19 0.05 - max 0.07 0.10

Five successive LPBF process cycles are carried out using the SLM 280 2.0 machine
(SLM Solutions Group AG, Liibeck, Germany). The LPBF system used in this research
is equipped with a 1070 nm fibre laser with a max. power of 700 W and a beam focus
diameter between 80 and 115 um. Each process is held under a protective atmosphere of
pure argon (O, level kept below 100 ppm, argon purity class 5.0). In each process, six plates
(150 mm x 30 mm x 4 mm) and twelve cylinders (12 mm x 150 mm) are manufactured,
as shown in Figure 1a,b. A build volume reduction (100 mm x 100 mm X 150 mm) is
used to allow high-volume powder consumption. Parts are manufactured on a 1xxx series
aluminium build platform with 98 mm x 98 mm x 20 mm dimensions, heated up to 150 °C
and kept at this temperature during the LPBF process. Cylindrical samples are used for
microstructure studies, and bar samples are used for tensile testing. To manufacture the
samples, previously tested process parameters are used, in line with machine and powder
supplier recommendations (SLM Solutions Group AG, Liibeck, Germany). As stated by
the supplier, the process parameters should provide sample densities above 99% [21]. The
same set of parameters is used for each of the five LPBF processes.

0000°
ORORCRC
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— Gas Flow
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— Recoater —

Figure 1. (a) LPBF process build job layout; (b) An exemplar build plate with samples manufactured.



Materials 2022, 15, 5019 4 of 21

The powder as received from the supplier after initial sieving through 75 pm sieve
size is labelled as ‘virgin’ (powder P0), and the powder after each following process cycle is
labelled as ‘powder PN’ (powders P1, P2, P3, and P4), where N is a number of powder reuse
cycles prior the N process (Table 2). Therefore, the LPBF samples are appropriately named
50,51 ... 54 (in line with the used powder batches PO, P1 ... P4). In addition, an oversized
powder collected from the sieve was also characterized, labelled as PW (waste powder).

Table 2. The list of powder samples used in the research.

Powder Sample Description
PO Initial batch of virgin powder. PO powder is dried and sieved before use.
P1,P2,P3,P4 Powder after 1, 2, 3, and 4 LPBF process cycles and double sieving.
PW Waste powder. The powder that stayed on the sieves after double sieving.

The powder volume is not refilled throughout the experiments. This approach is
named “continuous reuse” according to ASTM F3456-22 [22]. Initially, 15 kg of virgin
AlSi7Mg0.6 powder was used to manufacture the first batch of samples (S0). After each
process, the whole powder volume is removed from the machine and double sieved to
eliminate the oversized powder particles. The whole powder volume collected after the
N process is sieved in the first step, and then the second sieving is performed only for the
overflown powder separated in the first sieving. Finally, the powder that passed through
the sieves after the first and second sieving operations is mixed. A powder sieving station
PSM 100 (SLM Solutions Group AG, Germany), equipped with a 75 um flow sieve, is used
to sieve the powder.

The total volume of processed powder decreases every build job due to the use for
sample manufacturing and rejection after double sieving. The change in powder weight
throughout the process cycles is shown in Figure 2. Finally, the height of the last build job
has decreased to 120 mm. At the end of the experiment, the weight of powder remaining in
use is 11 kg. The part weight to the powder in use weight ratio is about 1:10 and depends
on the ‘N’ processing cycle (process 0 to process 4).
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Figure 2. Summary of the total powder weight used in the study, including the weight of obtained
samples and the weight of waste powder after double sieving.

Dogbone samples according to ASTM E8/E8M-16 [23] for mechanical testing are
machined from the plates produced in each LPBF process (Figure 3). The length of tensile
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test samples is 100 mm, so the decreased build job height of the last LPBF process does not
influence the size of tensile samples.
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Figure 3. Tensile specimens’ geometry according to ASTM E8/E8M-16 (all dimensions are in mm).

2.2. Powder Characterization

After each process cycle (LPBF + double sieving), the powder is characterised by
morphology, flowability, and physicochemical properties. Finally, the results are compared
with the properties of waste powder.

2.2.1. Powder Morphology

To measure the particle size distribution (PSD), the HELOS BR R4 + RODOS laser
diffraction system, equipped with a VIBRI dispersion unit, is used (Sympatec GmbH,
Clausthal-Zellerfeld, Germany). A 68-mbar vacuum and a 2-bar feed pressure are used to
disperse particles during testing. A 70% feed rate and 1.5 mm gap width parameters of the
VIBRI unit are used to feed the powder. Statistical analysis of the PSD is performed in the
PAQXOS 3.1 software (Sympatec GmbH, Clausthal-Zellerfeld, Germany) according to the
ISO 13320-1/ASTM B822-17 standards.

The individual powder particles” morphology and surface condition are characterised
by microscopic investigation using SEM EVO MA25 scanning electron microscope (CARL
ZEISS, Oberkochen, Germany). The procedure is performed according to ISO 13322-1
standard.

2.2.2. Powder Flowability

A rotating drum (GranuDrum) granular flow analyser is used (Granutools, Awans,
Belgium) to characterise powder flowability. The instrument is an automated tester provid-
ing the cohesion analysis within the powder flowing in a rotating drum. First, a flowing
powder interface position snapshots are analysed. Based on this, the cohesive index is
derived. The higher the powder fluctuation during rotation flow, the higher the cohesive
index. In addition, the mean avalanche angle is measured during the test. Cohesive index
and mean avalanche angles are determined for the drum’s increasing and decreasing rota-
tional speed (hysteresis mode), i.e., 1, 2, 5, 10, 20, 30, 40, 50, and 60 RPM. Thirty flowing
powder images are taken at each RPM level with a 1 Hz sampling rate to calculate the
cohesive index and mean avalanche angle.

2.2.3. Laser Absorption

Laser absorption assessment is performed with the spectrophotometry method using
Exemplar Plus BTC655N-ST laser radiation absorption spectrophotometer (B&W Tek,
Newark, DE, USA). The powder sample is placed inside the integrating sphere. Modulated
monochromatic light (in a range of 900-1100 nm) is shined at the powder sample. Light
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reflection is compared to a reference sample with almost 100% reflectivity. Based on the
measurement, laser absorption is calculated.

The changes in absorption can be directly translated into the course of the LPBF
process and the need to adjust the process parameters (process window) to the current state
of the powder.

2.2.4. Chemical Composition

Chemical composition is evaluated using an energy dispersive X-ray fluorescence
spectrometer (ED-XRF) SPECTRO XEPOS (METEK, Kleve, Germany). The measurement
is done for powder and bulk specimens. The measurement was repeated 3x for one
random bulk specimen from each series (S0 ... S4) and for each powder type (PO ... P4).
Bulk specimens from the XZ plane are prepared as a metallographic sample (polished
and ground).

2.3. Sample Characterization
2.3.1. Porosity

The quality of the as-built samples is evaluated using a technical computed tomogra-
phy method. X-ray computed tomography (XCT) enables the reconstruction and evaluation
of the external and internal structure of the manufactured samples, which is especially
important for samples produced with additive technologies [24,25]. The volumetric models
obtained as a result of the XCT reconstruction allow to determine the volume of voids
or pores filled with incompletely melted powder (V) and the volume of the melted
powder (V};,), making it possible to determine the volumetric porosity (P) according to the
Equation (1) [26]:

o] — VPO” o
p [/0} = Vm n Vpor x 100% (1)

The XCT system phoenix v | tome | x m 300/180 (GE Sensing & Inspection Technolo-
gies GmbH, Wunstorf, Germany) is used in the study. A micro-focus X-ray tube with
a parameter setting (voltage 160 kV and current 120 nA) is used to X-ray the samples.
Such parameters of the X-ray tube with a 2K flat-panel digital detector (10-bit) allowed
for scanning a set of ROIs (region of interest covering the gauge section) for six samples
with a resolution (voxel size) of 19.79 um. The reconstruction is carried out using dedicated
software phoenix datos | x 2.7.2 (GE Sensing & Inspection Technologies GmbH, Wunstorf,
Germany) with measurement artefact correction (ring artefact, axis alignment, beam hard-
ening) and noise reduction. Data processing, including data thresholding and porosity
detection, is performed using software VG Studio MAX 3.3 (Volume Graphics GmbH,
Heidelberg, Germany).

2.3.2. Microstructure Characterization
Metallographic specimens are prepared to analyse the microstructure. The microstruc-

ture analysis is carried out on a cross-section parallel to the build direction. The surface of
the metallographic specimens is etched with Kroll’s reagent with the following composition:

68 cm® HoO + 16 cm® HNO; + 16 cm® HF.

The confocal laser scanning microscope (CLSM) LEXT OLS4000 (Olympus, Tokyo,
Japan) and the Zeiss SEM EVO MA25 (CARL ZEISS, Oberkochen, Germany) scanning elec-
tron microscope (SEM), equipped with an EDS (energy dispersive spectroscopy) analysis
system, are used to capture microstructure images.

2.3.3. Mechanical Properties

The static tensile samples are designed following ASTM E8/E8M-16a (room tempera-
tures) [23]. Tensile tests are performed on the HC-25 ZwickRoell servohydraulic testing
machine (ZwickRoell GmbH & Co. KG, Ulm, Germany) with a test frame using a =25 kN
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load-cell. The tests are carried out with a strain rate of 0.0008 s ! and are continued until
the sample brake. Five specimens are used for each series (S0, S1, 52, S3, and S4).

Hardness tests using a Zwick Roel ZHVp-A hardness tester (Zwick-Roell, Leominster,
United Kingdom) are performed. Vickers hardness cross-section profiles are determined
ata 2.94 N load (300 g). Five indents are made on each sample used for microstructure
evaluation, and a mean value is calculated for each tested sample.

3. Results
3.1. Powder Characterization
3.1.1. Powder Morphology

In the virgin state (P0), aluminium powder (AlSi7Mg0.6) is characterized by a “potato”-
like shape and has some satellites (Figure 4a). Powder samples after each run of the LPBF
process (P1-P4, Figure 4b—e) are characterized by a similar morphology and demonstrate
a lack of changes due to processing. However, the waste powder (PW) is significantly
different—it has a different surface morphology, particles are 2-3x bigger than virgin
powder particles, and lacks satellites.

—100pm— b) —e—P1 —100pm— C) —a&—P2 —100 ym—

Figure 4. Microscopic images of the AlSi7”Mg0.6 powders in various processing states, SEM /BSE:
(a) virgin (PO); (b) after 1st LPBF process (P1); (c) after 2nd LPBF processes (P2); (d) after 3rd LPBF
processes (P3); (e) after 4th LPBF processes (P4); and (f) waste (PW).

The obtained particle size distributions (PSD) for each evaluated powder are com-
parable. There is no significant difference between each consecutive sieving cycle (PO to
P4). The curves for powders P0-P4 are plotted simultaneously one on another, both for
distribution density q3 (Figure 5a) and the cumulative density Q3 (Figure 5b), showing
almost identical plots. The SEM observations and PSD analysis show the presence of
satellite particles throughout the powder states with no variations. The values of x19,3, X503,
and Xgg 3 characteristic particles size parameters are presented in Table 3. In the case of the
PW probe, PSD curves are clearly visible and are moved to the right side, which means
that the powder sample consists of much larger diameter particles. PW x5 3 is 2.5-times
higher than P0-P4 and xgg 3 is 3.5-times higher than P0-P4.
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Figure 5. Particle size distribution of AlSi7Mg0.6 for each of the powder states: (a) distribution
density q3; (b) cumulative density Q3.

Table 3. Particle size distribution of AlSi7Mg0.6—volume-weighted characteristic values obtained in
the laser diffraction measurements for each of the powder states.

Parameter PO (um) P1 (um) P2 (um) P3 (um) P4 (um) PW (um)
X10,3 26.50 26.50 26.14 26.40 26.54 37.78
X50,3 40.02 40.07 39.76 39.94 40.21 97.50
X90,3 58.75 58.85 58.97 58.73 59.08 188.34

The PS distribution of PW is not a normal distribution, unlike the PSD of P0-P4.
This suggests that the waste powder is not homogeneous in its volume. Based on this
observation, the waste powder (PW) is a mixture of a non-remelted powder, and a re-melted
spatter powder.

3.1.2. Powder Flow Properties

The measured flow properties of the powders in each of the P(N) states behave in a
very similar way. The measured flow properties of the powders in each of the P(N) states
behave in a very similar way. All powder samples are characterized by a relatively high
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Cohesive index

Angle (°)

cohesive index and a tendency to increase a cohesive index with an increasing drum speed.
According to [27], it is influenced by particle size and shape. An increasing drum speed
increases bonding between the particles and influences static (angle of repose) and dynamic
(cohesive index and flow) behaviour.

Based on the plots in Figure 6, there is no difference between PO and P4 powders.
Therefore, only the curve for the PW sample can be differentiated from the reused powders.
The cohesive index for the waste powder slightly increases up to 10 RPM, and with an
increase in the rotational speed, the cohesive index remains constant (Figure 6a). When
analysing the trend of the avalanche angle for the PW sample, again, 10 RPM is a threshold
where the behaviour changes, and below 10 RPM, the avalanche angle is constant. With a
higher rotation speed, the measured avalanche angle is comparable to the sieved P0-P4
powders used in the consecutive processes (Figure 6b).

T T T T T T

10 20 30 40 50 60 70
Drum speed (RPM)

—=—P01
| —e—P11
) —A—P21
—v—P31
*— P41
«—PW1
-0-P0O|
=@=P1 |
-A-P2]

P4 |
PW |

T x T = T d T ¥ T ¥ T

10 20 30 40 50 60 70
Drum speed (RPM)

Figure 6. (a) The cohesion index for the AlSi7Mg0.6 powder in different processing states regarding
the rotational speed measuring drum; (b) Mean avalanche angle values for the AlSi7”Mg0.6 powders
in various states with regards to the rotational speed of the measuring drum.

3.1.3. Physicochemical Properties

The absorption measured in the range of 1020-1100 nm of the wavelength is compara-
ble, and in the case of P0-P4 powders is between 57 and 62%. Waste powder PW exhibits
a 25% higher absorption and reaches a value of ~78% (Figure 7a). A slight difference in
the sample after the first manufacturing process (P1) can be distinguished by zooming in
the plot to a narrower absorption scale (Figure 7b). It can be seen that the registered signal
in the entire wavelength range is about 5% higher than the rest of the analyzed samples.
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A polynomial curve fitting of the laser absorption measurement with a 95% confidence
interval confirms the observed difference between P1 and PO, P2, P3, and P4 samples.

a) oss

——P0——P1——P2——P3— P4 PW

0.80
075 7~ S v W ‘ AV=vires ’w\“‘;,, — e —fW ‘41“{5" ““-' \ “- A ' Yy v YR

0.70

Absorption (%)

0.65

b)

3

=

K]

a

= A

2 1 \ L X\A\ Ty
o 4 // ]
< 058 1\ V\\/ \W /A

\
0.56

T ¥ T
1060 1065 1070 1075 1080
Wavelenght (nm)

Figure 7. Laser light absorption for wavelengths from 1020 to 1110 nm of AlSi7Mg0.6 powder
and polynomial curve fitting with 95% confidence interval (a) PO, P1, P2, P3, and P4 state and PW
absorption for wavelength from 1020 to 1110 nm for (b) magnification for the wavelength from 1060
to 1080 nm and for PO, P1, P2, P3, and P4 states.

3.1.4. Chemical and Phase Composition

In order to determine the influence of the powder degradation on the functional
properties of the samples obtained by the LPBF method, the chemical composition analysis
using the XRF method was performed. Table 4 and Figure 8 show the analysis results for
the bulk samples (SO ... S4) and the powders (PO ... P4).

The chemical composition remains unchanged. The minor discrepancies are within
the error limits and the XRF method accuracy. In the case of aluminium alloys, the evap-
oration of some elements (for example, Mg or Zn) is one of the critical aspects of LPBF
processing [28]. In the present study;, it can be noticed that the magnesium content in the
alloy did not change significantly in the case of both the powder and solid samples.
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Table 4. Chemical composition of powder (in different states) and samples manufactured from each

powder in wt.%.

Sample (reuse cycle)

Composition Al Si Mg Fe Ti Cu Zn Other Each  Other Total
. A1817Mg0'6._SLM Bal. 6.50-7.50 0.45-0.70 0.19 0.25 0.05 0.07 0.03 0.10
Solutions—materials datasheet
Powder specimens
PO 6.13 0.64 0.09 0.08 0.001 0.010 - -
P1 6.13 0.72 0.09 0.085 0.001 0.007 - -
P2 Bal. 5.96 0.61 0.11 0.092  0.001 0.001 - -
P3 6.04 0.62 0.12  0.098 0.001 0.001 - -
P4 6.11 0.65 0.10 0.082 0.001 0.001 - -
LPBF specimens
SO 6.20 0.729 0.052 0.056 0.0006 0.004 - -
S1 6.188 0.715 0.049 0.052 0.0006 0.004 - -
S2 Bal. 6.25 0.727 0.049 0.053 0.0007 0.004 - -
S3 6.288 0.735 0.052 0.056 0.0007 0.004 - -
S4 6.220 0.729 0.051 0.057 0.0006 0.004 -
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Figure 8. Chemical composition of powder (in different state—P0 ... P4) and bulk samples (SO . ..
54) from AlSi7Mg0.6 in wt.% measured by XRF method.

3.2. Sample Characterization

3.2.1. Porosity

The XCT analyses aimed to assess the internal structure of the samples manufactured
from successive iterations of the reused powder and to check the impact of powder degra-
dation on the defects’ formation. For this purpose, six samples from each series were
scanned, as presented in Figure 9.

The porosity analysis was performed in the same method for each sample for a region
of interest (ROI) 25 mm high (Figure 9a), corresponding to the gauge section of the tensile
sample (Figure 3). The results of the porosity analyses are presented in the form of graphs
of the mean values of (a) porosity, (b) maximum pore diameter, and (c) maximum pore

volume, taking into account the standard deviation of the results (Figure 10).
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Figure 9. Two-dimensional cross-section through the reconstructed sample (a) and a three-
dimensional view of the obtained models (b). The reconstruction looks similar for all series. Presented
reconstruction refers to series SO.
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Figure 10. Analysis of the porosity of the measuring part of the samples (error—95% confidence
interval): (a) a graph of measured porosity (XCT), (b) a graph of the maximum pore diameter, and (c)
a graph of the maximum pore volume.

Based on the obtained results, there is no noticeable trend of changes in the porosity
of the samples concerning subsequent iterations of the input material processing. The
exception is series 4four for which the recorded porosity values are the lowest. However,
the results are evenly distributed for all series concerning the mean value of the maximum
diameter size and pore volume.

The diameters of the registered pores and their shape (sphericity) were evaluated for
three samples showing the highest porosity from each series. In Figure 11a, box plots of
pore diameters are presented. In Figure 11b, box plots of pore sphericities are presented.
Pore sphericity is defined as the aerial ratio of the sphere to the pore where the sphere
outlines the pore. The closer the value to one, the higher the pore sphericity is [29].



Materials 2022, 15, 5019

13 of 21

a)

b)

Diameter (mm)

Sphericity (-)

[ 125%~75% 1 Range within 1.5IQR — Median Line = Mean + Outliers

0.45
4 *
0.40
1 W . s
0354 | . . . . . . .
4 * * *
0.30 : ¢ . ¢ 2 : * * ‘ * s $ :
Il Y . . $ . s . Y . . $ s
4 N P i 3 . . ‘ ; : .
0.25 - ¢ H : *
0.20
0.15
] L
- TERSERITRT
0.05
000 T T T T T T T T T T T T T T T
S0-1 S0-2 S0-3 S1-1 S$1-2 S1-3 S2-2 S2-3 S2-4 S3-2 S3-3 S34 S4-1 S4-3 S4-6
[ 125%~75% ] Range within 1.51QR — Median Line = Mean < Outliers
0.9
* * *
0.8 4 . . . . . - . . . .
* * * * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * * * * * * *
P T $ $ S T T £ T T T £ £ .
* —
[ 11
13 L : ¢ ¢ L L ¢ L 1L 1
$ $ $ $ $ $ $ $ 3 $ $ ~ v 4
* * * * * * * * * * * * * *
* * * * * * * * * * * * * *
$ $ 3 3 : 3 S S 3 3 S S 3
054 ¢ : : s $ $ . $ $ $ $ 3 $
* * * * * * *
* * * * * * * *
. $ : . . . . :
* *
*
04 T T T T T T T T T T T T T T T
S0-1 S0-2 S0-3 S1-1 S$1-2 S1-3 S2-2 S2-3 S2-4 S3-2 S3-3 S34 S4-1 S4-3 S4-6

Figure 11. Box plots of pore diameter (a) and pore sphericity (b) based on CT data for three of
the most porous samples of each series: SO to S4; outliners qualified using the 1.5IQR method
(IQR—interquartile range).

The results of the data from the individual series and between all the processes
coincide with each other. There is a slight difference in the mean pore sizes for all 54
samples compared to the rest of the series (50-53). There is also a slight decrease in mean
sphericity. Nevertheless, pore diameter and sphericity show significant deviation, here
expressed as 1.5 times the interquartile range (1.5IQR). Additionally, each series and sample
show outliners. A low number of pores in each series show larger diameters than 1.5IQR.
A low number of pores show also smaller and larger sphericities than 1.5IQR.

The total number of pores recorded in the ROI volume distinguishes the S0-54 series
and the 54 series. The pore number is about 30% smaller for the S4 series than for the S0-53
series. A comparison of the pore morphology and pore count is presented in Figure 12.
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Figure 12. Pore reconstruction recorded for samples (a) S1-1 and (b) 54-6; (c) Pore count in ROI
for each respective series (S0-S4)—histogram based on samples analysed in Figure 11 (error—95%
confidence interval).

The samples’ pore distribution homogeneity was compared for the XZ, YZ, and
ZX (Figure 13a—e) and samples SO-1 and S4-1. The porosity analysis was performed for
sequential ROIs with heights equal to 0.25 mm [25]. The most significant changes in
porosity were noted for the XY plane. It results from the presence of subsurface pores,
which are a defect caused by the selected LPBF boundary process parameters and strategy.
Hence, the porosity in this plane has the highest values, even up to 1.35% (Figure 13f). It
is worth noting that this phenomenon does not occur in the other planes of the analysis
due to the machining and ROI selection. Hence, the global values do not exceed 0.22%, as
shown in Figure 13g,h.

—— 80-1-XY——— §4-1-XY

2 3 4
position (mm)

——80-1-YZ—— S4-1-YZ

1 2 3 4 5 6
position (mm)

——80-1-ZX—— 84-1-ZX

3D porosity XY view YZ view 0 5 10 15 20 25
position (mm)

Figure 13. Pore distribution in the sample S1-1 (b), visible in planes (a), XY (c), YZ (d), ZX (e), and
graphs of porosity in the analysed planes (f-h).

3.2.2. Microstructure

The microstructure of the samples is typical for the additively manufactured alu-
minium alloys and is characterized by a fine, columnar—dendritic structure. The CLSM
(Figure 14) and SEM (Figure 15) microscopic images do not differ between each series.
Figure 14a—e represent the XZ plane of specimens, and Figure 14f shows the XY plane of an
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S0 specimen to show the characteristic fusion lines and material texture in planes parallel
(XZ) and perpendicular (XY) to the LPBF build direction (BD).

a) —=— SO —50 ym— b) —e— S1 —50pym— C) —a— S2 —50 pm—

Figure 14. General microstructure of AlSi7Mg0.6 samples cross-section parallel to build direction
(BD) for S0-S4 and perpendicular for SO, CLSM; (a) SO; (b) S1; (c) S2; (d) S3; (e) S4; and (f) SO.

A
ARCY AV
W

Sample (reuse cycle)

Figure 15. Microstructure of AlSi7Mg0.6 samples, SEM/BSE; (a) SO; (b) S1; (c) S2; (d) S3; (e) S4; and
(f) Dendrite arm spacing measurement example and a graph of dendrite arm spacing—avg. from
6 random measurements for each sample from series SO to S4.
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The microstructure of AlSi7Mg0.6 is typical for hypoeutectic alloy [30] (Figure 15a—e).
It consists of the x-Al phase (grey background on SEM microphotographs) and a network
of inter-dendritic regions rich in Si (light grey colour).

On SEM micrographs, the dendrite arm spacing was measured (Figure 15f) to assure no
difference and no influence of powder reuse on the microstructure features. The results of
measurements are presented in Figure 15f, and there are minor differences within samples,
but all of the measurement differences fall within the error limits. Therefore, it can be
concluded that there are no differences, especially considering that such a measurement
will be sensitive to the collection site and the orientation of the specimen cross-section to
the examined dendritic structure.

3.3. Mechanical Properties

Performed static tensile tests showed no visible powder degradation trend due to its
reuse. All series show a high UTS of 390400 MPa. The highest mean values were obtained
for samples from series SO, S1, and S2, with narrow confidence intervals (Figure 16a) and
UTSs above 395 MPa. The series S3 and 54 have lower mean values (below 395 MPa), but
the confidence intervals reach the mean value of the rest of the analysed series.

a) 410 b) 10 C) 130
R | M Ultimate tensile strength Strain at break Hardness
©
o i i
S 405 Y 128
= X ™
D 400 = Q 120
é n T 6- z |
17} = ~
o 395 A n f % 115
B ® C 4 <
@ = ge)
2 390 = S 110
() = ©
-.(-6 (/) 2 | I 4
£ 385 105 -
)
380 I % = I " 1 O 1 * 1 * 1 ¥ 1 . 1 100 1 b 1 * 1 % 1 L 1
SO0 S3 &4 S0 S1 S2 S3 S4 S0 S1 S2 S3 &4

Sample (reuse cycle)

Sample (reuse cycle) Sample (reuse cycle)

Figure 16. Mechanical properties of LPBF AlSi7Mg0.6 samples S0-S4 (error—95% confidence interval):
(a) Ultimate tensile strength, (b) Strain at break, and (c) Hardness (HV0.3).

The strain at break values shows high consistency and each confidence interval over-
laps. Each series show 6-7% of strain at break (Figure 16b).

The hardness of the samples (mean for all samples of 118 £ 3 HV0.3) is comparable
with the value from a material datasheet (112 + 3 HV10) [21]. Furthermore, each confidence
interval overlaps. The summary for the hardness measurements for each series of samples
(50-54) is presented in Figure 16c.

The obtained mechanical properties are in line with properties of AlSi7Mg0.6 alloy
processed by LPBF found in the literature (Table 5). Despite the slight differences in UTS,
hardness, and strain at break, the typical correlation is maintained. A lower hardness results
in a higher elongation and a lower UTS. The phenomena are related to the parameters
of the LPBF process and resulting solidification. Faster cooling creates finer, less ductile
microstructures, thus producing higher UTS [31].
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Table 5. Mechanical properties of LPBF AlSi7Mg0.6 specimens produced in XZ direction (comparison
of different sources).

Property This Research * SLM Solutions [21] Pereira et al. [30]
UTS, MPa 398 +2 375 +17 435+ 18
Strain at break, % 7+1 8+2 3+1
Hardness, HV 119 £ 2.5 112+ 3 1364 £ 25

* Presented values concerning series 0 (virgin powder).

4. Discussion

The hypothesis based on the literature data about other powder materials [32-34] was
that AlSi7Mg0.6 powder would degrade with each cycle: its surface would be oxidised
and PSD would increase toward bigger particles [35]. Therefore, it was expected that
the laser absorption would change due to the surface oxidation and PSD, impacting the
process conditions and the final sample properties. Furthermore, the literature claimed
that such surface oxidation is typical for highly reactive materials such as titanium [6],
nickel [10,36], and aluminium alloys [37]. However, the results shown above demonstrate
that the analysed AlSi7Mg0.6 powder is highly stable in terms of the laser absorption level
during five consecutive LPBF processes.

The minimal absorption increase for the P1 powder sample can be connected to
multiple reflections. According to [38], it can appear when the beam is reflected away by
the powder bed more than one time. Authors of [38] mention that the reason for multiple
reflections is the grain size and shape. Both the particles smaller than the beam’s diameter
and non-spherical particles can cause the multiple reflections and therefore increased the
absorption. Therefore, the measurement results could be influenced by the powder layer
composition during the measurement or the place of powder sampling.

Nevertheless, if the ranges of the laser absorption values are compared and not the
values of the averaged polynomial curve fitting (Figure 7), the difference in the series P1
is less significant. Besides, it should be mentioned that the surface structure significantly
impacts the absorption level [39]. Therefore, a significantly higher absorption of the waste
powder (PW) confirms a surface structure and PSD influence on the laser absorption level.

The other characteristic is powder morphology. Two distinctive features of the powder
set it apart from the virgin powders reported in the powder reuse literature. Therefore, it
should be considered:

(1) Small powder particles (in the form of satellites and loose particles) are usually found
in virgin powders [10,15]. Such powders during reuse are losing small particles.
Therefore, the changing PSD translates into the change of powder flow or laser
absorption [10]. The powder analysed in this work does not have many small powder
particles. Moreover, as mentioned in Section 2.1 (materials and processing), virgin
powder was pre-sieved before the first PO process. That is why there is no significant
difference in PSD analysis. The sieving procedure between processes successfully
separate agglomerations and partial melted particles, which can impact the process.

(2) The shape of particles. The analysed powder has elongated, potato-like shape par-
ticles. However, it shows an acceptable level of flowability and processability. The
multiple processing of AlSi7Mg0.6 powder in LPBF does not change its flow prop-
erties compared to other materials such as titanium [40] or Inconel 718 [10] powder.
According to the [41], the flowability can be even improved between 6 and 15 cycles
of reuse.

In terms of chemical composition, there were two expectations or hypotheses. The
first one is about a general change of chemical composition due to multiple powder reuse.
The main difference considered is the change of zinc. However, this change is minor and
does not affect the properties of material.

The second one was about magnesium evaporation [28]. As a result of five conse-
quent processes, magnesium’s evaporation was not detected in powder or bulk samples.
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According to [42], the small addition (low content) of magnesium (up to 1.5%) positively
influences the microstructure and processability of Al-Si alloys. It should be emphasised
that magnesium in low-magnesium Al-Si alloys tends to condense and be studded at
the cell boundaries, especially at the nodes of cell boundaries [42]. Therefore, the results
described above are well-aligned with those in the literature.

However, magnesium evaporation is the main problem in AM of high-magnesium
Al-Mg alloys, but is not confirmed by the literature for the Al-Si alloys except for one publi-
cation [43], where authors describe the evaporation of magnesium and zinc for different
aluminium alloys. Process parameters are possible reasons for the difference between the
results published in [43] and the presented research. High-power LPBF processing should
contribute to this effect. An interconnection between magnesium content, densification,
and applied energy density affects the influence of process parameters on magnesium
evaporation. In the case of magnesium content <2.0%, there is no need to use high-energy
density to densify samples [42]; therefore, the risk of magnesium evaporation is lower.

As for the powder samples, the analysed AlSi7Mg0.6 bulk specimens (50-54) do
not show significant proofs of powder degradation. All bulk specimens (S0-S4) show
comparable and repeatable microstructures (similar texture and dendrite arm spacing),
which are typical for AM-processed hypoeutectic aluminium alloys.

A similar consistence of results is found within mechanical properties and hardness.
The difference between each series (S0-S4) is lower than the standard deviation of the
results. Even if the error is neglected, the determined mean values are within 5 MPa for the
UTS, 0.5 p.p. for the break at strain, and 5 HV0.3 for the hardness.

In the paper [44], the influence of powder reuse on the mechanical properties of
AlSi10Mg alloy within eight consecutive LPBF processes without rejuvenation is presented.
The study shows that significant (visible) changes can appeared after the 5-6 LPBF processes.
However, in the discussed paper, error limits for each series are not presented. If the changes
can be fitted into the error limits as in this work, therefore AlSi10Mg powder degradation
shown in [44] could be minor.

On the contrary, if results from [44] are considered, series S4 may be the critical point,
after which some changes could appear. Even if all powder samples (P0-P4) and bulk
specimens (S0-54) show repeatable properties with changes within error limits, certain
signs could indicate some initial degradation. A small decrease in dendrite arm space can
be observed, a small change in chemical composition and a higher mean hardness. All
the above-mentioned minor changes can be translated into the change of detected bulk
samples’ porosity distribution. The pore count is approximately 30% lower for the 54 series
than for the S0-S3 series.

The authors of [4] showed in their work the difference between two different powder
reuse strategies. The strategy used in the presented work (continuous reuse/single batch)
has its limit regarding powder availability for producing the subsequent samples. At a
certain moment, it is impossible to process samples with the same geometry due to the lack
of powder. Therefore, the number of cycles is limited by the quantity of powder without
rejuvenation.

The approach with frequent refreshing from one point is more similar to real produc-
tion conditions. However, at the same time, the powder degradation during the following
cycles is levelled /slowed down by the constant addition of virgin powder.

In the presented study, an attempt was made to maintain identical LPBF processing
conditions at each stage of collective ageing powder reuse. Each of the LPBF processes
was carried out using the same parameters, samples with a constant cross-section were
fabricated, and the conditions of the LPBF process were strictly controlled (platform temper-
ature, pressure in the chamber, gas flow speed, oxygen level, laser beam power variation,
etc.). The variability of the parameters recorded during LPBF processes did not exceed
5%. In addition, the powder after each step was screened twice to ensure the adequate
separation of oversized particles. The experiment was stopped after five cycles as the
amount of powder that remained in circulation was insufficient to allow the fabrication of
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full height tensile samples. During the process, approximately 30% of the initial amount
of powder (15 kg) was used to fabricate samples (4.8 kg) and 0.3 kg (2%) was screened as
waste. Given the above, the analysed AlSi7Mg0.6 powder showed a high stability during
reuse in the LPBF process. After the five consequent processes run without adding fresh
(virgin) powder, it is demonstrated that most properties of both powder and bulk samples
remain unchanged.

Therefore, in the case of the AlSi7Mg0.6 alloy, these are conditions for which the
collective ageing powder reuse strategies should be safe and repeatable. The present
study’s future scope is to analyse the limit of safety of AlSi7Mg0.6 powder reuse. So far,
the five cycles of continuous reuse do not influence the quality of produced samples. It will
be essential to design the experiment looking for those limits and create the roadmap for
the first signs of powder degradation.

5. Conclusions

The presented study investigated the possibility of continuous reuse (collective ageing
strategy) of AlSi”Mg0.6 powder in the laser powder bed fusion process. The five batches of
AlSi7Mg0.6 powder (P0-P4) and five bulk LPBF samples (S0-54) series were characterised
for powder morphology, chemical composition, porosity, and microstructure. In addition,
the mechanical properties of the LPBF AlSi7Mg0.6 specimens fabricated with reused pow-
der were investigated to ensure the comparable properties of each reuse cycle. Based on
the presented results, the following conclusions can be drawn:

1.  The average particle size, morphology, and chemical composition of the virgin and
continuously reused AlSi7Mg0.6 powders are comparable. The main outliner is waste
powder, screened during double-sieving, which differs in each property from the
virgin and continuously reused power.

2. Mechanical properties of the LPBF AlSi7Mg0.6 samples manufactured using continu-
ous reused powder are similar to the LPBF AlSi7Mg0.6 alloy manufactured samples
using virgin powder. It confirms that the approach of continuously reused powder
can be reasonably used in the LPBF process without a negative effect on the quality of
the final product.

3. The collective ageing powder reuse strategy is considered to give repeatable LPBF
process results and is recommended for the AlSi7Mg0.6 alloy within at least five
consecutive LPBF processes.

4. The presented findings should be only considered when: LPBF process parameters
are strictly controlled; the powder is double-sieved in each process; the virgin powder
shows a similar morphology to the powder used in this study—it is free from small
powder particles and is pre-sieved before use.

5. Samples manufactured within the fifth reuse cycle (series P4, S4) showed signs in-
dicating initial degradation. These changes, however, mostly fit within error limits.
Further studies should be looking at the high-cycle reuse of AlSi7Mg0.6 alloy in LPBF
to set the reuse limit and create the roadmap for the first signs of powder degradation.
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