
Citation: Kazakis, G.; Lagaros, N.D.

A Simple Matlab Code for Material

Design Optimization Using Reduced

Order Models. Materials 2022, 15,

4972. https://doi.org/10.3390/

ma15144972

Academic Editor: Luciano Lamberti

Received: 28 May 2022

Accepted: 14 July 2022

Published: 17 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

A Simple Matlab Code for Material Design Optimization Using
Reduced Order Models
George Kazakis † and Nikos D. Lagaros *,†

Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical
University of Athens, 9, Heroon Polytechniou Str., Zografou Campus, GR-15780 Athens, Greece;
kzkgeorge@gmail.com
* Correspondence: nlagaros@central.ntua.gr; Tel.: +30-210-772-2625
† These authors contributed equally to this work.

Abstract: The main part of the computational cost required for solving the problem of optimal
material design with extreme properties using a topology optimization formulation is devoted
to solving the equilibrium system of equations derived through the implementation of the finite
element method (FEM). To reduce this computational cost, among other methodologies, various
model order reduction (MOR) approaches can be utilized. In this work, a simple Matlab code
for solving the topology optimization for the design of materials combined with three different
model order reduction approaches is presented. The three MOR approaches presented in the code
implementation are the proper orthogonal decomposition (POD), the on-the-fly reduced order model
construction and the approximate reanalysis (AR) following the combined approximations approach.
The complete code, containing all participating functions (including the changes made to the original
ones), is provided.

Keywords: topology optimization; microstructure; homogenization; Matlab; reduced order models;
reduced basis; on-the-fly construction; POD; approximate reanalysis

1. Introduction

The basic theory for the implementation of topology optimization in material design
was presented first in 1994 by Sigmund [1], followed by Sigmund and Torquato in 1997 [2]
and by Gigiansky and Sigmund in 2000 [3]. Since then, many other studies have been
published dealing with a variety of different material optimization problem formulations.
Neves et al. [4] and Fujii et al. [5] used the density-based approach to design periodic
microstructures for optimal elastic properties. Guest and Prévost [6] dealt with the topology
optimization of the fluid flows in the design of porous periodic materials. Challis et al. [7],
Amstutz et al. [8] and Gao et al. [9] proposed level set-based approaches for the design
of microstructures, and Huang et al. in [10,11] presented a Bi-directional Evolutionary
Structural Optimization (BESO)-method-based approach for the optimal design of periodic
microstructures. A detailed review of the different methodologies in the optimal design
of materials together with a description of the variety of the approaches presented so far
to deal with the topology optimization of the macro design concurrently with the micro
design can be seen in [12].

In the past, due to the increased computational effort required for solving the topology
optimization problem, various methodologies along different directions (approximate re-
analysis, model order reductions, machine learning, etc.) have been presented. Indicatively,
Kirsch and Paralambros [13] first proposed a unified approach to structural reanalysis
using the combined approximations in topology optimization. Wang et al. [14] presented
a methodology of recycling search spaces in iterative solvers during the optimization
procedure. Amir et al. [15] proposed an approximate reanalysis approach in topology

Materials 2022, 15, 4972. https://doi.org/10.3390/ma15144972 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15144972
https://doi.org/10.3390/ma15144972
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-2864-8912
https://orcid.org/0000-0001-6114-9632
https://doi.org/10.3390/ma15144972
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15144972?type=check_update&version=2

Materials 2022, 15, 4972 2 of 18

optimization based on the combined approximations approach and the use of approx-
imations for dealing with the solution of the analysis problem, generated by a Krylov
subspace iterative solver [16]. In addition, in [17], Amir et al. addressed the computational
cost of the robust topology optimization formulation. Gogu [18] presented an on-the-fly
approach for the construction of the reduced order model. Alaimo in [19] proposed an
reduced order model approach where a reduced basis is created based on the functional
principal component analysis (FPCA). Ferro et al. [20] proposed a proper orthogonal de-
composition (POD) approach where the stages of the SIMP method were used as reduced
basis vectors during the optimization procedure. Senne et al. [21] proposed a combination
of the approximate reanalysis technique with the sequential piecewise linear program-
ming method, and Xiao et al. [22] proposed a reduced order modeling approach which
constructed the reduced basis using the proper orthogonal decomposition (POD) approach.
Meanwhile, in the same direction, to reduce the computational effort, various machine
learning methodologies have been presented, and the precursor of these was a study by
the authors [23].

So far, many Matlab code implementations of the topology optimization formula-
tion have been presented in various publications. For the density-based approach, the
first code was the so-called top99 [24] implementation that was followed by the top88
one [25]. Both Matlab codes were dealing with the 2D topology optimization problem
formulation. Liu et al. [26] and Ferrari [27] presented an extension of the density-based
approach into the 3D space, with Ferrari [27] suggesting code modifications for achieving
better performance. Talischi et al. [28] and Chi et al. [29] expanded the 2D and 3D
density-based approaches by using the capability to deal with unstructured meshes as
well. Amir et al. in [30] presented a code implementation for improving the computa-
tional cost of the topology optimization procedure using the multi-grid, preconditioned
conjugated gradients solver (MGCG). Huang et al. [31] presented an Evolutionary Struc-
tural Optimization (ESO) topology optimization code implementation based on the top99
for the 2D space. Wang et al. [32] and Challis [33] published code implementations that
rely on the level set approach for the topology optimization for 2D problem formulations.
Otomori et al. [34] and Wei et al. [35] also presented level set-based code implementa-
tions for the topology optimization using the reaction diffusion equation and radial basis
functions, respectively. In 2019, an integration of a topology-optimization procedure with
SAP2000, well-known commercial software for analysis and design of structural systems,
was presented by the authors [36]. In addition, Gao et al. in [37] presented IgaTop, a
topology optimization formulation using isogeometric analysis.

Subsequently, several code implementations were also presented that were deal-
ing with the homogenization-based topology optimization approaches. Specifically, nu-
merical homogenization implemented for 2D and 3D material design was presented in
studies [38,39]. In addition, an energy-based homogenization approach combined with the
optimal design of materials was presented in [40]. In this study, a topology-optimization-
based Matlab code implementation is presented that deals with the problem of material
design at the microstructure level, assisted by model order reduction (MOR) approaches.
In particular, the topology optimization procedure is combined with the proper orthogonal
decomposition (POD), the on-the-fly reduced order model construction and the approx-
imate reanalysis following the combined approximations approach. Although the code
provided covers the case of microscale material design for 2D design domains, it can easily
be extended to 3D design domains by modifying the homogenization part to produce
the 3D elasticity tensor of the unit cell and extend the problem formulation’s description
to handle both macro and micro scales. The implementation of the MOR approaches is
independent of the dimensionality of the formulation due to being applied in the solution
part of the finite element analysis performed at the macro scale.

The layout of the work is composed of four sections accompanied by
Sections 1 and 6. In particular, a short description of the optimal design problem of
materials is presented in Section 2; subsequently, in Section 3 the theoretical part of the

Materials 2022, 15, 4972 3 of 18

integration of the model order reduction methodologies into the material optimization
problem is provided. The detailed description of the most critical parts of the Matlab code’s
implementation is provided in Section 4, followed by test examples in Section 4 where the
ease of use of the code is presented.

2. Optimal Design of Materials

The formulations of the topology optimization (TO) problem used for the design of
materials are expressed as the optimal distribution of material volume fraction into the
unit cell design domain so that the structural response is optimized. Thus, compared
to the original TO problem, the design variables are different, from density values X of
the finite elements used to discretize the macro design domain to densities x of the finite
elements discretizing the micro-unit cell design domain. In this scope, it can be seen that
the optimization procedure performed involves two different scales; the macro scale and
the micro one (Figure 1). The design variables as well as the volume constraint are defined
at the micro scale, where as the objective function is set on the macro scale; however, it is
still expressed as a function of x. The transition between the two scales is achieved through
the elasticity tensor by means of the homogenization method [38].

Figure 1. Schematic representation of the periodic unit cell (micro scale) inside the macro structure
(macro scale).

The mathematical formulation of the typical topology optimization problem is thus
changed according to the following expression of Equation (1).

C(x) = FT ·U(x)

s.t.

F = K ·U(x)

V(x)/V0 = f

0 ≤xe ≤ 1

(1)

where C(x) is the compliance, F is the load vector, U(x) is the resulting displacements
from the structural analysis, F = K ·U is the linear system of equations derived from the
finite element method, V(x) is the material volume resulting from the densities x, V0 is
the full domain material volume and f is the volume fraction applied as a constraint. The
derivative of the objective function is obtained using the adjoint method [41] as described
in the following expression of Equation (2):

∂C
∂xe

= −UT · ∂K
∂xe
·U (2)

while ∂K/∂xe is calculated using the following expression of Equation (3):

∂K
∂xe

=
∂CH

∂xe
· K0 (3)

Materials 2022, 15, 4972 4 of 18

where CH is the homogenized elasticity tensor. According to the homogenization theory,
the elasticity tensor is obtained by applying unit strains globally to the unit cell domain as
well as locally to the finite elements used to discretize the unit cell domain and then using
the following expression of Equation (4).

CH
i,j =

1
V

N

∑
e=1

∫
xe
(u0(i)

e − u(i)
e) · k0

e · (u
0(j)
e − u(J)

e)dVe (4)

where superscript 0 denotes the globally applied strains, thus u0 are the displacement fields
resulting from the globally applied unit strains, u are the displacement fields resulting
from the locally applied unit strains and CH is the elasticity tensor. If Equation (4) is then
differentiated with respect to ye, the derivative of the elasticity tensor can be obtained using
the following expression of Equation (5):

∂CH

∂xe
=

∂E
∂xe
· 1

V

∫
xe
(u0(i)

e − u(i)
e) · k0

e · (u
0(j)
e − u(J)

e)dVe (5)

Furthermore, the derivative of the Young modulus with respect to each unit cell
element density is obtained using the modified SIMP approach [42]. Thus, the Young
modulus as a function of density value x is defined using the following expression of
Equation (6):

E(x) = Emin + xp · (E0 − Emin) (6)

and the derivative from the expression of Equation (7):

∂E
∂xe

= p · xp−1 · (E0 − Emin) (7)

3. Model Order Reduction in Material Optimization

The main focus of the model order reduction (MOR) approaches is to reduce the
computational cost required for solving the linear system of equations formulated from
the finite element method (FEM). This is achieved by creating a reduced basis model and
finding an approximate solution instead of solving the full-order system of equations. The
creation of the reduced basis system of equations is accomplished by substituting first
the displacement vector U in the finite element equilibrium system of equations with an
approximation vector Φ · y. Matrix Φ = {Φi, . . . , Φm} consists of the reduced basis vectors,
and its first dimension corresponds to the dimension of vector U. Its second dimension
refers to a small number (e.g., 5 to 10) chosen as the number of the reduced basis vectors.
The left and right hand sides of the resulting equation is then multiplied by ΦT , as shown
in the following expressions of Equation (8).

F = K ·U

F ≈ K ·Φ · y

ΦT · F ≈ ΦT · K ·Φ · y

Fe f f ≈ Ke f f · y

(8)

where F is the load vector, U is the displacement vector, K is the stiffness matrix, Fe f f is
the reduced approximation of the load vector, Ke f f is the reduced approximation of the
stiffness matrix and y is the reduced basis displacement vector. In general, to assess the
accuracy of the projected solution, the residual load can be obtained and divided by the
norm of the original load vector, as shown in the following Equation (9).

e2 =
‖K ·Φ · a− F‖2

‖F‖2 (9)

Materials 2022, 15, 4972 5 of 18

Thus, the most important part of the procedure is the creation of the reduced basis
vectors that represent the main variation in most of the reduced model approaches. In the
following subsections, the methodology as well as the creation of the reduced basis vectors
of three MOR approaches will be presented. The three approaches implemented are the
proper orthogonal decomposition (POD), the on-the-fly reduced order model construction
and the approximate reanalysis following the combined approximations approach. In most
MOR approaches, the approximation of the displacement field is taken into account in the
calculation of the sensitivities through the expression of Equation (10).

∂C
∂xe

= −yT ·ΦT · ∂K
∂xe
·Φ · y−

Nb

∑
i=1

λT
i ·

∂Ki
∂xe
·Ui (10)

where the first term of the expression corresponds to the sensitivity calculated from the
approximate solution and the second part denotes the adjustment term which corrects
the sensitivity calculation, taking into account that the solution is a approximation. The
term λi is the solution vector of the following expression of Equation (11) for each reduced
basis vector.

Ki · λi = 2 · yi · (F− K ·Φ · y) (11)

Ui used in Equation (10) and Ki of Equation (11) denote the displacement vector
and stiffness matrix of each reduced basis vector, respectively. Aiming to simplify the
code implementation of the adopted MOR approaches into the optimal material design
procedure that is described below, the sensitivity adjustment term in not taken into account.

3.1. Proper Orthogonal Decomposition

According to the proper orthogonal decomposition (POD) approach, the construction
of the reduced basis vectors is achieved by means of the singular value decomposition (SVD)
factorization methodology. In particular, a small number (e.g., five to ten) of optimization
iterations is performed first that is equal to the number of the reduced basis vectors, in
which the full-scale system equations are solved and the resulting displacement vectors
are stored in the matrix A. Thus, matrix A is composed of different snapshots of the
displacement field in the early phases of the optimization procedure. Before applying the
SVD factorization methodology to the matrix A, the mean of the displacement snapshot
of the final reduced basis vector is subtracted from A, as described in [22]. Then, SVD
methodology is applied to matrix A and three different matrices are generated, as shown
in the following Equation (12):

A = U · Σ ·V ′ (12)

Matrix U in general contains information about the spacial correlation of the snapshots
of matrix A. Matrix Σ is a diagonal matrix containing the weight coefficients denoting the
importance of each column of matrix U, and finally V contains the corresponding time
dynamics of each of the columns of matrix U. The columns of matrix U are also called the
POD modes and are used as the reduced basis vectors Φi consisting of matrix Φ. Thus, in
the POD approach, the reduced basis matrix Φ coincides with the first matrix (i.e., U) of
the SVD of matrix A.

Φ = U (13)

Subsequently, given the creation of the reduced basis matrix Φ in each optimization
iteration, the displacement vector is obtained using the constructed reduced model and
then projected to the full scale. The accuracy of each new solution in validated using
Equation (9), and if the deviation is too large, a full-scale finite element analysis (FEA)
is performed and the matrix A is updated with the new snapshot of displacements (mth

Materials 2022, 15, 4972 6 of 18

column of matrix A), removing the earliest generated one (i.e., the first column of matrix
A). A new SVD is performed on the updated variant of A and a new reduced basis matrix
Φ is used for the next iterations.

3.2. On-the-Fly Reduced Order Model Construction

Similarly to the POD approach, according to the on-the-fly approach a number of
optimization iterations are performed first in order to generate displacements snapshots
of the early optimization stages. Then, the reduced basis vectors are created based on the
Gram–Schmidt orthogonalization methodology which is applied onto the displacement
snapshots of the early optimization stages, as follows: for the first reduced basis vector,
only the first displacement snapshot is utilized, in which a normalization is performed
following the expression of Equation (14):

Φ1 =
U1

‖U1‖
(14)

For the next reduced basis vectors, the following Gram–Schmidt orthogonalization
procedure is applied, taking into account all previous reduced basis vectors, as shown in
the following expression of Equation (15).

Φ̂i+1 = Ui+1 −
i

∑
j=1
〈Ui+1, Φj〉Φj (15)

Subsequently, the new Φ̂i+1 is normalized (as denoted in Equation (16) and the result-
ing vector is added to the reduced basis matrix.

Φi+1 =
Φ̂i+1

‖Φ̂i+1‖
(16)

Following the same steps as described for the POD approach, when the reduced
basis matrix Φ is constructed, the subsequent optimization iterations rely on approximate
displacement fields obtained using the reduced basis matrix and the accuracy of every new
reduced basis based FEA in assessed using the expression of Equation (9). If the accuracy
is not acceptable, a new reduced basis vector is created by means of a full-scale FEA and
using the previously described procedure. Then, matrix Φ is updated by removing the
earliest generated reduced basis vector (i.e., first column of matrix Φ) and adding the new
one as the mth column of matrix Φ.

3.3. Approximate Reanalysis

In contrast to the POD and on-the-fly approaches, in the approximate reanalysis,
one the reduced basis vectors is not created based on displacement snapshots obtained
from the initial optimization iterations. Instead, new reduced basis vectors are created
in each optimization iteration. These reduced basis vectors are based only on a single
snapshot of the displacement field obtained by solving the full-scale system of equations;
the displacement field snapshot is updated during the optimization procedure. The fist
reduced basis vector is equal to the displacement snapshot used as the basis of the reduced
order model, and thus is defined using the following expression of Equation (17):

Φ1 = U1 = K−1
0 · F (17)

Using Φ1 and K0 as the basis of each reduced basis matrix Φ, at each iteration, a new
set of reduced basis vectors is constructed. Each vector is obtained using the following
expression of Equation (18):

K0 ·Ui = F− ∆K ·Ui−1 i = 2 . . . imax (18)

Materials 2022, 15, 4972 7 of 18

where Φi = Ui, ∆K is the difference between the original stiffness matrix K0 and the one
corresponding to the current iteration. The size of the reduced basis is not the same for
every iteration; after the creation of each reduced basis vector the accuracy of the solution
is validated using Equation (9), and if it is below a certain threshold, the accuracy of the
solution is accepted. A maximum size of reduced basis vectors is also provided. The update
of the first reduce basis vector is usually performed after either a fixed number of iterations
or after the change in the design variables or the compliance is significant. For a more detail
review of the approximate reanalysis approach, the reader is referred to [15].

4. The Matlab Code Implementation

Part of the implementation of the methodologies described previously into a Matlab
code is based on two existing codes. For the homogenization part, the basis was the Matlab
code presented by Andreassen in [38], whereas for the topology optimization part, the basis
was the Matlab code presented also by Andreassen in [25]. For efficiency, in the following
sections only the parts of the code modified and the logic behind these modifications will be
presented, starting from the part of the homogenization method and then to the topology
optimization part. The code implementation presented here is composed of nine Matlab
files. These are: homogenize function (i.e., homogenize.m Matlab file) that implements the
homogenization procedure, elementMatVec function (i.e., elementMatVec.m Matlab file) that
is used to compute the element load vectors and stiffness matrix, Q4elementStiffnessMatrix
function (i.e., Q4elementStiffnessMatrix.m Matlab file) that is used for performing a similar
role to the elementMatVec function, interpolate function (i.e., interpolate.m Matlab file) that
performs the SIMP interpolation scheme, UCOpt function (i.e., UCOpt.m Matlab file) that
performs the material topology optimization procedure, and three additional Matlab files
containing the procedures of the corresponding MOR approaches, i.e., pod.m Matlab file
containing the pod function, onthefly.m Matlab file containing the onthefly function and
ar.m Matlab file containing the ar function.

4.1. Homogenization Code Implementation (Matlab File “homogenize.m”)

In this section, the modifications made to the homogenization Matlab files will be
presented. For a more in-depth description of the functionalities of the original Matlab
homogenization code, the reader is referred to [38]. There were two main modifications
of the current implementation compared to the original function, denoted as homogenize,
that is used for implementing the homogenization method, originally presented by An-
dreassen [38]. The first modification refers to the transition from the lame parameters to
the Poisson ratio and Young modulus parameters, and the second one to the addition of
the derivative of the homogenized tensor dCH/dye with respect to the densities at the unit
cell level.

Input parameters: The input arguments of the new implementation of the homogenize
function are the following:

1 func t ion [CH,DCH] = homogenize (lx , ly , E , nu , dE , phi)

where lame parameters as well as the mapping parameters are replaced by matrix E
containing the values of the Young modulus for every finite element used to discretize the
unit cell domain, matrix dE contains the derivative of the Young modulus based on the
modified SIMP approach, following the expression of Equation (7) and the Poisson ratio nu
that is the same for all finite elements. In addition, an extra output argument was added to
the method called DCH which is the derivative of the elasticity tensor from the expression
of Equation (5), calculated using the parameter matrix dE.

Initialization: Due to the elimination of the mapping variable, the number of elements
along the directions of the abscissa and ordinate of the unit cell are taken from the size of
matrix E, and thus Line 4 (of the original code in [38] function) was slightly modified to
take the number of elements from matrix E, as follows:

4 [nely , nelx] = s i z e (E) ;

Materials 2022, 15, 4972 8 of 18

By using the Young modulus and Poisson ratio, the need for decomposing into two
parts the loading vectors and stiffness matrix as described in [38] is not required. Thus,
function elementMatVec was modified to return three loading vectors corresponding to
the three different unit strains, as shown in the following expression of Equation (19) and
the element stiffness matrix computed using the Poisson ratio parameters without the
Young modulus.

f i
e =

∫
Ve

BT
e · Ce · eidVe (19)

Thus, Line 9 (of the original code in [38]) was modified to have the following form:

9 [ke , f e] = elementMatVec (dx/2 , dy/2 , phi , nu) ;

Assembly of the stiffness matrix and loading vectors: elementMatVec function (see
Matlab file “elementMatVec.m”) was modified to compute the element loading vectors and
stiffness matrix using the Poisson ratio by changing the first Line of the function to compute
the elasticity tensor from Poisson ratio and Young modulus of one instead of the Lame
parameters as presented below:

2 A = [1 nu 0 ; nu 1 0 ; 0 0 (1 −nu) / 2] ;
3 C = 1/(1 −nu^2) *A;

Thus, in the last lines of the function where the loading vectors and stiffness matrix
are computed, the lines are

34 % Element matr ices
35 ke = ke + weight * (B ’ * C * B) ;
36 % Element Loads
37 f e = f e + weight * (B ’ * C * diag ([1 1 1])) ;

In the assembly of the global stiffness matrix part of the homogenize function, Lines
34 and 35 (of the original code in [38]) are removed due to Young modulus already being
a matrix, and Line 37 (of the original code in [38]) is modified to multiply the element
stiffness matrix with a vector of the Young modulus, as shown below:

37 sK = ke (:) *E (:) . ’ ;

Moving now to the creation of the global loading vector, Line 41 (of the original code
in [38]) is replaced by a simple multiplication of the element loading vector with the element
Young modulus.

41 sF = f e (:) *E (:) . ’ ;

Due to the element loading vectors as well as the element stiffness matrix no longer
being separated into two parts, Lines 53 and 54 (of the original code in [38]) are removed
from the code. In addition, an extra line is added bellow the initialization of the elasticity
tensor, initializing the derivative of the elasticity tensor. During the iterative procedure
performed from Lines 64 to 75 (of the original code in [38]), the parameters sumLambda
and sumMu are replaced with the parameter sumYoung which is obtained in the same
way using ke instead of keLambda and keMu. An extra procedure is added to compute
the derivative of the elasticity tensor in which the variable sumYoung is multiplied with
the derivative of the Young modulus and then added to the cell variable DCH. DCH is a
cell variable of a size of the number of elements, and contains the 3× 3 derivative of the
elasticity tensor of each element. The new iterative procedure is presented below:

64 f o r i =1:3
65 f o r j = 1 : 3
66 sumYoung = ((chi0 (: , : , i) − chi (edofMat +(i −1) * ndof)) * ke) . * . . .
67 (chi0 (: , : , j) − ch i (edofMat +(j −1) * ndof)) ;
68 sumYoung = reshape (sum(sumYoung , 2) , nely , nelx) ;

Materials 2022, 15, 4972 9 of 18

69 % Homogenized e l a s t i c i t y tensor
70 CH(i , j) = 1/cellVolume *sum(sum(E . * sumYoung)) ;
71 finalSum = dE . * sumYoung ;
72 f o r k =1: nely
73 f o r l =1: nelx
74 DCH{ k , l } (i , j) = 1/cellVolume * finalSum (k , l) ;
75 end
76 end
77 end
78 end

4.2. Topology Optimization Code Implementation

In this section, all modification applied to the top88 code published in [25] will be
presented. The aim of all modifications was to transfer the code implementation from
the conventional topology optimization formulation into the optimal design of materials.
The new function used to perform the optimization procedure is called UCOpt. In this
function, in addition to the input parameters already present in the original top88 code,
four extra parameters were added. Due to the two different scales (micro and macro), two
parameters (i.e., lx, ly) representing the dimensions along the directions of the abscissa and
ordinate of the macro domain, respectively, were added for the case of macro scale, and
two parameters (i.e., nlx, nly) representing the number of elements along the directions of
the abscissa and ordinate of the unit cell were added for the micro scale. Thus, the resulting
function is presented below:

2 func t ion UCOpt(lx , ly , nelx , nely , nlx , nly , vo l f r ac , penal , rmin , f t)

As for the creation of the stiffness matrix variable KE, a new function is utilized. This
function takes into consideration the length of the finite element along the directions of the
abscissa and ordinate in the form of dx and dy, as well as the elasticity tensor instead of the
Young modulus and the Poisson ratio used in the original code. This change is applied to
enable the creation of the stiffness matrix from the homogenized elasticity tensor created
by the homogenization function. In addition, the creation of the element stiffness matrix is
performed inside the optimization procedure before the finite element analysis. Moving
to the initialization of the design variables, in Lines 40 to 47 (of the UCOpt function), the
initialization of the design variable is performed, in which instead of mapping the volume
fraction to all densities and circle of zero densities is created in the centre of the unit cell,
and all other densities are set to one, as shown in Figure 2.

Figure 2. Initial unit cell.

Materials 2022, 15, 4972 10 of 18

This is achieved using the following iterative procedure:

40 x = ones (nly , nlx) ;
41 f o r i = 1 : nlx
42 f o r j = 1 : nly
43 i f s q r t ((i −nlx /2 −0.5) ^2+(j −nly /2 −0.5) ^2) < min (nlx , nly) /3
44 x (j , i) = 0 ;
45 end
46 end
47 end

Moving to the optimization loop, two additional steps are added before performing
the finite element analysis part. In the first step, a function called interpolate is utilized
to compute the Young modulus and its derivative with respect to the design variables
using the expressions of Equation (6) for the element Young modulus and Equation (7)
for the corresponding derivative. During the second step, the resulting Young modulus
and its derivative are provided to the homogenize function, which in turn produces the
elasticity tensor and its derivative for each element consisting the unit cell. Moving to the
finite element analysis part, the function Q4elementstiffnessMatrix is utilized to obtain the
element stiffness matrix from the homogenized elasticity tensor, which in turn is used to
perform the finite element analysis and compute the macro-domain displacements. For the
computation of the sensitivities, an iterative procedure is utilized, looping for each element
of the micro domain to create a different stiffness matrix for each unit cell element based
on each element’s derivative of the homogenized elasticity tensor. Then, the variable ce is
computed in the same manner as in the original code, resulting in the computation of the
derivative dc.

67 f o r i = 1 : nly
68 f o r j = 1 : nlx
69 dKE = Q4elementSt i f fnessMatr ix (l x /nelx /2 , ly/nely /2 ,90 ,DCH{ i ,

j }) ;
70 ce = reshape (sum ((U(edofMat) *dKE) . *U(edofMat) , 2) , nely , nelx) ;
71 c = c + sum(sum(ce)) ;
72 dc (i , j) = − sum(sum(ce)) ;
73 end
74 end

4.3. Model Order Reduction: Code Implementation

In this section, the implementation of the three model order reduction approaches will
be presented. Aiming to create an easy integration of the three approaches into the UCOpt
function presented in the previous section, the usage of the class structure is opted for
the three MOR approaches. Thus, each approach is created as a single Matlab class object
containing three common functions denoted as solve, fea and counts, respectively. The solve
function is implemented differently for each class, while it is used by the UCOpt function in
order to compute every set of displacements during the optimization procedure. The two
other functions are the same for all three classes and they are used to perform the full-scale
finite element analyses (function fea) and to return the number of full- and reduced-scale
iterations performed (function counts). Since the class properties are modified during
the optimization procedure, all MOR classes inherit from the handle a Matlab class. In
order to use the MOR classes in the UCOpt function, an extra parameter is used called p,
representing the MOR class, while Line 62 (of the pod class) is modified to call the solve
function of the p class, as presented below:

62 % U(f r e e d o f s) = K(f reedofs , f r e e d o f s) \F (f r e e d o f s) ;
63 U(f r e e d o f s) = p . so lve (K(f reedofs , f r e e d o f s) , F (f r e e d o f s)) ;

Materials 2022, 15, 4972 11 of 18

4.3.1. POD: Code Implementation (Matlab File “pod.m”)

The pod class was developed for the code implementation of POD approach, which
except for the constructor function, requires seven properties and three functions. Out of
these properties, three refer to iteration trackers, i.e., parameters labeled as loop, f ll and rdc
tracking the total number of TO iterations performed, the total number of full finite element
analyses and the total number of reduced basis finite element analyses, respectively. The
forth parameter refers to the tolerance tol that represents the residual force tolerance used
as a criterion for updating the reduced basis vectors after the creation of the reduced basis.
The remaining three parameters correspond to the number of the reduced basis vectors Nb,
the reduced basis matrix f i and a matrix containing the displacement snapshots A that is
used to create the reduced basis matrix.

The implementation of the POD approach is performed inside the solve function. The
solve function is separated into two main sections. The first section is executed during the
first iterations for creating the first variant of the reduced basis matrix f i, as shown below:

24 U = obj . f ea (K, F) ;
25 obj .A(: , ob j . loop) = U;
26 i f ob j . loop == obj .Nb
27 obj .A = obj .A − mean(U) ;
28 [ob j . f i , ~ , ~] = svd (ob j .A, ’ econ ’) ;
29 end

The second section is executed after the first creation of the reduced basis. In particular,
in this section the reduced displacement field y is calculated, projecting it to the full scale of
the displacement field U. Then, it is determined if the forces residual is acceptable. If the
forces’ residual is deemed not acceptable, then the reduced basis is updated using a new
set of displacement snapshots. The implementation is presented below:

31 y = obj . f i ’ *K* ob j . f i \ ob j . f i ’ * F ;
32 U = obj . f i * y ;
33 dF = K*U−F ;
34 re s = norm (dF) ;
35 i f r e s > obj . t o l
36 U = obj . f ea (K, F) ;
37 obj .A(: , 1) = [] ;
38 obj .A(: , ob j .Nb) = U;
39 obj .A = obj .A − mean(U) ;
40 [ob j . f i , ~ , ~] = svd (ob j .A, ’ econ ’) ;
41 e l s e
42 obj . rdc = obj . rdc + 1 ;
43 end

For the creation of the reduced basis matrix f i, the svd function of Matlab is utilized
selecting the ′econ′ option for generating an economy-size decomposition of matrix A.

4.3.2. On-the-Fly: Code Implementation (Matlab File “onthefly.m”)

In the implementation of the on-the-fly reduced order model approach, the number
of properties required by the corresponding class is reduced from seven to six, basically
removing only the displacement snapshot matrix A. All other properties remain the same
as those used in the POD implementation of the corresponding class. In the same manner
as in the POD class, the implementation of the on-the-fly approach requires the use of the
solve function. The on-the-fly implementation is also separated into two main parts. In
the first one where the reduced basis matrix f i is computed, the norm function of Matlab
is utilized to perform the normalization of the displacement field vector, whereas the
procedure is exactly as described in Section 3.2 where the theoretical description of the
on-the-fly reduced order model approach is provided.

Materials 2022, 15, 4972 12 of 18

22 i f ob j . loop == 1
23 U = obj . f ea (K, F) ;
24 obj . f i (: , ob j . loop) = U/norm (U) ;
25 e l s e i f ob j . loop <= obj .Nb
26 U = obj . f ea (K, F) ;
27 Uorth = U − obj . f i * (ob j . f i ’ *U) ;
28 obj . f i (: , ob j . loop) = Uorth/norm (Uorth) ;
29 e l s e

In the second part of the on-the-fly implementation, the procedure mirrors that of
the POD implementation where instead of the svd function of Matlab, the update of the
reduced basis matrix is performed as described in the expressions of Equations (15) and (16)
in Lines 42 to 45 (of the onthefly class).

30 y = obj . f i ’ *K* ob j . f i \ ob j . f i ’ * F ;
31 U = obj . f i * y ;
32 dF = K*U−F ;
33 re s = norm (dF) ;
34 i f r e s > obj . t o l
35 U = obj . f ea (K, F) ;
36 obj . f i (: , 1) = [] ;
37 Uorth = U − obj . f i * (ob j . f i ’ *U) ;
38 obj . f i (: , ob j .Nb) = Uorth/norm (Uorth) ;
39 e l s e
40 obj . rdc = obj . rdc + 1 ;
41 end

4.3.3. Approximate Reanalysis: Code Implementation (Matlab File “ar.m”)

To keep the same structure of the code implementation for the approximate reanalysis
approach as that of the previously presented two MOR approaches, the displacement
snapshots are updated in a fixed number of iterations without taking into account the
change in the objective function or the design variables. For the implementation of the
approximate reanalysis approach, two new properties were added compared with the
implementation of the on-the-fly approach. These properties correspond to the stiffness
matrix K0 of the full-scale FEA and to a counter r f that keeps record of how often a new
full-scale FEA will be performed.

As far as the solve function goes, its first part, i.e., Lines 32 to 35 (of the ar class), deals
with the initialization of the reduced basis matrix f i. As discussed earlier, at the beginning
of this section the criterion for the update of this procedure is simplified. More specifically,
the update of the reduced basis matrix takes place in the first iteration and then after a fix
number of iterations specified by the class variable r f , as shown bellow:

25 i f (ob j . loop == 1) || (mod(ob j . loop , ob j . r f) == 0)
26 U = obj . f ea (K, F) ;
27 obj . f i (: , 1) = U;
28 obj . K0 = K;
29 e l s e

In the second part of the solve function, the reduced displacement vector is obtained.
In more detail, in Line 37, the difference between the stiffness matrices (dK) is computed.
Then, a while loop is implemented (see Lines 41 to 49 of the ar class) which builds the
reduced basis matrix f i until either the maximum number of reduced basis vectors is
reached or the residual is smaller than the tolerance value tol predefined.

30 e l s e
31 dK = K−obj . K0 ;
32 U = obj . f i (: , 1) ;

Materials 2022, 15, 4972 13 of 18

33 re s = 1 0 0 ;
34 s = 1 ;
35 while (r es > ob j . t o l) && (s <= obj .Nb)
36 s = s + 1 ;
37 U = obj . K0\(F − dK*U) ;
38 obj . f i (: , s) = U;
39 y = obj . f i ’ *K* ob j . f i \ ob j . f i ’ * F ;
40 U = obj . f i * y ;
41 dF = K*U−F ;
42 r es = norm (dF) ;
43 end
44 obj . rdc = obj . rdc + 1 ;
45 end

5. Test Examples

In this section, three simple test examples will be presented in order to demonstrate
the ease of use of the proposed topology optimization Matlab code and how the three
MOR approaches are integrated in order to assist the search procedure. The first test
example refers to a simple bridge problem, the second one refers to the cantilever beam
problem and the third one corresponds also to a cantilever beam problem with the load
applied at the central right side of the domain. The macro domains for all test examples
are schematically presented in Figure 3. In all test examples, the number of the iterations
required, the number of full-scale FEAs and the final objective function value achieved are
presented when the three MOR approaches are implemented, as well as the case without
the application of any MOR approach.

(a) (b)

(c)

Figure 3. Test examples considered. (a) Bridge test example. (b) Cantilever beam 1 test example.
(c) Cantilever beam 2 test example.

5.1. Bridge Test Example

The implementation of the MBB beam test example with respect to the load vector
and fixed degrees of freedom is the default implementation of the UCOpt function. The
optimization parameters were a grid of 300× 150 finite elements in the directions of the
abscissa and ordinate for the discretization of the macro domain and a grid of 50× 50 finite
elements in the directions of the abscissa and ordinate for the discretization of the micro

Materials 2022, 15, 4972 14 of 18

domain. A target volume fraction of 40%, penalization factor for the SIMP approach of 3,
filter radius of 1.5 and application only of a sensitivity filter (option f t = 1) were chosen.
As far as the three MOR approaches go, the size of the reduced basis was chosen to be 8 for
the POD and on-the-fly approaches and 10 for the approximate reanalysis, the tolerance
for the update was set equal to 0.01 for all approaches and the update frequency for the
approximate reanalysis was set to every six iterations. The script implementation for the
POD-assisted optimization implementation is presented below:

1 p = pod (8 , 0 . 0 1) ; % f o r the proper orthogonal decomposition
approach

2 UCOpt(1 0 , 1 0 , 2 0 0 , 1 0 0 , 5 0 , 5 0 , 0 . 5 , 3 , 1 . 5 , 1 , p) ;

For the implementation of the other two MOR approaches, changes are only required
in the first line where the MOR is created, as follows:

1 p=onthef ly (8 , 0 . 0 1) ; % f o r the on−the − f l y approach

and

1 p=ar (1 0 , 0 . 0 1 , 6) ; % f o r the approximate r e a n a l y s i s approach

The results obtained of every MOR approach as well as the implementation without
MOR assistance are presented in Table 1.

Table 1. Bridge test example: Results of each MOR approach as well as the classic implementation.

Approach Total itrns Full FEAs Compliance

FEA 26 26 105.14
POD 26 8 105.14

on-the-fly 26 8 105.14
AR 26 5 105.14

On the results of topology optimization achieved, in terms of unit cell structure, for
the various implementations (with and without MOR), minor differences are observed,
while the compliance value resulting from the four implementations is the same. Thus,
only one of the results achieved, and in particular, the one obtained by means of the POD
approach, is presented in Figure 4.

Figure 4. Optimized periodic unit cell for the bridge test example macro structure.

5.2. Cantilever Beam 1 Test Example

For the implementation of the first cantilever beam test example, changes to the load
vector and fixed degrees of freedom should be made. In more detail, Lines 13 and 14 of the
UCOpt function should be changed, as presented below:

13 F = sparse (2 * (nelx +1) * (nely +1) , 1 , − 1 , 2 * (nely +1) * (nelx +1) , 1) ;
14 f i x ed d of s = 1 : 2 * (nely +1) ;

The optimization parameters were a grid of 200× 100 finite elements in the directions
of the abscissa and ordinate for the discretization of the macro domain and a grid of 50× 50

Materials 2022, 15, 4972 15 of 18

finite elements in the the directions of the abscissa and ordinate for the discretization of
the micro domain. Similarly to the first test example, a target volume fraction of 50%,
penalization factor for the SIMP approach of 3, filter radius of 1.5 and application only of
the sensitivity filter (i.e., option f t = 1) were chosen. For the MOR approaches, the size
of the reduced basis was chosen to be 4 for the POD and on-the-fly approaches and 10
for the approximate reanalysis, the tolerance for the update was set equal to 0.01 for all
approaches and the update frequency for the approximate reanalysis was set to every five
iterations. The results obtained for the first cantilever beam test example are presented
below in Table 2.

Table 2. Cantilever Beam 1: Results of each MOR approach as well as the classic implementation.

Approach Total TOP itrns Full FEAs Compliance

FEA 107 107 257.3
POD 104 20 257.3

on-the-fly 101 21 257.3
AR 107 22 257.3

Similarly to the first test example, on the results of topology optimization achieved,
in terms of unit cell structure, for the various implementations (with and without MOR)
minor differences are observed, while the compliance value resulting from the four imple-
mentations is the same. Thus, only one of the results achieved, and in particular, the one
obtained by means of the on-the-fly approach, is presented in Figure 5.

Figure 5. Optimized periodic unit cell for the cantilever beam 1 test example macro structure.

5.3. Cantilever Beam 2 Test Example

For the implementation of the second cantilever beam test example (labeled as
cantilever beam 2), changes to the load vector and fixed degrees of freedom should be
applied. In more detail, Lines 13 and 14 (of the UCOpt) function should be changed as
presented below:

13 F = sparse (2 * ((nely +1) * nelx + (nely +1) − c e i l (1/2* nely))
, 1 , − 1 , 2 * (nely +1) * (nelx +1) , 1) ;

14 f i x ed d of s = 1 : 1 : 2 * (nely +1) ;

The optimization parameters were a grid of 300× 100 finite elements in the directions
of the abscissa and ordinate for the discretization of the macro domain and a grid of 50× 50
finite elements in the the directions of the abscissa and ordinate for the discretization of
the micro domain. Similarly to the first test example, a target volume fraction of 50%,
penalization factor for the SIMP approach of 3, filter radius of 1.5 and application only
of the sensitivity filter (i.e., option f t = 1) were chosen. For the MOR approaches, the
size of the reduced basis was chosen to be 4 for the POD and on-the-fly approaches
and 10 for the approximate reanalysis, the tolerance for the update was set equal to 0.01
for all approaches and the update frequency for the approximate reanalysis was set to
every five iterations. The results obtained for the second cantilever beam test example are
presented below in Table 3.

Materials 2022, 15, 4972 16 of 18

Table 3. Cantilever Beam 2: Results of each MOR approach as well as the classic implementation.

Approach Total TOP itrns Full FEAs Compliance

FEA 84 84 1369.0
POD 83 16 1369.1

on-the-fly 84 16 1368.9
AR 84 17 1368.9

Similarly to the remarks reported for the first two examples presented before, on the
results of topology optimization achieved, in terms of unit cell structure, for the various
implementations (with and without MOR) observed minor differences are observed, while
the compliance value resulting from the four implementations is the same. Thus, only one
of the results achieved, and in particular, the one obtained by means of the approximate
reanalysis approach, is presented in Figure 6.

Figure 6. Optimized periodic unit cell for the cantilever beam 2 test example macro structure.

6. Conclusions

The scope of this work is to present an open source numerical implementation of a
methodology dealing with the optimal design of material structure using the theories of
topology optimization and homogenization as well as the application of reduced order
models. The code presented is written in Matlab, and two of the functions are partially
based on existing well-known codes, published on the topology optimization and homog-
enization formulations. The implementation of the three model order reduction (MOR)
approaches is simple, and the aim is to provide the means to integrate such models in any
type of topology optimization problem formulation. Although the code implementation of
the topology optimization part is based on a 2D space variant, it can easily be extended to
the 3D space as well without the need to modify any of the three MOR classes presented in
this study. The authors would be happy to receive suggested improvements that can be
implemented in the public domain of the UCOpt codes.

Author Contributions: Conceptualization, G.K. and N.D.L.; methodology, G.K. and N.D.L.; software,
G.K.; validation, G.K.; formal analysis, G.K.; investigation, G.K.; writing—original draft preparation,
G.K. and N.D.L.; writing—review and editing, G.K. and N.D.L.; visualization, G.K.; supervision,
N.D.L.; project administration, N.D.L.; funding acquisition, N.D.L. All authors have read and agreed
to the published version of the manuscript.

Funding: This research has been financed by the ADDOPTML project: “ADDitively Manufactured
OPTimized Structures by means of Machine Learning” (No: 101007595).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Please address the corresponding author by his e-mail address nla-
garos@central.ntua.gr. The complete code, containing all participating functions (including the
changes made to the original ones), is listed in https://github.com/nikoslagaros/TOPcodes, (ac-
cessed on 14 June 2022) .

Acknowledgments: This research has been supported by the ADDOPTML project: “ADDitively
Manufactured OPTimized Structures by means of Machine Learning” (No: 101007595) belonging

https://github.com/nikoslagaros/TOPcodes

Materials 2022, 15, 4972 17 of 18

to the Marie Skłodowska-Curie Actions (MSCA) Research and Innovation Staff Exchange (RISE)
H2020-MSCA-RISE-2020.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BESO Bi-directional Evolutionary Structural Optimization
FE Finite Element
FEA Finite Element Analysis
FEM Finite Element Method
MOR Model Order Reduction
POD Proper Orthogonal Decomposition
SIMP Solid Isotropic Material with Penalization
STO Structural Topology Optimization
SVD Singular Value Decomposition
TO Topology Optimization
TOP Topology Optimization Problem

References
1. Sigmund, O. Materials with prescribed constitutive parameters: An inverse homogenization problem. Int. J. Solid Struct. 1994,

31, 2313–2329. [CrossRef]
2. Sigmund, O.; Torquato, S. Design of materials with extreme thermal expansion using a three-phase topology optimization.

J. Mech. Phys. Solids 1997, 45, 1037–1067. [CrossRef]
3. Gibiansky, L.V.; Sigmund, O. Multiphase composites with extremal bulk modulus. J. Mech. Phys. Solids 2000, 48, 461–498.

[CrossRef]
4. Neves, M.M.; Rodrigues, H.; Guedes, J. Optimal design of periodic linear elastic microstructures. Comput. Struct. 2000,

76, 421–429. [CrossRef]
5. Fujii, D.; Chen, B.; Kikuchi, N. Composite material design of two-dimensional structures using the homogenization design

method. Int. J. Numer. Methods Eng. 2001, 50, 2031–2051. [CrossRef]
6. Guest, J.K.; Prévost, J.H. Design of maximum permeability material structures. Comput. Method Appl. Mech. Eng. 2007,

196, 1006–1017. [CrossRef]
7. Challis, V.J.; Roberts, A.P.; Wilkins, A.H. Design of three dimensional isotropic microstructures for maximized stiffness and

conductivity. Int. J. Solids Struct. 2008, 45, 4130–4146. [CrossRef]
8. Amstutz, S.; Giusti, S.M.; Novotny, A.A.; Souza Neto, E.A. Topological derivative for multi-scale linear elasticity models applied

to the synthesis of microstructures. Int. J. Numer. Methods Eng. 2010, 84, 733–756. [CrossRef]
9. Gao, J.; Li, H.; Gao, L.; Xiao, M. Topological shape optimization of 3D micro-structured materials using energy-based homoge-

nization method. Adv. Eng. Softw. 2018, 116, 89–102. [CrossRef]
10. Huang, X.; Radman, A.; Xie, Y. Topological design of microstructures of cellular materials for maximum bulk or shear modulus.

Comput. Mater. Sci. 2011, 50, 1861–1870. [CrossRef]
11. Huang, X.; Zhou, S.; Xie, Y.; Li, Q. Topology oprimization of microstructures of cellular materials and composites for macrostruc-

tures. Comput. Mater. Sci. 2013, 67, 397–407. [CrossRef]
12. Wu, J.; Sigmund, O.; Groen, J. Topology optimization of multi-scale structures: A review. Struct. Multidiscip. Optim. 2021,

63, 1455–1480. [CrossRef]
13. Kirsch, U.; Papalambros, P.Y. Structural reanalysis for topological modifications—A unified approach. Struct. Multidiscip. Optim.

2001, 21, 333–344. [CrossRef]
14. Wang, S.; Sturler, E. Paulino, G.H. Large-scale topology optimization using preconditioned Krylov subspace methods with

recycling. Int. J. Numer. Methods Eng. 2006, 69, 2441–2468. [CrossRef]
15. Amir, O.; Bendsøe, M.P.; Sigmund, O. Approximate reanalysis in topology optimization. Int. J. Numer. Methods Eng. 2008,

78, 1474–1491. [CrossRef]
16. Amir, O.; Stolpe, M.; Sigmund, O. Efficient use of iterative solvers in nested topology optimization. Struct. Multidiscip. Optim.

2009, 42, 55–72. [CrossRef]
17. Amir, O.; Sigmund, O.; Lazarov, B.S.; Schevenels, M. Efficient reanalysis techniques for robust topology optimization. Comput.

Methods Appl. Mech. Eng. 2012, 245-246, 217–231. [CrossRef]
18. Gogu, C. Improving the efficiency of large scale topology optimization through on-the-fly reduced order model construction. Int.

J. Numer. Methods Eng. 2014, 101, 281–304. [CrossRef]
19. Alaimo, G.; Auricchio, F.; Bianchini, I.; Lanzarone, E. Applying functional principal components to structural topology

optimization. Int. J. Numer. Methods Eng. 2018, 115, 189–208. [CrossRef]

http://doi.org/10.1016/0020-7683(94)90154-6
http://dx.doi.org/10.1016/S0022-5096(96)00114-7
http://dx.doi.org/10.1016/S0022-5096(99)00043-5
http://dx.doi.org/10.1016/S0045-7949(99)00172-8
http://dx.doi.org/10.1002/nme.105
http://dx.doi.org/10.1016/j.cma.2006.08.006
http://dx.doi.org/10.1016/j.ijsolstr.2008.02.025
http://dx.doi.org/10.1002/nme.2922
http://dx.doi.org/10.1016/j.advengsoft.2017.12.002
http://dx.doi.org/10.1016/j.commatsci.2011.01.030
http://dx.doi.org/10.1016/j.commatsci.2012.09.018
http://dx.doi.org/10.1007/s00158-021-02881-8
http://dx.doi.org/10.1007/s001580100112
http://dx.doi.org/10.1002/nme.1798
http://dx.doi.org/10.1002/nme.2536
http://dx.doi.org/10.1007/s00158-009-0463-4
http://dx.doi.org/10.1016/j.cma.2012.07.008
http://dx.doi.org/10.1002/nme.4797
http://dx.doi.org/10.1002/nme.5801

Materials 2022, 15, 4972 18 of 18

20. Ferro, N.; Micheletti, S.; Perotto, S. POD-assisted strategies for structural topology optimization. Comput. Math. Appl. 2019,
77, 2804–2820. [CrossRef]

21. Senne, T.A.; Gomes, F.A.M.; Santos, S.A. On the approximate reanalysis technique in topology optimization. Optim. Eng. 2019,
20, 251–275. [CrossRef]

22. Xiao, M.; Lu, D. Breitkopf, P.; Raghavan, B.; Dutta, S.; Zhang, W. On-the-fly model reduction for large-scale structural topology
optimization using principal components analysis. Struct. Multidiscip. Optim. 2020, 62, 209–230. [CrossRef]

23. Kallioras, N.A.; Kazakis, G.; Lagaros, N.D. Accelerated topology optimization by means of deep learning. Struct. Multidiscip.
Optim. 2020, 63, 1185–1212. [CrossRef]

24. Sigmund, O. A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 2001, 21, 120–127. [CrossRef]
25. Andreassen, E.; Clausen, A.; Schevenels, M. Lazarov, B.; Sigmund, O. Efficient topology optimization in MATLAB using 88 lines

of code. Struct. Multidiscip. Optim. 2010, 43, 1–16. [CrossRef]
26. Liu, K.; Tovar, A. An efficient 3D topology optimization code written in Matlab. Struct. Multidiscip. Optim. 2014, 50, 1175–1196.

[CrossRef]
27. Ferrari, F.; Sigmund, O.; Guest, J.K. Topology optimization with linearized buckling criteria in 250 lines of Matlab. Struct.

Multidiscip. Optim. 2021, 63, 3045–3066. [CrossRef]
28. Talischi, C.; Paulino, G.H.; Pereira, A.; Menezes, I.F.M. PolyTop: A Matlab implementation of a general topology optimization

framework using unstructured polygonal finite element meshes. Struct. Multidiscip. Optim. 2012, 45, 329–357. [CrossRef]
29. Chi, H.; Pereira, A.; Meneze, I.F.M.; Paulino, G.H. Virtual element method (VEM)-based topology optimization: An intergrated

framework. Struct. Multidiscip. Optim. 2020, 62, 1089–1114. [CrossRef]
30. Amir, O.; Aage, N.; Lazarov, B.S. On multigrid-CG for efficient topology optimization. Struct. Multidiscip. Optim. 2014,

419, 815–829. [CrossRef]
31. Huang, X.; Xie, Y. A futher review of ESO type methods for topology optimization. Struct. Multidiscip. Optim. 2010, 41, 671–683.

[CrossRef]
32. Wang, M.; Wang, X.; Guo, D. A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 2003,

192, 227–246. [CrossRef]
33. Challis, V.J. A discrete level-set topology optimization code written in Matlab. Struct. Multidiscip. Optim. 2010, 41, 453–464.

[CrossRef]
34. Otomori, M.; Yamada, T.; Izui, K.; Nishiwaki, S. Matlab code for a level-set based topology optimization method using a reaction

diffusion equation. Struct. Multidiscip. Optim. 2014, 51, 1159–1172. [CrossRef]
35. Wei, P.; Li, Z.; Li, X.; Wang, M.Y. An 88-line MATLAB code for the parameterized level set method based topology optimization

using radial basis functions. Struct. Multidiscip. Optim. 2018, 58, 831–849. [CrossRef]
36. Lagaros, N.D.; Vasileiou, N.; Kazakis, G. A C# code for solving 3D topology optimization problems using SAP2000. Optim. Eng.

2019, 20, 1–35. [CrossRef]
37. Gao, J.; Wang, L.; Luo, Z.; Gao, L. IgaTop: An implementation of topology optimization for structures using IGA in MATLAB.

Struct. Multidiscip. Optim. 2021, 64, 1669–1700. [CrossRef]
38. Andreassen, E.; Andreasen, C.S. How to determine composite material properties using numerical homogenization. Comput.

Mater. Sci. 2014, 83, 488–495. [CrossRef]
39. Dong, G.; Tang, Y.; Zhao, Y. A 149 Line Homogenization Code for Three-Dimensional Cellular Materials Written in Matlab. J. Eng.

Mater. Technol. 2019, 141, 555. [CrossRef]
40. Xia, L.; Breitkopf, P. Design of materials using topology optimization and energy-based homogenization approach in Matlab.

Struct. Multidiscip. Optim. 2015, 52, 1229–1241. [CrossRef]
41. Bendsøe, M.P.; Sigmund, O. Topology Optimization: Theory, Methods and Applications, 2nd ed.; Springer: Berlin/Heidelberg,

Germany, 2004. [CrossRef]
42. Sigmund, O. Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 2007, 33, 401–424.

[CrossRef]

http://dx.doi.org/10.1016/j.camwa.2019.01.010
http://dx.doi.org/10.1007/s11081-018-9408-3
http://dx.doi.org/10.1007/s00158-019-02485-3
http://dx.doi.org/10.1007/s00158-020-02545-z
http://dx.doi.org/10.1007/s001580050176
http://dx.doi.org/10.1007/s00158-010-0594-7
http://dx.doi.org/10.1007/s00158-014-1107-x
http://dx.doi.org/10.1007/s00158-021-02854-x
http://dx.doi.org/10.1007/s00158-011-0696-x
http://dx.doi.org/10.1007/s00158-019-02268-w
http://dx.doi.org/10.1007/s00158-013-1015-5
http://dx.doi.org/10.1007/s00158-010-0487-9
http://dx.doi.org/10.1016/S0045-7825(02)00559-5
http://dx.doi.org/10.1007/s00158-009-0430-0
http://dx.doi.org/10.1007/s00158-014-1190-z
http://dx.doi.org/10.1007/s00158-018-1904-8
http://dx.doi.org/10.1007/s11081-018-9384-7
http://dx.doi.org/10.1007/s00158-021-02858-7
http://dx.doi.org/10.1016/j.commatsci.2013.09.006
http://dx.doi.org/10.1115/1.4040555
http://dx.doi.org/10.1007/s00158-015-1294-0
http://dx.doi.org/10.1007/978-3-662-05086-6
http://dx.doi.org/10.1007/s00158-006-0087-x

	Introduction
	Optimal Design of Materials
	Model Order Reduction in Material Optimization
	Proper Orthogonal Decomposition
	On-the-Fly Reduced Order Model Construction
	Approximate Reanalysis

	The Matlab Code Implementation
	Homogenization Code Implementation (Matlab File ``homogenize.m'')
	Topology Optimization Code Implementation
	Model Order Reduction: Code Implementation
	POD: Code Implementation (Matlab File ``pod.m'')
	On-the-Fly: Code Implementation (Matlab File ``onthefly.m'')
	Approximate Reanalysis: Code Implementation (Matlab File ``ar.m'')

	Test Examples
	Bridge Test Example
	Cantilever Beam 1 Test Example
	Cantilever Beam 2 Test Example

	Conclusions
	References

