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Abstract: The thermal lens effect is analyzed as a time-resolved Z-scan measurement using cw-single
Gaussian beam configuration. The main characteristics of the measurement method are determined.
We focus on the evaluation of the measurement error from statistical calculations to also check the
linearity of the response and the way to extract the thermo-optical characteristics of absorbing liquids.
The results are also applied to demonstrate the feasibility of absorption and scattering efficiencies
determination on gold nanoparticles of 5 and 50 nm diameters.
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1. Introduction

In many interdisciplinary areas, nonlinear properties of liquids or suspension of
liquids became an important tool. The response of a material to low laser radiation is well
known: the parameters n and α respectively defining the linear index and the absorption
characterize this effect. However, when the radiation becomes intense, a variation of
index and absorption can appear due to several physical phenomena, including thermal
effects. The latter depends on the properties of the sample mainly on its one-photon
linear absorption, but also the thermal changes in refractive index that could be due to
two-photon absorption [1]. Generally, to report on thermal response, Gaussian beam-
induced lensing is used. This local change of temperature in turn produces a change in
the refractive index that is characterized by the thermo-optical parameter dn/dT. Since
Gordon et al. [2] reported on this effect, considerable work has been conducted in this field
and several studies were carried out on the characterization of thermo-optical behavior
of materials [3–5]. To estimate the material absorbance, measuring the diffraction of light
in single beam or dual-beam methods [6] allow to obtain highly sensitive techniques.
Consequently, different physical phenomena can be explored using the thermal lens (TL)
principle to study: for example, properties of solid-state laser glasses [7]. In [8], the authors
investigated the molecular/particle dynamics and, in [9], by measuring photothermal
parameters of opaque solids. Moreover, Z-scan [10] based methods were performed at
different regimes of excitation to understand the origin of the third-order nonlinear optical
response [11] and the influence of the accumulated thermal effect, which can be an artifact
in femtosecond closed-aperture Z-scan measurements [12]. Additionally, they can be used
to evaluate optically-induced temperature changes in colloidal samples for photothermal
therapy [13]. Already, we have experimentally demonstrated the feasibility of extracting an
image of the phase shift induced by TL and applied this method to transversally map an
inhomogeneous thin film doped with different concentrations of silver nanoparticles [14].
Additionally, numerical simulation considered the whole system, including both optical
and thermal parameters to obtain more reliable temperature estimation in absorbing media
whether in time-resolved or steady-state Z-scan techniques [15].

Following the same approach as the work conducted by [15,16], we explore in this
paper the thermal behavior of some absorbing liquids with different solutes and colloidal
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suspensions. Measurements were performed on different concentrations and different
liquids to calibrate and optimize the setup. Then we analyze the behavior of two colloidal
suspensions of spherical gold nanoparticles of different diameters (5 and 50 nm). We show
that it is possible to find out the scattering part of the light during the TL measurement
from that purely absorbed by the liquid. The results obtained experimentally are fully
consistent with those predicted by the Mie theory. So, the first aim of this paper is to
demonstrate the feasibility of characterizing thermal effects through the quantum yield of
a radiation-induced process, which is equal to the number of times a given event occurs
divided by the number of photons absorbed by the system. These measurements are very
useful for the characterization of the molecular fluorophores or plasmonic nanoparticles
in solution.

2. Theory

Following reference [17], some classical assumptions are made: (i) the thin sample
approximation; (ii) the beam waist is considered small when compared to the transverse
dimensions of the cell so that the heat conduction through the ends can be neglected,
and thus the temperature variation can be taken as purely radial. These approximations
are well validated in practice when considering beam waists of 20–30 µm and cells of
about 1 × 10 cm2, with the transverse section having approximately 1 mm thickness.
An expression of the temperature change as a function of radius and time ∆T(r, t) can
be obtained by solving the non-steady-state heat equation when a Gaussian beam is
illuminating the medium. The following symbols will be used: α absorption coefficient in
m−1; ρ density in Kg/m3; I beam intensity in W/m2; L thickness of the medium (cell) in
m; P beam power in W; c specific heat in J/Kg/K; ω beam radius in m; ∆T temperature
variation in ◦K; k thermal conductivity in J/s/m/K; λ wavelength in m. The variation
in temperature in the medium, taking into account the aberrant nature of the thermal
lens [17,18], is given by:

∆T(r, t) =
2Pα

πcρω2 (1−∅)
∫ t

0

(
1

1 + 2t′/tc

)
exp

(
−2r2/ω2

1 + 2t′/tc

)
dt′, (1)

where tc = cρω2/4k is the characteristic buildup time constant and (1−∅) is a factor
accounting for the absorbed energy totally converted to heat [19]. Then, ∅ represents the
ratio between the number of photons emitted to the number of photons absorbed and
converted to heat. The emission accounts for fluorescence, luminescence and/or part of the
light energy which has been scattered by nanoparticles depending on their size.

In a separate paper, we performed the simulation of the temperature distribution in
the thermal lens according to Equation (1) in order to validate our numerical measurement
approach. The result of the temperature distribution at various times t/tc was presented in
Figure 1 in [15] and compared to the beam waist of the exciting Gaussian beam, using the
same parameters as those shown in Figure 2 of reference [17].

The change in the linear index due to this temperature variation is:

∆n(r, t) =
dn
dT

∆T(r, t), (2)

with dn/dT denoting the algebraic value of the hermo-optical coefficient, which is fre-
quently negative, and ∆n(x, t) = n(r, t)− n0 where n0 is the refractive index at the initial
temperature. The phase shift is related to ∆n as usual, using ∆ϕ = 2π∆nL/λ with λ
designing the wavelength of the beam inducing and probing the phase in the single beam
configuration that we are considering.
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Figure 1. Scheme showing the different position of the optical elements. The cell is scanned along the
beam direction around the focal plane (z = 0). The labels refer to: lens (L1, L2), beam splitter (BS),
chopper (Ch), computer (Cp) and photodiodes (PD1, PD2).

The TL schematic diagram of the method used is shown in Figure 1. This setup has
the advantage of combining a Z-scan profile when the sample moves along z and a TL
signal describing the time-response profile when the chopper rotates for each position
z. The signal due to the phase shift is obtained through the beam splitter BS, where a
photodiode PD1 acquires the central variation of the diffracted far-field beam intensity.
At the same time, the reflection on BS allows to measure through L2, on PD2, the open
aperture normalized transmittance characterizing the absorption versus the intensity of
the tested medium in the cell via a configuration as defined in the Z-scan technique [10].
Further, by using cw laser excitation, in which the power and the transverse mode profile
are very stable, problems with incident power fluctuations are minimized when compared
to that with pulsed lasers used in third-order nonlinear characterization. For each z position
of the cell, the top clock is given by a PD integrated in the chopper Ch and connected to
the oscilloscope to trigger the signal (the link is not shown in Figure 1). This photodiode
controls the data recording on PD1 and PD2. If we consider the stationary signal obtained
on PD1 (after a few tens of ms), and depending on the cell position, a variation of the far-
field diffracted intensity will occur depending on the sign of the phase shift induced in the
cell (and therefore on the z position). According to the Z-scan normalization, for a negative
phase shift, the characteristic curve of the signal profile will be given by a maximum for
a pre-focal position followed by a minimum for a post-focal position. Note that with the
TL normalization defined hereafter, the characteristic curve signature will be inverted.
Here, the refractive signal is defined as being the fractional intensity change when the cell
is located at z after t times exposure of the material: S(z, t) = [I(z, t)− I(z, ∞)]/I(z, ∞).
For a photodiode placed very far from the cell, considering a number of approximations,
analytical calculations at r = 0 for the in-axis far-field intensity variation provided [17]:

S(z, t) = −1 +
1− θtan−1

[
2V

3+V2+(9+V2)( tcz
t )

]
1− θtan−1

[
2V

3+V2

] , (3a)

where

θ =
PLα(1−∅)(dn/dT)

λk
, (3b)

V = z/Z0 with Z0 = πω2
0 f /λ and ω0 f being the focused beam waist at z = 0. It is

appropriate that θ remains sufficiently small because in most experiments invoking thermal
lenses using the established analytical relations, θ is of the order of 0.1 or less. Note that,
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our TL signal is to be taken in different z positions, each position presents a different beam
radius value and consequently:

tcz =
cρw(z)2

4k
, (4)

where ω(z)2 = ω2
0 f

[
1 + (z/Z0)

2
]
. So, tcz = tc0

[
1 + (z/Z0)

2
]

with tc0 = cρω2
0 f /4k is the

characteristic TL signal response time at z = 0.
Setting t = 0 in Equation (3a) allows to obtain the total fractional intensity change as a

function of the normalized position V:

S(V) = −1 +
1

1− θtan−1
(

2V
3+V2

) . (5)

The derivative of Equation (5) allows to optimize this signal, finding positions of
the sample around V = ±

√
3 where the signal S is extremal. As it was shown in [15], a

numerical study of the whole thermal lensing and optical processes to evaluate the accuracy
related to the measurement using the simplified analytical relation (3a) and therefore (5)
gave only an order of magnitude of the desired coefficients to be measured θ and tc0. These
relations, generally used to estimate the thermo-optical coefficients, have the advantage of
existing, but a preliminary calibration of the signal must be conducted in order to obtain
reliable and accurate measurements. Furthermore, it was found experimentally in [16] that
the signal is maximal at variable z-positions depending on the final acquisition time of
PD1. This logically implies that measurements should be performed around z ≈ ±

√
3Z0

positions at locations with the highest possible signal-to-noise ratio (Sig/N). Another study
based on the diffracted energy made with the Z-scan technique for third-order optical
nonlinearity measurements showed that the sensitivity and the Sig/N were both maximal
for a linear transmittance of the Gaussian beam through closed apertures equal to 0.7 [20,21].
If we consider this optimized value, relations (3) and (5) would, therefore, not be correct
because they were established at the center of the diffracted field. So, for a transmittance
of the closed aperture around 0, then D should be relatively high when compared to the
Rayleigh range of the focused beam waist.

3. Experimental Results

The experimental setup (Figure 1) is composed of a cw Nd:YAG laser emitting at
532 nm, delivering through a polarizing system a variable beam power from 0 to 18 mW.
Using a CCD camera and during a preliminary far-field diffraction experiment, the beam
waist of the laser output beam was measured equal to 0.45 mm, which is consistent with
the manufacturer’s data. The output beam is focused through lens L1 of focal length
f1 = 5.2 cm. L1 defines the z-axis, the focal position z = 0, ω0 f = 19.6 µm and then
Z0 = 2.26 mm. The rotation of the two-bladed chopper has been set at a frequency of 10 Hz
which gives 50 ms of opening time and 50 ms where the liquid can cool down between
two acquisitions. These exposure times provide a sufficient duration for our temporal
characterizations because typically, 0.2 ms < tcz < 5ms. The sample under investigations
is moved along the beam direction in the focus region. Then, the signal variation of the
output diffracted beam is detected on the photodiodes PD1 and PD2, which are connected
to a digital storage oscilloscope (DSO). Therefore, the setup allows us to simultaneously
record the response of the sample as a function of time and position on the z axis. Note
that PD2 was used to check that there is no nonlinear absorption or nonlinear scattering
in the solution that will be used for the calibration of the experiment. In this way, we are
sure that the theoretical model applied here is the right one and does not correspond to
a two-photon absorption which should lead to change in the mathematical description.
Moreover, this photodiode could be useful to control the signal at the input since there is
no nonlinear absorption, especially, to verify that the laser maintains a stable power during
the measurement over the z positions.
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To illustrate the way to perform the measurements, the time-resolved signal S at
different final integration times on the photodiode is shown in Figure 2a. The measurement
was made in distilled water containing an absorbent dye so that θ defined by Equation (3b)
is around 0.1. It can be seen that S varies significantly at the beginning of the acquisition
when t ≈ 0. Whereas, towards the end of the acquisitions when the stationary regime is
reached at t >> tc0, the response varies slowly. Indeed, for the same difference in interval
time 10 ms, (see Figure 2a), the signals in black squares and blue circles show a smaller
vertical shift than those between blue circles and red stars. Figure 2b shows the temporal
evolution of three z positions chosen on either side of the extremums (V ≈ ±1.7), shown by
the stationary black signal (t >> tc0). The blue points represent the data and the red lines
represent the fits according to Equation (3a). Note that it would be possible to determine the
two unknown factors θ and tcz from this fit, but a statistical study has shown a significant
fluctuation on the measurements obtained by nonlinear least-squares curve fitting. It is
then preferable to proceed step by step, and first determine the value of θ from the black
square signal shown in Figure 2a thanks to Equation (5). Next, this value will be injected
in Equation (3a) to determine the only unknown which remains, namely tcz. Moreover,
one might notice that in Figure 2b, the acquisitions and fits do not start at time t = 0. This
time is difficult to determine exactly, because when the blade of the chopper intrudes the
beam, we are in a transition zone where the signal is variable. To reduce this error, it is
necessary to reduce the size of the beam and to choose the initial time at the maximum of
the derivative between the low and high state of the signal which is roughly situated at the
middle of the transition. Thus, the interval that appears between t = 0 and the beginning
of the signal in Figure 2b relates to the half of this transition zone where Equation (3a) is
not valid; therefore, the fitting is carried out using this equation, and translated by a time
longer than half of the chopper response (around 0.6 ms in our case).
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Figure 2. (a) Time-resolved Z-scan measurements. Transmittance Z-scan profiles for different final
time values: 1.3 ms diamond (green); 3.3 ms stars (red); 13.3 ms circle (blue); and 23.3 ms square
(black). Solid lines represent the fittings according to Equation (3a). (b) Transient experimental data
and corresponding fitting by Equation (3b) for three values of z around the extremums of the signal S
in water with ∅ = 0 (the measured values θ = 0.11 and tc0 = 0.7 ms).

Calibration of a measurement system is necessary to take into account the configura-
tion of each experimental setup. Depending on the size of the photodiode, the distance of
the photodiode to the focal plane and the size of the beam waist, the experimental condi-
tions can be different. In our case, PD1 which is a 0.8 mm2 Si detector with 1 ns rise time was
placed at a distance D + f1 = 1.45 m from lens L1. The calculated far-field diffracted beam
waist at this distance was 12.11 mm. Due to the small area of PD1, only 5.5% of the central
energy is captured by the photodiode. Using about twenty acquisitions, the system was
calibrated with a dye added to distilled water (L = 1 mm) with well-known thermo-optical
parameters (dn/dT = −0.8× 10−4 K−1; k = 0.61 Wm−1K−1) [7]. A commercial solution of
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brilliant blue food dye FCF (denoted by E number E133) was used. It is a synthetic organic
compound employed primarily as a blue colorant, and is highly soluble in water. The
measurements are made using an Optical Power Meter (OPM) mounted on the experiment
(not shown in Figure 1). This is conducted directly under the same experimental conditions
for each acquisition. Otherwise, a spectrophotometer could be used but, based on the
same type of photodetector in the visible range (Si), the same results at the same room
temperature should be found. So, to facilitate the procedure and because the α dispersion
as a function of the wavelength is not needed here, the choice of the OPM is convenient
and more practical. So, for each acquisition the absorption was measured owing to the
OPM and the TL processing as explained previously. The obtained α values were not equal
especially because the equation used for the fitting according to Equation (5) is derived
with too many approximations, as is shown in reference [15]. Indeed, in the latter reference,
based on the Helmoltz equation, the diffracted intensity profiles at finite distance were cal-
culated numerically without any approximation considering the whole system, including
the optical and the thermal parameters. The comparison of the obtained signal S with the
one given by Equation (5) shows that even if they have a similar profile, their amplitude
can be very different. Taking into account the experimental parameters which are the same
as those considered in the simulation of [15], we obtained that the measurement procedure
of θ underestimated its value by 60%. Coming back to the OPM measurements, and taking
into account the standard deviation σ over the different observations, the results that are
shown in Figure 3 give an average value of the absorption: αOPM = 241± 14 m−1. Then,
the calibration was performed so as to obtain the α determined by TL calculations, equal to
that of the α measured by the OPM (see Figure 3), considering that the dye is completely
dissolved into water and ∅ = 0. It should be added that the calibration factor found perfect
experimental matches to the one predicted by the numerical calculation in [15]; thus, it
was necessary to multiply Equation (5) by a factor equal to 0.6 before processing the fit.
In Figure 3, we show the dispersion of the measured values αTL obtained with TL fitting
versus αOPM. The central black star data in this figure shows the mean value calculated
over the 20 acquisitions. Note that each αTL measurement is performed on a total of 48
data originating from the Z-profile given by the curve similar to that of the Z-scan as the
one shown in black in Figure 2a.
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Figure 3. Calibration of the optical setup. The measured absorption through thermal lens process
is made equal to the α measured by the OPM through a calibration factor. Empty circles (red):
experimental data; star (black): mean value.

In order to check the linearity of θ for the measuring system, two experiments were
performed: (i) in a 1 mm thick cell containing absorbing solution of water (α = 241 m−1)
by varying P the incident power and by fixing all the other parameters (Figure 4a); (ii) by
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varying the concentration, and thus the absorption, in two different liquids (Figure 4b):
water (blue-stars and red-circles) and methanol (black-squares).
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Figure 4. Checking the linearity of the measuring system versus (a) the incident power for a fixed
absorption, (b) the absorption of the solution in different liquids: water (blue stars and red circles)
and methanol (black squares).

In Figure 4a we varied P the power and calculated the mean value of θ performing
thirty measurements for each black-circular data. The results of the measurement are
plotted as a function of the incident power, taking into account the Fresnel reflection on
the cell. Thus, 150 measurements are shown under the same experimental conditions. It
is observed that the linearity is effective up to about θ = 120 mrad, and beyond that, the
deviation becomes too crucial. That is why the data obtained for P = 2.5 mW is removed
from the linear fitting which is represented by the red solid line given by: θ = 56.8× P.
Theoretically, taking into account all the parameters known and considered to be correct,
the latter should be equal to:

θ

Pe
=

Lαdn/dT
λk

=
10−3 × 240× 8× 10−5

532× 10−9 × 0.61
= 59.16 W−1.

One can see the excellent precision of the measurement, considering the fitting that
crosses 0 with a slope of 56.8 W−1 to within 3.4% of the value considered as correct.
Obviously, this increased precision is due to the high number of points, since here the least
squares line is drawn, considering 4× 30 measurements. Let us now consider Figure 4b,
where the x-axis represents the absorption measured with the OPM, while the y-axis gives
the θ value measured by the fitting (via Equation (5)) considering the used incident power P,
λ and L. Soluble dyes were added to make the absorbances large enough to produce easily
measurable signals. For very low absorption (α ≤ 50 m−1), we divided the concentration
by adding known volumes of the solvent to the initially measured one. According to
Equation (38) of reference [17]:

λθ

PL
=

dn/dT
k

α + ε (6)

where ε represents the intersection of the fitting with the y-axis, this parameter would in
principle allow to trace the absorption of the pure solvent (α = 0). We are not going to
exploit this propriety in this paper because our distance translation stage is too short. This
will be conducted in a future study using a longer Rayleigh range that would allow for
thicker cells to be tested and, thus, higher signals from the pure solvent than from the
cell walls. The slope of the linear regression lines given by Equation (6) is related to the
ratio of the solvent characteristics (dn/dT)/k, regardless of what soluble dye was added
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to produce the absorbances. An example is given with two different dyes represented by
the same slope of the fitting lines corresponding to the blue stars and red circles for water
in Figure 4: (dn/dT)/k ≈ 1.3× 10−4 m.W−1. In addition, we can see the difference in
slopes when it comes to methanol: (dn/dT)/k ≈ 2.1× 10−3 m.W−1, which is one order of
magnitude higher.

Another characteristic that can be deduced from this studied setup is the value of
k, the thermal conductivity. First, θ is determined by Equation (5) and for each z, the
characteristic times tcz is obtained by fitting the transient experimental data (see Figure 2b)
using Equation (3a). In Figure 5, tcz is plotted as a function of z where it can be seen that
the variation of this time is parabolic as given theoretically by Equation (4). The fitting
allows to determine k when c, ρ and ω(z) are known. In the example of Figure 5, the fit was
performed with water solution having α = 160 m−1. The measured characteristic time of
the solution (at z = 0) tc0 = 0.65 ms, from which we can deduce the thermal conductivity
coefficient, k = 0.62 Wm−1K−1. This value is quite consistent with the assumed value for
water k = 0.61 Wm−1K−1.
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Figure 5. Characteristic time of the solution versus the position of the sample. The data are in blue
stars and the solid line is the fitting.

Subsequently, the feasibility of the measurement was tested to evaluate the scattering
induced by gold nanoparticles of a different diameter having a core size contained in
intervals of 3–7 nm [22] (maximum of absorption 517 nm) and 47–53 nm [23] (maximum
of absorption 537 nm). The suspensions were stabilized in citrate buffer, and the mean
hydrodynamic diameters reported by the manufacturer were Dh = 11 nm and Dh = 62 nm,
respectively. The input power was set high enough so as to obtain a signal characterized by
θ ≈ 0.1, and sufficiently low so as not to destroy the electrostatic equilibrium between the
nanoparticles and the citrate buffer in order to not induce clusters of gold nanoparticles
due to high intensity illumination [24]. The gold nanoparticles of optical density OD = 1,
measured by the manufacturer with a standard cuvette of 1 cm thickness, were placed in
a cell with L = 1 mm (OD = 0.1) giving αOD = − log

(
10−0.1)/10−3 = 230.26 m−1. Both

suspensions were characterized at 532 nm owing to 20 acquisitions. The representation of
the absorption values measured by the TL system is given in Figure 6: blue squares for 5 nm
core size and red circles for 50 nm. The central values (stars) show the average measured
by the TL method obtaining for the 5 nm nanoparticles αTL = 231.7± 8 m−1 while for the
50 nm nanoparticles αTL = 183± 10 m−1. It can be seen that the two measurements given by
TL are sufficiently separated and do not overlap, even within the margin of error given by σ.
These values allow to calculate ∅, representing the ratio between the number of scattered
photons to that of absorbed ones: ∅5nm = −1± 9% and ∅50nm = 21± 9%. Evidently, the
obtained values show that the larger particles scatter the light more significantly.
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The feasibility of this method to measure absorption and scattering efficiencies is
shown here. The understanding of nanoparticles scattering is very important, especially for
the medical area where the majority of imaging techniques and photothermal therapeutic
applications are subject to this phenomenon [25].
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4. Conclusions

The objective of this study was to determine the main characteristics of a measurement
method using the combined techniques of thermal lens and Z-scan. The experimental
calibration has been detailed, corresponding to a correction of the used relationship already
numerically provided elsewhere [15]. Then, we focused on the determination of the
measurement error from statistical calculations. The linearity of the response was checked,
varying either in the incident power or the concentration. The relationship between the
slope of this response and the thermo-optical characteristics of the absorbing liquid was
determined precisely. It was also demonstrated the possibility of extracting the thermal
conductivity from the characteristic time measurements. The results were applied to the
determination of the Mie scattering on gold nanoparticles of 5 and 50 nm diameters.
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and agreed to the published version of the manuscript.
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