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Abstract: The study presents an analysis of the influence of the plastic strain rate on the mechanical
and structural properties of pure zinc. Thanks to the use of unconventional methods of plastic
processing, the process of the equal channel angular pressing (ECAP) and the process of hydrostatic
extrusion (HE), the tests were performed in a wide range of plastic strain rates, between 0.04 s−1

and 170 s−1. Plastic strain rate changes were carried out in the course of the significant plastic
strain processes, and not on previously deformed samples. All tests were carried out at a constant
value of plastic strain rate, ε ~ 2. A strong influence of the plastic strain rate on changes in the
microstructure in zinc was observed during the tests. For the rates in the range of 0.04 s−1 to 0.53 s−1

its bimodal nature was observed, and in the range of 7 s−1 to 170 s−1 high homogeneity and evenness
of grains related to the processes of continuous dynamic recrystallization was noticed. The effect of
the strong homogenization of the microstructure was the increase in mechanical properties, yield
point and tensile strength to the maximum values of UTS = 194 MPa, YS = 145 MPa at a strain rate of
170 s−1. Compared to the material with a bimodal microstructure, an over seven-fold increase in the
elongation value was observed.

Keywords: hydrostatic extrusion; equal channel angular pressing; strain rate; zinc

1. Introduction

Zinc and zinc-based alloys are attractive materials for biomedical applications for
biodegradable implants [1,2]. This is due to the excellent biocompatibility and moderate
degradation rate in-vivo [3,4]. A big obstacle to their potential use is their low mechanical
properties, the yield point of about 20 MPa at an elongation of 12% [5]. Hence, many
research works focus on the possibilities of improving the mechanical properties of zinc,
both by doping with additives such as Mg, Ca, Sr, Mn or by using unconventional methods
that allow microstructure fragmentation, such as the ECAP (equal channel angular pressing)
process [5–9]. A major obstacle in the effective disintegrating of the microstructure in zinc
is its low recrystallization temperature (−12 ◦C), which causes dynamic recrystallization
processes during plastic strain processes if carried out at room temperature [1].

Due to the high susceptibility of these materials to the thermal effects accompanying
the processes of high plastic strain, we attempted to investigate the influence of the strain
rate on the mechanical and structural properties of zinc. The plastic strain rate, in addition
to the degree of plastic deformation, has a significant impact on the efficiency of generating
structural defects and thermal effects, thus reducing the effects of strain strengthening.
Studies on the influence of the strain rate on the mechanical and structural properties are
mainly carried out on previously deformed materials or on coarse-crystalline materials
using standard static or dynamic tests. Such studies have been carried out for many
materials, mainly after the ECAP process, such as magnesium alloys, aluminum alloys or
titanium, but also after ARB (accumulative roll-bonding) or cold rolling processes [10–14].
In the case of zinc, such work was carried out in dynamic compression tests, where the
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leading role of the continuous dynamic recrystallization process at higher compression
rates (~0.5 s−1) was observed [1,15].

In the present study, the authors, for the first time, attempted to analyse the influence
of the strain rate generated directly during severe plastic deformation processes in a wide
range between 0.04 s−1 a 170 s−1. The strain rate parameter changed during the SPD
processes, but not during the mechanical tests on previously strained samples, which is
similar to the data reported in the literature on the subject. Such a wide range of strain
rates was possible thanks to the use of the ECAP method in the range of lower strain
rates of 0.04–0.53 s−1 and hydrostatic extrusion (HE) method for a strain rate in the range
of 7 s−1 up to 170 s−1. Although the ECAP method is a method quite widely used for
strong deformation of materials, the HE method is a unique technology developed by
the authors of the paper. The effectiveness of the use of the hydrostatic extrusion process
as a method leading to the fragmentation of the metals and metal alloys’ microstructure
was repeatedly presented by the authors in the literature on the subject for a wide range
of materials. This applies to very flexible materials, such as aluminum alloys or copper
alloys, but also to hard-deformable materials, such as titanium or austenitic steels [16–21].
The hydrostatic extrusion process was also used by many authors in zinc alloys with the
addition of magnesium where, at a cumulative strain of εcum ~ 3.55 very high mechanical
properties were observed at the level of ultimate tensile strength UTS = 515 MPa and yield
strength YS = 375 MPa, significantly exceeding the values reported in the literature [22].

2. Materials and Methods

The tested material was zinc with a purity of 99.9%. Due to the heterogeneity of the
microstructure in the original state, the material was annealed at 150 ◦C for 30 min. From
bars with a diameter of 30 mm, samples with a square cross-section of 10 mm × 10 mm and
a length of 60 mm were cut by machining for the ECAP process. The ECAP process was
carried out in two passes using the C method, i.e., with a 180◦ rotation between successive
passes. The ECAP process was carried out in cold conditions in a 90◦ chamber, at three
different rates of plastic strain, i.e., 0.04 s−1, 0.13 s−1 and 0.53 s−1. The rate was controlled
by the piston travel speed. The total actual strain in each of the tested samples was ε ~ 2.
The samples for the hydrostatic extrusion process were circular, with a diameter of 16 mm.
The process of hydrostatic extrusion was carried out in cold conditions with intensive
cooling in the zone of plastic strain. The actual strain was the same as in the ECAP process,
i.e., ε ~ 2, which corresponded to extrusion to the final diameter of 6 mm. The HE processes
were carried out at three different rates of plastic strain, i.e., 7 s−1, 50 s−1 and 170 s−1. The
rate was controlled by the volume of the pressure medium and the rate of its compression.
The process of hydrostatic extrusion was carried out on dies with an apex angle of 2α = 45◦.
The specificity of the hydrostatic extrusion process has been widely presented in previous
work [23].

Microstructural observations for the initial material and after plastic strain were
carried out on the Nikon Eclipse LV150 light microscope LM and the FEI TECNAI G2 F20
transmission electron microscope TEM. The grain sizes before and after the HE and ECAP
processes were determined with the image analysis method using Micrometer software
(version 1.0, prof. Tomasz Wejrzanowski Warsow Uniwersity of Technology, Faculty of
Materials Science and Engineering Warsaw, Poland) [24]. In each case, the data were based
on the obtained LM and TEM images. After the imaging, at least 200 grains selected
randomly from the population were outlined and the software calculated the equivalent
grain diameter d2 (defined as the diameter of the circle with the surface area equal to that
of the given grain).

The mechanical properties of the samples were examined in a Zwick/Roell Z250 kN
machine (Ulm, Germany) using the static tensile test at room temperature, the strain rate of
0.008 s−1 on the standard round samples with length to diameter ratio 5:1 machined along
the samples axis.
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3. Microstructure

Figure 1 shows the basic zinc microstructure after a 30 min annealing at 150 ◦C. After
the annealing process, a homogeneous microstructure was obtained in the form of equiaxial
recrystallized grains with an average size d2 = 15.3 µm. Figure 2 shows the grain size
distribution determined based on the obtained microstructure images, showing a typical
character for coarse-crystalline, recrystallized materials. The value of the particle size
distribution variation coefficient was Cvd2 = 0.5.
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Figure 1. The 99.9% zinc microstructure in the initial state, after a 30 min annealing at 150 ◦C.
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Figure 2. The grain size distribution in zinc was 99.9% in the initial state, after a 30 min annealing
at 150 ◦C.

Figure 3 shows the microstructure of zinc after the plastic strain with strain rates
in the range of 0.04 s−1 to 0.53 s−1 implemented utilising the ECAP process and in the
range of 7 s−1 to 170 s−1 in the HE process. In the range of the lower rates of plastic strain
generated during the ECAP process, the observed microstructure shows a bimodal nature
(Figure 3a–c). A fraction of smaller grains of size d2~ 1 µm to 5 µm were observed, as well
as larger grains with an average size in the range between 15 µm and 30 µm. Medium grain
sizes d2, along with the coefficient of variation of the Cvd2 distribution determined based on
the images obtained, are presented in Table 1. The values of the coefficient of variation of the
grain size distribution Cvd2 were calculated as the ratio of the mean value d2 to the standard
deviation of the population. The selected grain size distributions are shown in Figure 4.
At the lowest plastic strain rate of 0.04 s−1, two fractions of grains—a smaller and a larger
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one—can be clearly seen when analysing the grain size distribution presented in Figure 4.
Despite the fact that the average grain size drops more than twice to the size d2 = 6.1 µm
compared to the unprocessed material, a significant increase in the coefficient of variation
of the grain size distribution is observed, which proves the significant heterogeneity of the
microstructure, which is manifested in this case by its bimodal nature, as shown in Table 1.
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Table 1. The mean grain size d2 and the coefficient of variation of the Cvd2 distribution for zinc after
plastic strain of different rates.

Strain Rate 0 0.04 s−1 0.13 s−1 0.53 s−1 7 s−1 50 s−1 170 s−1

d2 [µm] 15.3
+/−0.46

6.1
+/−0.36

5.4
+/−0.12

5.9
+/−0.31

7.1
+/−0.19

5.6
+/−0.20

5.5
+/−0.24

CVd2 0.5 1.05 0.86 0.81 0.36 0.39 0.43
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Figure 4. Grain size distribution in the zinc deformed with the lowest strain rate of 0.04 s−1, and the
highest strain rate of 170 s−1 compared to the unprocessed material.

Moreover, as the strain rate increases, the value of the coefficient of variation of the
grain size distribution decreases, which proves that the microstructure is homogenised. The
areas of the finer grains begin to disappear, and the average grain size slightly decreases.
The microstructure shows a completely different nature when a higher strain rate in the
range of 7 s−1 up to 170 s−1 is utilised. A fully homogeneous microstructure of the equiaxed
grains is observed, with much lower values of the coefficient of variation of the grain size
distribution within the Cvd2 range of 0.36 to 0.43. The images presented in Figure 3d–f
show a strong homogeneity of the microstructure, as well as the grain size distribution
with almost 80% presence of grains with the size of d2 ~ 5 µm. A slight increase in the
coefficient of variation of the grain size distribution Cvd2 in the range of high rates of
strain can be related to the generated in the process of extrusion, as shown in Figure 5. By
analysing the influence of the strain rate on the change of the extrusion pressure during
the HE process, a clear increase in pressure is observed in the entire range of the strain
rates tested. The higher pressure of the HE process generates stronger thermal effects and a
higher homologous temperature of the process [18].
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Figure 5. Influence of the strain rate during the HE process on the 99.9% zinc extrusion pressure.

Microstructural changes of a similar nature were observed in the zinc subjected to cold
compression processes with a degree of compression of 161%, where, after exceeding the
strain rate of 0.5 s−1 a homogeneous microstructure was observed with an average grain
size of d2 = 24 µm [15]. These changes were attributed to the process of continuous dynamic
recrystallization that occurred at a sufficiently high degree of material compaction and at a
sufficiently high rate of strain. In this study, the microstructural analysis performed after
large plastic strain processes with real strain at the level ε ~ 2 indicates that the process of
continuous dynamic recrystallization takes place when the strain rate of 7 s−1 is exceeded.
This phenomenon is also confirmed by images of the microstructure obtained by using
a TEM microscope, as shown in Figure 6. In zinc, after the straining process with the
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lowest strain rate of ~0.04 s−1, areas of smaller defective grains are observed, as shown
in Figure 6a. After the processes generating higher plastic strain rates (higher than 7 s−1),
clear, equiaxed recrystallized grains are observed, practically free from defects, which was
also seen in the deformed zinc at the highest rate of 170 s−1 in Figure 6b.
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4. Mechanical Properties

Figure 7 shows the characteristics of the static tensile test for two extreme strain rates,
the lowest rate of 0.04 s−1 and the highest rate of 170 s−1. The curves obtained reflect clear
differences in the structure of the material. At the highest strain rate, when a high degree
of homogeneity of the microstructure was observed, a sharp increase in both the ultimate
tensile strength (UTS) and elongation at the break was also observed. The results obtained
in the static tensile test for all tested strain rates are summarised in Table 2.
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Table 2. Zinc static rupture test data as a function of strain rate.

Strain Rate 0 0.04 s−1 0.13 s−1 0.53 s−1 7 s−1 50 s−1 170 s−1

UTS[MPa] 60
+/−6

148
+/−5.2

144
+/−3

148
+/−2.5

190
+/−1.43

192
+/−1.49

194
+/−2.48

YS [MPa] 30
+/−4.1

116
+/−1.43

118
+/−3.79

119
+/−2.48

130
+/−2.86

135
+/−1.43

145
+/−4.96

A [%] 2
+/−0.8

2
+/−1.3

2.9
+/−1.4

5.9
+/−0.9

42
+/−4.16

47
+/−2.79

49
+/−1.13

In the range of a plastic strain rate between 0.04 s−1 and 0.53 s−1 in which the material
was subjected to the ECAP process, a significant increase in zinc strength—both in terms of
YS yield strength and UTS ultimate tensile strength (by 150% and 300%, respectively)—was
observed compared to the unprocessed material. In the range of these strain rates, the
strength values are close to each other. However, the elongation value initially does not
change (at 0.04 s−1), but at the strain rate at 0.53 s−1, it grows almost threefold to the level
of A ~ 6%. This is caused by the effects of homogenization of microstructure of the material,
observed in this range of the plastic strain rate. A clear effect of changes in the mechanical
properties of zinc is observed in the range of higher rates of plastic strain, i.e., between
7 s−1 and 170 s−1, which occurred in the process of hydrostatic extrusion. The value of
the ultimate tensile strength UTS increases additionally by about 30% and the value of
the yield strength YS by about 20%. The strongest effect is observed when comparing
the obtained elongation values, which is over seven times higher in this range of strain
rate, reaching the maximum value of A = 49% at the strain rate of 170 s−1. The observed
differences are the result of the strong homogeneity of the material microstructure, which
is the result of continuous dynamic recrystallization taking place during plastic strain
at high strain rates. Figure 8 compares the obtained results with selected literature data.
Higher elongation values can be obtained only by plastic working carried out at elevated
temperatures, as in the case of conventional extrusion processes that were carried out at
a temperature of 250 ◦C [8]. However, due to the high temperature, the possibilities of
improving the mechanical properties are limited, which is related to the increase in grain
size. After the hot extrusion process, the obtained average grain size was 150 µm. After
the HPT (high-pressure torsion) process, the obtained strength value was at the level of
UTS = 150 MPa with real strain ε > 5 [25]. It is worth noting that in the present study,
zinc was strained to the level of ε ~ 2 and the mechanical properties obtained were much
higher, which shows the high efficiency of the HE process. This is also confirmed by the
data on mechanical properties obtained by other methods of plastic-working, such as the
KOBO process, or ECAP method, which utilizes the Bc method [5,26]. The HE process,
in contrast to other methods that generate plastic strains, such as HPT or ECAP, enables
plastic processing of large volumes of material with homogeneous mechanical properties,
and high hydrostatic pressure and the accompanying high rates of plastic strain ensure the
possibility of producing solid products with uniform mechanical and structural properties.
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170 s−1 with the data in the literature on the subject [5,8,25,26].

5. Conclusions

â Thanks to the use of unconventional methods for generating severe plastic deforma-
tion (SPD), namely the ECAP and HE processes, the influence of the plastic strain
rate on the mechanical and structural properties of pure zinc in a wide range of
plastic strains, between 0.04 s−1 and 170 s−1 was investigated.

â The test performed showed a strong dependence of changes in the microstructure
on the plastic strain rate. For the rates in the range of 0.04 s−1 to 0.53 s−1 a bimodal
microstructure was observed. Increasing the strain rate to 7 s−1 caused a significant
change in the nature of the microstructure. The microstructure was homogeneous
with equiaxed grains free from visible defects inside, which was related to the
process of continuous dynamic recrystallization.

â The maximal plastic strain rate 170 s−1 resulted in obtaining the highest mechanical
properties (UTS = 194 MPa, YS = 145 MPa) with the highest value of elongation
(A = 49%), which in comparison to the material with bimodal microstructure in-
creased more than seven-fold.

â The results obtained showed that the rate of plastic strain is a critical parameter in the
processes generating large plastic deformations. Apart from the plastic deformation
rate, which was constant for all the tests performed (ε ~ 2), the plastic strain rate
can also have a significant effect on the final properties of the materials. This is of
particular importance for materials with low melting points that are susceptible to
the heat effects that occur during the plastic-working, such as the tested zinc, which
recrystallizes at room temperature.
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