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Abstract: The interaction of hydrogen with specimens of 316L steel and Inconel 718 alloy processed
by selective laser melting (SLM) was studied. The effect of hydrogen on the mechanical properties of
SLM materials, hydrogen permeability, and microstructure was investigated; besides, these values
were compared with the properties of conventionally produced materials. It was shown that SLM
can be successfully used to produce parts for operation in hydrogen environments at high pressure at
room temperature.
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stainless steel

1. Introduction

Currently, materials produced by selective laser melting (SLM) technologies are re-
garded as a new class of structural materials, while SLM is considered as an advantageous
technology for designing complex-shaped metal products for prospective applications
in mechanical engineering, biomedicine, the power industry, etc. [1–5]. Active research
is underway into SLM materials and by now the effect of melting modes on the density,
structure, and physical and mechanical properties of various SLM materials has been stud-
ied comprehensively [6–10]. Their corrosion resistance [2,4,9–11], deformation behavior
at elevated temperatures [5,8,12–14], resistance to fatigue failure [3,8,11,15–17], and other
properties are being actively investigated.

At present, 316L stainless steel and Inconel 718 nickel superalloy are the most com-
monly used materials in additive manufacturing. The mechanical properties of SLM-
processed 316L steel and Inconel 718 alloy have been extensively researched [6,8,14,18,19].
Studying the interaction of such materials with hydrogen is a new attractive research
field [20–22]. The results of prospective studies are of interest for manufacturing equipment
used in hydrogen-containing environments, in particular, high-pressure vessels.

The current paper aimed to study the interaction of SLM-processed 316L stainless
steel and Inconel 718 nickel alloy with hydrogen as well as to study the hydrogen effect on
mechanical properties and hydrogen permeability.
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2. Materials and Methods

The objects of this research were specimens of 316L corrosion-resistant austenitic steel
and Inconel 718 nickel superalloy processed by selective laser melting of powder materials.
Table 1 shows the chemical composition of the powders.

Table 1. Chemical composition of 316L steel and Inconel 718 powders (wt. %).

Material Fe Ni Cr Mo Nb Mn Ti Al Si C S P

316L steel Bal. 14 17.0 2.8 - 1.5 0.25 - 0.40 0.03 0.01 0.02

Inconel 718 19 Bal. 19.9 4.1 5.3 0.3 1.0 0.8 0.25 0.04 0.01 0.01

The SALD-2300 Shimadzu laser particle-size analyzer was used to qualify particle size
distribution of the powders. The average particle size of 316L and Inconel 718 powders was
15 and 20 µm respectively (Figure 1). The D75 values for 316L steel and Inconel 718 alloy
powders were under 20 and 25 µm respectively (75% of the powder particles had a diameter
of less than 20 and 25 µm).
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Specimens were processed using the Realizer SLM 100 machine. The basic parameters
of the SLM process are shown in Table 2. Two types of specimens were processed for the
research: cylindrical specimens for tensile tests (Figure 2a) and membrane specimens for
studying hydrogen permeability (Figure 2b). During manufacturing, the axis of cylindrical
specimens for tensile testing was perpendicular to the laser beam axis, while that of
disk-shaped specimens for hydrogen permeability studies was parallel to the laser beam
axis. Tensile tests were performed on Type III cylindrical specimens with a diameter and
length of the gauge section of 3 and 15 mm respectively (ISO 6892-1). Dog-bone shaped
specimens for tensile tests were produced by turning the SLM billets (Figure 2c). One-
millimeter thick membrane specimens with a diameter of 20 mm for studying hydrogen
permeability were produced by wire electrical discharge machining from cylindrical billets
20 mm in diameter and 10 mm in length. There was no additional surface treatment of the
membrane specimens.

Table 2. Basic parameters of selective laser melting.

Parameter 316L Inconel 718

Layer thickness, µm 30 30

Laser power, W 80 100

Exposure time, µs 80 100

Point distance, µm 50 30

Laser beam diameter, µm 90 100

Hatch spacing, µm 120 150

Angle rotation of scanning direction 90◦ 90◦

Substrate preheating temperature 200 ◦C

Protective environment Argon (99.998 wt. %)
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Figure 2. SLM specimen image: (a)—tensile test specimens, (b)—hydrogen permeability test speci-
mens, (c)—photos of (a) and (b) specimens.
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The microstructure of the specimens was studied with the Axiovert 25 optical micro-
scope after etching in a hot Krupp’s reagent (50 mL of hydrochloric acid, 5 mL of nitric
acid, and 5 mL of water). The microstructure of cylindrical specimens was studied in three
planes XZ, YZ, and XY (see Figure 2a), while the microstructure of membrane specimens
was researched in sectional planes XZ and XY (Figure 2b).

The mechanical properties of specimens and the effect of high-pressure hydrogen
were determined during tensile tests in helium and in hydrogen (with purity of ≥99.9999%)
at 80 MPa pressure and room temperature. The specimens were kept in hydrogen for
10 min before testing. The UTS 100 K testing machine, equipped with a chamber for testing
in high-pressure gas environments, was used to perform tensile tests at a strain rate of
5 × 10−5 s−1. The chamber, the testing techniques, and measurement errors are described
in refs. [23,24]. The following mechanical properties were determined during the tests:
σB—ultimate tensile strength, σ0.2—yield stress, δ5—elongation to failure, ψ—percentage
reduction of area. The relative error of measuring σB and σ0.2 was 4.7%, with the absolute
error of measuring δ5 and ψ being 0.1% and 0.4% respectively. The hydrogen effect on
mechanical properties was evaluated through a non-dimensional parameter: β = X (H2)/X
(He), where X (H2) is the value of the (σB, σ0.2, δ5, ψ) characteristic during tensile tests in
hydrogen and X (He) is its value during tests in helium.

Hydrogen permeability of membrane specimens was studied on a special testing unit
(Figure 3). The membrane specimen was laser-welded between two stainless steel tubes
with a diameter of 20 mm and 2 mm-thick walls (effective specimen diameter ~18 mm)
(Figure 4).
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Figure 3. Permeability testing system: PS1, PS2, PS3—pressure sensors; HV—hand valve; AV1,
AV2—air valve; H1—heater; ST—surge tank; QMS—mass spectrometer; TP—turbomolecular pump;
BP—backing pump; hydrogen supply—vanadium metal hydride hydrogen generator.

Before the high-temperature hydrogen permeability tests, the specimens were an-
nealed in vacuum at constant pumping at a residual pressure less than 5 × 10−3 Pa and at
a temperature of 100–150 K higher than the testing temperature (up to 1273 K during 4 min
and up to 1023 K for 2.5 h). Once annealing was complete and the target temperature of
the specimen was reached, diffusion-pure hydrogen was supplied to the input membrane
surface of the specimen at a pressure of ~0.5 MPa for 316L steel and ~0.9 MPa for Inconel
718 alloy. The pressure value was set based on the strength properties of the membrane
specimen material when used within the elastic region. The QMS Prisma 200M quadrupole
mass spectrometer was used to record the flow (partial pressure) of hydrogen passing
through the specimen at output membrane surface. The pressure at the input surface of
the specimen remained constant throughout the experiment. Based on the analysis of the
experimental data obtained by the method of determining high-temperature hydrogen
permeability [25] (based on the Daynes method), the following kinetic parameters of hydro-
gen permeability were calculated: PH—hydrogen permeability coefficient; EP—hydrogen
permeability activation energy; DH—diffusion coefficient; ED—diffusion activation energy;
SH—hydrogen isotopes solubility in the material; HS—heat of dissolution.
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Figure 4. Model assembly for high-temperature hydrogen permeability tests: 1, 2—tubes;
3—researched specimen (membrane).

X-ray diffraction analysis (XRD) was conducted using the Shimadzu LabX XRD-6000
diffractometer (radiation CuKα, λ = 1.54056 Å, the 2θ range from 20◦ to 80◦, scanning speed
2◦/min—for survey X-ray, 0.125◦/min—for studying X-ray peak broadening).

3. Results
3.1. Results of Mechanical Tests
3.1.1. Tensile Test Results for 316L Steel Specimens

Table 3 shows the tensile tests results for 316L steel specimens in hydrogen and in
helium at 80 MPa. Figure 5a shows tensile stress–strain diagrams (σ–ε) for 316L steel
specimens in helium and in hydrogen. As is demonstrated in Figure 5a, σ (ε) relations for
SLM 316L steel are characterized by a long stage of stable plastic flow. It should be noted
that for testing in hydrogen, the σ (ε) relation remains unchanged with a slight decrease
in plasticity.

Table 3. Tensile tests results for SLM 316L steel in hydrogen and in helium.

Material Environment
σB σ0.2 δ5 ψ

MPa %

316L steel
(this work)

He (80 MPa) 730 600 41 59
H2 (80 MPa) 690 570 37 46
Parameter β 0.95 0.95 0.90 0.78

Tensile test results for similar steel specimens processed by conventional
manufacturing methods [23,24]

1.4404 steel (Ø 12 mm bar)
He (70 MPa) 590 265 63 85
H2 (70 MPa) 570 260 45 43
Parameter β 0.97 0.98 0.71 0.51

1.4404 steel (12 mm sheet)
He (70 MPa) 650 375 54 83
H2 (70 MPa) 620 345 41 46
Parameter β 0.95 0.92 0.76 0.55
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For comparison, Table 3 shows the results of tensile testing in helium and in hydrogen
of specimens made of 1.4404 steel (analogous to 316L steel) obtained by hot rolling [23,24].
As can be seen from Table 3, SLM-processed 316L steel has high mechanical properties.
It should be pointed out that SLM 316L steel exhibits higher strength (yield stress, in
particular) and lower plasticity than wrought steel.

An analysis of the results in Table 3 suggests that SLM-processed 316L steel specimens
have better hydrogen-resistance characteristics. Ultimate tensile strength, yield stress, and
elongation to failure decrease by less than 5%–10% against the typical values. Percentage
reduction of area is the most sensitive to hydrogen exposure. Despite a noticeable decrease
during tests in hydrogen (22% of the typical value), percentage reduction of area remains
very high (ψ = 46%). It should be also noted that plasticity reduced less in SLM-processed
316L steel than in similar steel manufactured conventionally.

3.1.2. Tensile Test Results for Inconel 718 Alloy Specimens

Table 4 shows the tensile tests results for Inconel 718 specimens in hydrogen and in
helium at 80 MPa. Figure 5b shows the tensile test diagrams of Inconel 718 alloy specimens
in helium and in hydrogen. As is shown in Figure 5b, σ (ε) relations for SLM-processed
Inconel 718 alloy are characterized by a long strain-hardening stage followed by fast fracture
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of the specimens. The type of σ (ε) relations during testing in helium and in hydrogen was
similar whereas Inconel 718 alloy demonstrated lower plasticity when tested in hydrogen.

Table 4. Tensile tests results for SLM Inconel 718 in hydrogen and helium at 80 MPa.

Environment σB σ0.2 δ ψ

MPa %

He 1040 780 19.5 29
H2 940 790 - -

Parameter β 0.90 1.01 - -

These results suggest that hydrogen does not significantly affect the strength character-
istics of the Inconel 718 alloy. It should be noted that Inconel 718 is a precipitation-hardened
and heat-hardened alloy, demonstrating σB ≥ 1250 MPa and σ0.2 ≥ 900 MPa after stan-
dard heat treatment [26]. SLM specimens were not subjected to additional hardening heat
treatment, so their strength properties were 15% lower than for heat-hardened specimens.

It should be noted that during tests in hydrogen, the Inconel 718 alloy specimens
began to fail in the area of transition from the gauge section to the gripping head. This
result confirms that SLM-processed Inconel 718 alloy specimens with stress concentrators
are highly sensitive to hydrogen. This particular type of specimen failure where the
fracture zone was outside the gauge section of the specimen prevented us from correctly
determining the plasticity behavior of SLM-processed Inconel 718 alloy specimens and, as a
result, did not allow us to evaluate the hydrogen effect on the plasticity of Inconel 718 alloy.
It should be noted that some research (for example, ref. [27]) illustrates a significant effect
of stress concentrators on mechanical properties of the wrought Inconel 718 alloy when
tested in hydrogen-containing environments.

3.2. Results of Hydrogen Permeability Studies

Table 5 contains hydrogen permeability kinetic parameters for SLM materials and
literature data for similar conventionally produced materials. As an example, Figure 6
provides temperature dependences of hydrogen permeability coefficient PH and diffusion
coefficient DH for 316L steel specimens.

Table 5. Kinetic parameters of high-temperature hydrogen permeability for SLM specimens and
specimens processed conventionally.

Material D0,
m2/s

ED,
kJ/mol

P0,
mol/

(m·s·Pa1/2)

EP,
kJ/mol

S0,
mol/(m3·Pa1/2)

HS,
kJ/mol

316L steel 3.42 × 10−7 48.0 7.8 × 10−7 68.66 2.28 20.64

Inconel 718 1.66 × 10−7 41.9 1.4 × 10−7 61.33 0.84 19.47

12X18H10T steel [28] 8.60 × 10−7 50.2 5.48 × 10−6 72.5 - 15.90

12X18H10T steel [29] 3.40 × 10−8 29.6 4.5 × 10−7 71.4 - -

316L-IG steel [30]
(for deuterium) 5.90 × 10−7 55.0 0.3 × 10−6 66.0 0.50 11.0

316L steel [31] 2.99 × 10−6 59.7 7.7 × 10−7 66.6 0.26 6.88

An analysis of these results suggests that the kinetic parameters of hydrogen diffusion
and permeability for SLM-processed 316L steel and Inconel 718 alloy are similar to those of
12X18H10T and 316L wrought steels. Somewhat low values of diffusion activation energy
and high values of the heat of dissolution as compared with the data for conventionally
produced materials can be possibly due to microscopic pores with passivated open surfaces
in the structure formed during the SLM process.
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3.3. Results of Metallographic Studies

The microstructure of 316L steel at magnification ×400 is a combination of cross-
ing “microwelded seams” (i.e., laser beam scanning track), and it can be clearly seen
using optical microscopy (Figure 7). Such microstructures are quite common in SLM-
processed austenitic steels [36–39]. It should be noted that in contrast to the welded seam
of 12X18H10T steel that has a dendritic structure formed during relatively slow cooling of
the molten metal, dendrites are not observed in SLM 316L steel specimens. We expect that
this may be due to the high solidification rate of the material; in ref. [32], the steel cooling
rate after laser exposure was estimated at 103 . . . 106 K/s, which is much higher compared
with the steel melt solidification rate for conventional casting methods. In our work, the
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characteristic size of microstructural elements (the width of microwelded seams) was about
100 µm (Figure 7).
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The structure of 316L steel in the laser beam scanning plane (XY plane) (Figure 7c,d)
is different from the structure of the material in the XZ and YZ planes that are parallel
to the laser beam. Elliptical shaped areas were observed in the XY plane structure and
their boundaries are clearly defined in X or Y scanning directions. These areas are the
longitudinal section of the microwelded seams formed along the laser beam scanning
directions. The 316L steel structure has single pores and lacks of fusion that do not
significantly affect the mechanical properties of the steel specimens (see Table 3).

The mesostructure of the Inconel 718 alloy specimen consisting of crossing microw-
elded seams are similar to those of the 316L steel specimen (Figure 8), and the same
structure of SLM Inconel 718 alloy is observed in refs. [33–35].

Figure 9a,b show the characteristic microstructures obtained on the 316L steel spec-
imens before and after the high temperature hydrogen permeability tests. The average
grain size was about 8 µm before the tests (Figure 9a). The microstructure of 316L steel was
practically unchanged after high-temperature hydrogen permeability tests, a slight grain
growth to an average size of 11 µm being observed (Figure 9b).

Figure 9c,d show the characteristic microstructure obtained on SLM Inconel 718. On
the specimens before the high temperature hydrogen permeability tests (Figure 9c), a grain
structure with an average grain size of about 10 µm and a cellular structure with an average
cell size of about 2 µm were observed. The presence of cells in the Inconel 718 alloy is
usually associated with the Laves phase [40,41]. The grain structure of Inconel 718 alloy
did not change significantly after high-temperature hydrogen permeability tests, a slight
increase in the average grain size up to 15 µm being observed (Figure 9d). It should be
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noted that the cells of the Laves phase disappeared completely after the high-temperature
hydrogen permeability tests.
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Changing grain structure in SLM materials after high-temperature hydrogen per-
meability testing indicates the start of a recrystallization process. Recrystallization nor-
mally occurs after heating the deformed material due to a decrease in the elastic strain
energy [42,43]. In SLM-processed specimens, rapid solidification may cause residual
stresses [44–48], which create a certain reserve of elastic energy. When a specimen is heated
to high temperatures (prior to hydrogen permeability testing, the membrane specimen was
subjected to high-temperature treatment, which was a guarantee of reliable degassing of
the membrane and chamber walls from residual hydrogen), recrystallization processes of
the material may be activated. Changes in the membrane specimen structure as a result
of high-temperature hydrogen permeability testing are accompanied by a decrease in the
microhardness of 316L steel from 2600 to 2100 MPa, which also confirms the beginning
of recrystallization. It should be noted, however, that the microhardness of steel after
high-temperature hydrogen permeability testing remains very high compared with the
microhardness of the base metal and weld joints of 316L steel specimens [49].

The recrystallization process during high temperature tests of 316L and Inconel 718 al-
loy specimens in a hydrogen environment was confirmed by the X-ray diffraction analysis
results. Figure 10a shows X-ray diffraction patterns for 316L steel in various states (powder,
SLM specimen, and SLM specimen after high-temperature tests in a hydrogen environ-
ment), and Figure 10b demonstrates the results of X-ray diffraction analysis of Inconel
718 alloy specimens. (The high intensity of -Fe austenite X-ray peak (220) at large diffraction
angles is linked to the texture of the specimen. Hence, the effect of internal stresses on the
X-ray peak broadening in the area of large diffraction angles was not performed).

An analysis of the data in Figure 10a suggests that after SLM, the half-width of the
(111) peak of γ-Fe austenite in SLM 316L steel decreased from 0.286◦ to 0.241◦ and it was
further reduced to 0.236◦ after high-temperature testing in hydrogen. This result indicated
a decrease in internal microstresses of the second order during SLM and high-temperature
annealing. It should be noted that the position of the (111) peak in this case changed
insignificantly—the diffraction angle 2Θmax, corresponding to the position of the (111)
γ-Fe austenite maximum X-ray peak in 316L steel for the powder and SLM specimen was
43.42◦ (±0.02◦), with a slight increase in 2Θmax to 43.46◦ (±0.01◦) after high-temperature
tests in hydrogen. The shift of the X-ray maximum towards large reflection angles due
to the Wulff–Bragg’s equation (2d·sin(Θmax) = nλ, where d is interlayer spacing, λ is the
X-ray wavelength, and n is the X-ray diffraction maximum number), suggests that after
SLM-compressive internal macrostresses (stresses of the first order) were formed in the
316L steel specimen, they favorably affected the mechanical properties of SLM parts.

Similar results were obtained from X-ray diffraction analysis of Inconel 718 alloy spec-
imens (Figure 10b)—2Θmax in Inconel 718 alloy after SLM increased from 43.40◦ (±0.01◦)
to 43.44◦ (±0.01◦) with an increase of 2Θmax = 43.50◦ (±0.02◦) after a high-temperature test
in hydrogen. The half-width of the X-ray peak (110) then decreased from 0.191◦ (powder of
Inconel 718) to 0.140◦ (SLM specimen after high-temperature testing in hydrogen).
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4. Conclusions

1. At room temperature in a hydrogen environment, the mechanical properties of 316L
steel processed by SLM exceed those of steel produced conventionally. In particular,
the ultimate tensile strength and yield stress were 690 and 570 MPa respectively.
The hydrogen effect leads to a slight decrease in the strength of SLM 316L steel by
5%, which is comparable to a strength decrease in similar steels manufactured using
conventional technology.

2. Hydrogen exposure does not have a significant effect on the strength of SLM-processed
Inconel 718 alloy. However, the fracture behavior of SLM specimens shows the
high sensitivity to stress concentrators in hydrogen. Ultimate tensile strength and
yield stress for SLM Inconel 718 (as-built) were 940 and 790 MPa respectively in a
hydrogen environment.

3. The kinetic parameters of hydrogen permeability for SLM 316L steel and Inconel
718 alloy specimens were comparable to those of 12X18H10T and 316L steel specimens
produced conventionally. Small differences in the activation energies of diffusion
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and hydrogen dissolution, caused by the SLM process, did not significantly affect the
processes of hydrogen transfer in the researched materials.

4. The obtained results confirm that SLM can be successfully used to produce parts for
operation in hydrogen environments at high pressure at room temperature.
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