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Abstract: Commercial polyolefin separators exhibit problems including shrinkage under high tem-
peratures and poor electrolyte wettability and uptake, resulting in low ionic conductivity and safety
problems. In this work, core–shell silica-polyphosphazene nanoparticles (SiO2@PZS) with different
PZS layer thicknesses were synthesized and coated onto both sides of polyethylene (PE) microporous
membranes to prepare composite membranes. Compared to pure silica-coated membranes and PE
membranes, the PE-SiO2@PZS composite membrane had higher ionic conductivity. With the increase
in the SiO2@PZS shell thickness, the electrolyte uptake, ionic conductivity and discharge capacity
gradually increased. The discharge capacity of the PE-SiO2@PZS composite membrane at 8 C rate was
129 mAh/g, which was higher than the values of 107 mAh/g for the PE-SiO2 composite membrane
and 104 mAh/g for the PE membrane.

Keywords: composite membrane; SiO2@PZS nanoparticle; lithium-ion batteries

1. Introduction

Lithium-ion batteries (LIBs) have the advantages of high energy density, high output
voltage, long cycle lives and low environmental pollution. Therefore, they not only play
a significant role in the field of portable electronic products and electric vehicles but
also a decisive one in promoting the adjustment of energy structures and ensuring the
sustainable development of energy and the environment. LIBs have become the standard
power supply for mobile electronic devices, such as mobile phones and laptops, and have
begun to be applied to light electric vehicles and hybrid electric vehicles. Commercial
LIBs have significant potential safety hazards due to the use of polyolefin separators with
poor thermal stability and flammable and volatile carbonate solvents [1–5]. Furthermore,
the lack of polar groups reduces the wettability and liquid absorption of the polyolefin
separator and the existence of crystal structures also causes ion transport difficulties that
reduce conductivity. Therefore, the performance of LIB separators and electrolytes is the
decisive factor affecting the safety and functioning of LIBs.

Many researchers have investigated how to overcome those problems. One direction is
the use of a solid polyelectrolyte (SPE) instead of a liquid electrolyte to avoid the leakage of
organic solvents and the use of separators. Poly(ethylene oxide)-based (PEO) (co)polymer
is the most widely studied SPE, but its room temperature conductivity is low, meaning
that it cannot meet the requirements of practical applications [6–12]. Thus, modification of
the separator (improvement of the wettability, electrolyte uptake, thermal stability, Gurley
value, etc.) is another interesting method to solve these issues.

A variety of other methods have been developed in recent years to overcome the dis-
advantages of separators, including polymer composites (a blend of polymer and inorganic
fillers) [13–17], inorganic fillers (e.g., SiO2, TiO2, Al2O3 and zeolite) [18–23], and polymer
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blends [17,24]. Remarkably, it has been confirmed that modification of a polyolefin mem-
brane with a blend of polymer and inorganic fillers as a coating may be the most promising
approach [1,25]. It not only maintains the microporous structure of the polyolefin sepa-
rators but also improves the thermal stability, mechanical strength, wettability and ionic
conductivity of the separators. Among the various inorganic fillers, SiO2 is the most widely
studied due to its easy preparation, effective function and economic adaptability. A com-
posite polyethylene (PE) separator was carefully prepared with a PEI/SiO2 blend and the
electrolyte uptake, thermal stability, ionic conductivity and Li+ transference number were
improved [26]. A core–shell structure with a SiO2@PMMA nanoparticle was successfully
synthesized using PMMA as the shell layer, while the composite PE separator was fabri-
cated with a SiO2@PMMA coating, which enhanced the thermostability, ionic conductivity,
cycle performance and C-rate capability of the cells with the composite separator [27]. Re-
cently, silica-poly (cyclotriphosphazene-co-4,4′-sulfonyldiphenol) core–shell nanoparticles
(SiO2@PZS) were effectively synthesized and a novel composite PE-SiO2@PZS separator
was obtained by coating the organic–inorganic nanoparticles on both sides of the PE mem-
brane, and it demonstrated superior physical and electrochemical properties compared to
the initial PE membrane and separator with the SiO2 coating [28]. The authors speculated
that the surface hydroxyl groups and nitrogen and oxygen atoms from the outside layer
of the PZS coordinated with the lithium ions, resulting in the improvement of the lithium
dissociation, which further enhanced the electrochemical performance. Thus, the PZS shell
played a pivotal role in the modification of the PE membrane. The thickness of the polymer
shell was not studied. In addition, it has been reported that the particle size for the coating
also has a decisive effect on the performance of the separator [29–31].

In the present work, SiO2 modified with a PZS outside layer—a core–shell structure
of SiO2@PZS—was first prepared with different PZS layer thicknesses. Then, the organic–
inorganic nanoparticle was fabricated to slurry with a polyvinyl alcohol (PVA) binder.
Lastly, the slurry was coated onto both sides of a PE membrane to produce the composite
separator (PE-SiO2@PZS). The effect of the SiO2@PZS size and PZS layer thickness on the
electrolyte uptake, Gurley value and electrochemical performance of the separator was
carefully investigated with a cell assembled using a LiCoO2 cathode and Li metal anode.

2. Materials and Methods
2.1. Materials

Hexachlorocyclotriphosphazene (HCCP) from Aladdin was twice purified through
recrystallization from dry n-hexane before use. The PE membrane (thickness: 18 µm,
porosity: 48%) and liquid electrolyte (LBC305-1) were purchased from Aldrich. Ammonia
(25%), anhydrous ethanol, 4,4′-sulfonyldiphenol (BPS), tetraethyl orthosilicate (TEOS),
acetonitrile (ACN), polyvinyl alcohol (PVA) and triethylamine (TEA) were used as received
from Aladdin. Other materials from Yinuokai (China) and Aladdin were used as received.

2.2. Characterizations

Fourier-transform infrared spectroscopy (FT-IR) was performed with a Bruker Equinox
55 spectrometer with the range of 400–4000 cm−1. High-resolution TEM (HR-TEM; Philips
CM200 FEG) was carried out to study the morphologies of the nanoparticles. A field
emission scanning electron microscope (FE-SEM, SU8010, Hitachi) was used to observe
the morphologies of the original PE membrane and the nanoparticle-coated composite
membrane. The measurement of the electrolyte uptake (EU) was based on the weight
change (EU% = (W2 − W1)/W1 × 100%; W1 is the original weight of the composite
membrane and W2 is the weight of the separator soaked in the liquid electrolyte). A
Gurley 4110 densimeter was used to test the air permeability of the membranes. The ionic
conductivity (σ) of the membranes was measured using an AC impedance spectroscopic
technique with a BioLogic Science Instrument VMP3B-10 workstation. The values of σ
were calculated according to the equation: σ = L/(SR), where L is the thickness of the
membranes, S is the area of the stainless-steel electrode and R is the bulk resistance of the
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membranes (marked as Rb). The same workstation was used to measure the interfacial
impedance of the membranes with a frequency range of 10 mHz–1 MHz (5 mV, 25 ◦C).
The membranes were sandwiched between two stainless-steel electrodes in an SS/M/SS
configuration and a liquid electrolyte mixture (volume ratio of EC/DEC/DMC = 1/1/1,
with 1 M LiPF6) was added to the coin cell. A lithium metal anode and a LiCoO2 (Yinuokai,
China) cathode were used to form a sandwich cell with the separators in the middle. The
cells were processed through several discharges with current densities from 0.5 C to 8 C
(2.75–4.2 V voltage) to test the C-rate capability. A LAND CT-4008 battery testing system
was used to investigate the cycle stability of the cells (0.5/2 C, 100 cycles). X-ray diffraction
tests were undertaken with an X’pert Pro Panalytical X-ray diffractometer at incident angles
ranging from 5◦ to 70◦.

2.3. Synthesis of SiO2 Nanoparticles

SiO2 nanoparticles were synthesized following a procedure from a previous publi-
cation [32]. The typical procedure was as follows: NH3·H2O (0.53 mol/L), ethanol and
water were added to a flask (A) at room temperature with 30 min stirring. Then, ethanol
and TEOS (0.53 mol/L) were added to another flask (B) to form a homogeneous solution.
After that, the solution in B was quickly poured into A under stirring over 2 h. The reaction
mixture was purified with centrifugation three times and ethanol was used to wash the
nanoparticles. Finally, the nanoparticles were dried in a vacuum at 60 ◦C. The diameters of
the prepared SiO2 nanoparticles were 281 ± 29 nm (Figure 1a).
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Figure 1. TEM images of SiO2 and coated core–shell nanoparticles: (a) SiO2, (b) SiO2@PZS-1,
(c) SiO2@PZS-2, (d) SiO2@PZS-3.

2.4. Synthesis of Silica-Polyphosphazene Nanoparticles (SiO2@PZS)

SiO2@PZS nanoparticles were synthesized following a procedure from a previous
publication [33]. The typical procedure was performed as follows: 200 mL ACN containing
1 g of prepared SiO2 was first stirred under ultrasonic conditions over 2 h, and then HCCP
(0.004 mol), BPS (0.012 mol) and 8 mL TEA were quickly added to the solution. Subse-
quently, the reaction temperature was raised to 60 ◦C and the solution was continuously
stirred for 8 h. Finally, the SiO2@PZS nanoparticles were purified with centrifugation three
times and washed with water and acetone. The obtained white solid was dried in a vacuum
at 80 ◦C for 24 h. SiO2@PZS nanoparticles prepared under other conditions used a similar
process and the results are shown in Table 1. We regulated the thickness of the PZS mainly
by controlling the concentrations of BPS and HCCP. When the concentrations of BPS and
HCCP were too low, the thickness of the nanoparticles obtained was not uniform. When
their concentrations were too high, the shell thickness of the obtained nanoparticles did not
increase significantly. Hence, we chose a moderate concentration range.

2.5. Fabrication of PE-SiO2@PZS Composite Membrane

The typical procedure was performed as follows: PVA was used as the binder to
enhance the adhesiveness of the nanoparticle slurry and membrane. First, SiO2@PZS
(0.5 g) nanoparticles were added to 10 mL deionized water and 2 h of ultrasonication was
deployed to ensure the effective l dispersion of the nanoparticles. Then, 0.1 g of PVA was
added to the solution and the mixture was stirred for another 8 h. Finally, the obtained
slurry was coated onto both sides of the PE membrane and the fabricated composite
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membrane (SiO2@PZS/PE) was then dried in a vacuum at 80 ◦C for 24 h. The same amount
of slurry was applied to the PE surfaces for different groups. The composite membrane
fabricated with pure SiO2 was prepared with a similar process and designated SiO2/PE.

Table 1. Synthesis of silica-polyphosphazene nanoparticles (SiO2@PZS).

Sample SiO2 (g) BPS (mol/L) HCCP
(mol/L) CAN (mL) TEA (mL) Layer Thickness of

PZS (nm) a

SiO2@PZS-1 0.5 0.03 0.01 100 2 65 ± 6
SiO2@PZS-2 0.5 0.06 0.02 100 4 96 ± 6

SiO2@PZS-3 0.5 0.12 0.04 100 8 128 ± 7
a Layer thickness of PZS was calculated with image software based on TEM analysis.

3. Results and Discussion
3.1. Characterization of SiO2@PZS Nanoparticles

The uniformity of nanoparticles on the coating membrane in LIBs directly affects
the conductivity and stability. Therefore, we first synthesized SiO2 nanoparticles with
a uniform size in order to prepare coated nanoparticles with a uniform size and SiO2
nanoparticles as the core (Figure 1a). The SiO2@PZS nanoparticles were prepared following
the method developed by Huang et al. [33]. The crosslinking reaction between BPS and
HCCP takes places very easily under alkaline condition and the polymer PZS generated
by the crosslinking reaction grows on the surface of SiO2, which was here considered as
a hard template core in the coating reaction. Therefore, the thickness of the coating layer
can be controlled by controlling the initial reactant feed ratio, reaction temperature and
reaction time, which have a great effect on the absorption of the liquid electrolyte and even
on the conductivity of LIBs.

FT-IR was used to investigate the coating reaction (Figure 2). The sharp peaks at
1490 cm−1 and 1590 cm−1 were due to the stretching vibration of the benzene ring skeleton
of BPS and the typical peaks for O=S=O of BPS could also be observed at 1150 cm−1 and
1290 cm−1 [34,35]. The peaks at 885 cm−1 and 1190 cm−1 are attributable to the stretching
vibration of the P=N double bond and P-N bond, which results from the cycle structure
of HCCP. In addition, the peaks at 945 cm−1 result from the stretching vibration of the
P-O-Ar structure, which was formed by the crosslinking reaction of BPS and HCCP. The
FT-IR results indicate that the crosslinking reaction of BPS and HCCP occurred successfully
and the outside part of SiO2 was PZS, which also shows that the three prepared core–shell
structures obtained with the same preparation method possessed similar structures.

In order to further verify the successful coating reaction of BPS and HCCP, which can
otherwise be understood as the so-called core–shell structure of the prepared SiO2@PZS
nanoparticle, TEM analysis was performed (Figure 1). Compared to the SiO2 nanoparticles
before coating, distinguishable core–shell structures could be observed in the fabricated
SiO2@PZS nanoparticles from the TEM images, and the coated nanoparticles were uniform,
which was very important for the subsequent membrane coating. Furthermore, by adjust-
ing the reaction conditions, coatings with different shell thicknesses could be obtained,
and three samples were fabricated with shell thicknesses of 65 ± 6 nm, 96 ± 6 nm and
128 ± 7 nm, respectively (Table 1). The diameters of the SiO2, SiO2@PZS-1, SiO2@PZS-2
and SiO2@PZS-3 particles were 281 nm, 411 nm, 473 nm and 537 nm, respectively. FT-IR
and TEM results confirmed that a SiO2@PZS core–shell nanoparticle with uniform structure
and controllable size was successfully prepared.
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Figure 2. FT-IR spectra of SiO2, SiO2@PZS-1, SiO2@PZS-2 and SiO2@PZS-3.

3.2. Characterization of Membranes for LIBs

The fabricated SiO2@PZS organic–inorganic composite was designed to improve
the stability and electrochemical performance of PE membranes for use in LIBs. Thus,
SiO2@PZS and a PVA binder were used to prepare the coating slurry, and the commercial
microporous PE membrane was coated with the slurry on both sides. SEM measurements
were first used to examine the surface morphology of the initial PE membrane and the
PE-SiO2 and PE-SiO2@PZS composite separators (Figure 3). Compared to the initial PE
membrane with a porous structure (Figure 3a), the PE-SiO2 (Figure 3b) and PE-SiO2@PZS
(Figure 3c–e) nanoparticles were uniformly stacked on the surface of the PE membrane,
and a porous structure was formed between the nanoparticles on the surface. The highly
interconnected gap between the nanoparticles provided a good porous structure, which
was expected to be filled with the liquid electrolyte, providing convenient channels for
ion movement and improving the wettability of the membrane. Moreover, there was no
obvious difference in the surface morphologies for the PE-SiO2@PZS-coated membrane
with different PZS shell thicknesses. In addition, XRD tests showed that the PE-SiO2 and
PE-SiO2@PZS-1 composite membranes were both amorphous (Figure S1).
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As aspects of the physical performance (such as the electrolyte uptake and Gurley
value) of separators play a pivotal role in LIBs, we then investigated those parameters
in detail and the results are listed in Table 2. In order to facilitate the comparison, all of
the separators were prepared with similar thicknesses. The Gurley value is a parameter
that can be used to predict porosity and air permeability properties; a lower Gurley value
indicates higher porosity and air permeability. We can conclude from Table 2 that the
Gurley value of the separator coated with SiO2@PZS was comparable to that of the initial
PE, which indicates that the coating process had a negligible effect on air permeability.

Table 2. Physical properties of PE membrane, PE-SiO2, PE-SiO2@PZS-1, PE-SiO2@PZS-2 and PE-
SiO2@PZS-3 separators.

Separator Thickness (µm) Gurley Value
(s/100 mL)

Electrolyte Uptake
(%)/1 h

PE 18 203 ± 1.5 90.0 ± 2.2
PE-SiO2 20.7 ± 0.5 215 ± 5.0 123.0 ± 9.0

PE-SiO2@PZS-1 21.8 ± 1.3 206 ± 7.2 138.6 ± 11.6
PE-SiO2@PZS-2 21.2 ± 1.3 204 ± 2.5 182.0 ± 14.5
PE-SiO2@PZS-3 22.3 ± 0.9 210 ± 3.5 213.5 ± 16.9

The electrolyte uptake of a separator is directly related to its electrochemical perfor-
mance, and the cycle performance and conductivity of LIBs can be enhanced by improving
the electrolyte uptake of the separators. The electrolyte uptakes of the separators coated
with SiO2 and SiO2@PZS were both higher than that of the initial PE (Table 2). Interestingly,
compared with the SiO2 coating, the electrolyte uptakes of the three SiO2@PZS coating sep-
arators were higher and the electrolyte uptake value increased with the increasing size of
the PZS shell layer. The electrolyte uptake of PE-SiO2@PZS-3 increased by up to 213%. The
increase in the electrolyte uptake for the nanoparticle coating separators mainly resulted
from the pores between SiO2 and SiO2@PZS nanoparticles. Moreover, the crosslinked PZS
shell layer of the SiO2@PZS also interacted with the polar organic solvents and lithium
salt, which may explain the higher electrolyte uptake of the SiO2@PZS-coated separator
compared to the SiO2-coated separator.

3.3. Characterization of Electrochemical Performance

Finally, we focused on the electrochemical performance of the coated separators.
Figure 4a shows the AC impedance spectra for the simulated battery with a PE membrane
and coated separators. The ionic conductivity (σ) calculated according to σ = L/(SR) is
shown in Table 3. The σ value with the PE membrane was the lowest (5.8 × 10−4 S/cm)
and that of PE-SiO2@PZS-3 was 1.4 × 10−3 S/cm, which was the highest. The σ values
of the PE-SiO2@PZS-1-, PE-SiO2@PZS-2- and PE-SiO2@PZS-3-coated separators increased
with the increase in the PZS shell thickness, and they were also higher than that of the
PE-SiO2-coated separator, which was mainly due to the improvement in the electrolyte
uptake provided by the PZS outer layer.

Figure 5 shows the rate performances of LiCoO2/Li batteries assembled with different
separators. The PE membrane and composite separators were discharged at 0.5 C, 1 C, 2 C,
5 C and 8 C, respectively, under a charging rate of 0.5 C. It can be seen from Figure 5 that
the discharge capacities of the composite separators were higher than for the PE membrane,
and the discharge capacity decreased with the increase in the rate. The active substance
adsorbed on the electrode decreased with the increase in the discharge rate, resulting in
a lower discharge capacity. At the same rate, the discharge capacity of the PE-SiO2@PZS
composite separator gradually increased with the increase in the thickness of the PZS outer
layer. Moreover, the discharge capacities of the PE-SiO2@PZS-3 separator at different rates
were higher than these of the PE-SiO2@PZS-1, PE-SiO2@PZS-2 and PE-SiO2 separators: the
discharge capacities at 1 C, 5 C and 8 C were 154, 142 and 129 mAh/g, respectively, which
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was mainly due to the excellent wettability and retention of the PE-SiO2@PZS-3 separator
in the electrolyte.
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Figure 5. Discharge capacities of the cells assembled with the PE membrane, PE-SiO2, PE-SiO2@PZS-1,
PE-SiO2@PZS-2 and PE-SiO2@PZS-3 separators at different discharge rates.

The impedances of the batteries after C-rate measurement were also tested (Figure 4b).
The lower resistance for the PE-SiO2@PZS separators suggested better compatibility be-
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tween the electrolyte-soaked separator and the lithium electrode. The cell assembled with
the PE-SiO2@PZS-3 separator showed the lowest resistance, indicating a negative correla-
tion between the thickness of the PZS outer layer and the battery resistance. The hydroxyl
groups and N and O atoms on the surface of the PZS can coordinate with lithium ions
to enhance the dissociation of lithium salts, thereby improving ionic conductivity and
discharge capacity [36,37].

4. Conclusions

A series of core–shell structured silica-polyphosphazene nanoparticles (SiO2@PZS)
with different PZS layer thicknesses were synthesized and coated onto both sides of a
polyethylene (PE) microporous membrane to prepare composite membranes. The effect of
the SiO2@PZS size and the PZS layer thickness on the electrolyte uptake, Gurley value and
electrochemical performance of the separators was carefully studied. Compared with the
pure silica-coated membrane and PE membrane, the PE-SiO2@PZS composite membrane
had higher ionic conductivity. With the increase in the SiO2@PZS shell thickness, the
electrolyte uptake and ionic conductivity gradually increased. The discharge capacity of
the PE-SiO2@PZS composite membrane at 8 C rate was 129 mAh/g, which was higher than
the values of 107 mAh/g for the PE-SiO2 composite membrane and 104 mAh/g for the PE
membrane.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15144875/s1, Figure S1: XRD curves for PE-SiO2 and PE-
SiO2@PZS-1 composite membranes.
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