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Abstract: Graphene with defects is a vital support material since it improves the catalytic activity and
stability of nanoparticles. Here, a density functional theory study was conducted to investigate the
stability, energy, and reactivity properties of NinPdn (n = 1–3) clusters supported on graphene with
different defects (i.e., graphene with monovacancy and pyridinic N-doped graphene with one, two,
and three N atoms). On the interaction between the clusters and graphene with defects, the charge
was transferred from the clusters to the modified graphene, and it was observed that the binding
energy between them was substantially higher than that previously reported for Pd-based clusters
supported on pristine graphene. The vertical ionization potential calculated for the clusters supported
on modified graphene decreased compared with that calculated for free clusters. In contrast, vertical
electron affinity values for the clusters supported on graphene with defects increased compared
with those calculated for free clusters. In addition, the chemical hardness calculated for the clusters
supported on modified graphene was decreased compared with free clusters, suggesting that the
former may exhibit higher reactivity than the latter. Therefore, it could be inferred that graphene with
defects is a good support material because it enhances the stability and reactivity of the Pd-based
alloy clusters supported on PNG.

Keywords: binding energies; bimetallic clusters; graphene with vacancy; pyridinic N-doped graphene

1. Introduction

Over the last decade, bimetallic clusters or nanoparticles have received increasing
attention owing to their different physical and chemical properties compared with their
pure counterparts [1–10]. Due to their unique properties, these clusters can be utilized
for various technological applications in the fields of catalysis, electronics, and medicine,
among others [11–14]. Specifically, in the field of catalysis, the interest in bimetallic systems
formed by Pd alloyed with 3d transition metals has steadily grown, largely due to their
promising catalytic efficiency [15–20]. For instance, PdNi/C nanoparticles have been
evaluated for the ethanol oxidation reaction, where the Pd2Ni3/C catalyst exhibits higher
activity and stability in alkaline media than the Pd/C catalyst [15]. Moreover, Pd40Ni60
nanomaterials have been evaluated for methanol and ethanol oxidation in alkaline media,
where the Pd40Ni60 catalyst presents a higher electrocatalytic activity than nanoporous
Pd [16]. In addition, Pd, Cu, Pd98Cu2, Pd94Cu6, and Pd86Cu14 nanoparticles have been
investigated for the methanol oxidation reaction [18]. Among the nanoparticles studied,
the Pd94Cu6 catalyst presented the highest catalytic activity.
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Nevertheless, clusters or nanoparticles tend to agglomerate, which can affect their
catalytic activities and stabilities [21,22]. Consequently, the use of support materials is
required to avoid this issue. In this context, graphene has proven to be a good support
material due to its outstanding properties, such as a large specific surface area, corrosion
resistance, excellent electrical conductivity, and good chemical stability [23,24]. However, it
exhibits limited chemical reactivity [25,26]; to date, different strategies, such as defect engi-
neering and surface functionalization, have been implemented to improve this issue [27].
Specifically, defect engineering (e.g., vacancy and doping) has proven to be an excellent
method to increase the reactivity of carbon structures [27–29]. For example, pyridinic
N-doped graphene (PNG) has proven to be a vital support material since it enhances the
catalytic activity and stability of nanoparticles [30–33]. For these reasons, theoretical and
experimental investigations on the reactivity and stability of nanoparticles supported on
graphene with defects are important in the field of catalysis.

There are many theoretical studies on the electronic and energetic properties of
monometallic clusters supported on modified graphene [34–37]; however, those on Pd
alloyed with transition metals supported on modified graphene are limited, although there
are some interesting studies that bear mentioning. For instance, the stability of MPd12
(M = Fe, Co, Ni, Cu, Zn, Pd) nanoparticles deposited on graphene with a vacancy was
investigated employing the density functional theory (DFT). It was shown that the de-
fective graphene can provide anchoring sites for these nanoparticles by forming a strong
metal−graphene interaction [38]. In another study, Pd6Ni4 and Pd4Ni6 clusters supported
on defective graphene have been investigated using the DFT and shown to have good
stability [39]. Recently, Sánchez-Rodríguez and collaborators have studied icosahedral
M@Pd12 (M = Fe, Co, Ni, Cu, and Pd) core-shell nanoparticles supported on PNG using the
DFT [40], demonstrating that the nanoparticles have good stability and reactivity. These
investigations have provided good evidence of the stability and reactivity of Pd-based
bimetallic clusters deposited on graphene with defects. However, DFT computations on the
stability and reactivity of Pd-based bimetallic clusters supported on graphene with defects
are still required. Therefore, in this study, a DFT analysis on the stability, energy, and
reactivity properties of NinPdn (n = 1−3) clusters supported on graphene with a vacancy
and on PNG with one, two, and three N atoms is developed.

2. Computational Details

All electronic structure calculations were conducted with the DFT as implemented
in the ORCA package [41]. The revised Perdew–Burke–Ernzerhof exchange-correlation
functional was used in all calculations [42]. Ahlrichs basis set def2-SVP was used for the
C, H, N, and O atoms [43], whereas the Pd atoms were treated using an 18-electron quasi-
relativistic effective core potential [44]. The values of the convergence tolerances for geom-
etry optimization were energy change = 5 × 10−6 Eh, max. gradient = 3 × 10−4 Eh/Bohr,
rms gradient = 1 × 10−4 Eh/Bohr, max. displacement = 4 × 10−3 Bohr, and rms
displacement = 2 × 10−3 Bohr. To investigate the stability of NinPdn (n = 1−3) clus-
ters on PNG, most stable structures for the clusters were obtained from a previous study [2]
and reoptimized using the computational details of this investigation.

To investigate the stability, energy, and reactivity properties of NinPdn (n = 1−3)
clusters deposited on graphene with different defects, circumcoronene (C54H18) was used
as the graphene model. To obtain graphene with a vacancy, a C atom was removed from
graphene (Figure 1a). To obtain the PNG with one, two, and three N atoms, a C atom
was removed from the center of graphene to create a vacancy, and then the hanging C
atoms were replaced by one, two, and three N atoms (Figure 1b–d). The binding energy
(Eb) between the bimetallic cluster and the modified graphene was calculated by the
following equations:

Eb = ECluster/Graphene −
(

ECluster + EGraphene

)
(1)



Materials 2022, 15, 4710 3 of 8

where ECluster/Graphene is the energy of the bimetallic cluster supported on graphene with
defects, ECluster is the energy of the bimetallic cluster, and EGraphene is the energy of the
graphene with defects.
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Figure 1. Structures of graphene with different defects: (a) Graphene with a vacancy, (b) pyri-
dinic N-doped graphene (PNG) with an N atom, (c) PNG with two N atoms, and (d) PNG with
three N atoms.

Finally, the intermolecular interactions between the NinPdn (n = 1−3) clusters and
PNG were investigated using the quantum theory of atoms in molecules implemented in
the Multiwfn 3.8 program [45].

3. Results
3.1. Structures and Properties of NinPdn (n = 1−3) Clusters

The ground-state structures of the NinPdn (n = 1−3) clusters are illustrated in Figure 2.
The most stable structure of the NiPd cluster was a triplet. The ground-state structure of
the Ni2Pd2 cluster was a triplet with a tetrahedral shape. Finally, the most stable structure
of the Ni3Pd3 cluster was an incomplete pentagonal bi-pyramid with a spin multiplicity
of five.
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Figure 2. Ground-state structures of the NinPdn (n = 1−3) clusters and their respective spin multi-
plicities (M).

Different properties, e.g., the binding energy per atom (BE/n), vertical ionization
potential (VIP), vertical electron affinity (VEA), and chemical hardness (η), were calculated
for the ground-state cluster structures of the NinPdn (n = 1−3) clusters, Table 1. The BE/n
and VEA grew monotonically when the cluster size increased. For the calculated VIP, the
Ni2Pd2 cluster had the lowest value. The η was calculated from the VIP and VEA. As the
cluster size increased, the η tended to decrease, which suggested that the larger clusters
presented greater reactivity. The calculated properties were similar to those previously
reported for these systems [2].
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Table 1. Properties of NinPdn (n = 1−3) clusters.

System BE/n VIP (eV) VEA (eV) η (eV)

NiPd 1.22 7.52 0.62 3.45
Ni2Pd2 2.05 5.89 0.73 2.58
Ni3Pd3 2.47 6.20 1.57 2.32

3.2. Properties of NinPdn (n = 1−3) Clusters Deposited Graphene with Different Defects

The most stable interaction between the NinPdn (n = 1−3) clusters and graphene with
different defects was obtained using many initial interactions. Figures 3–5 illustrate the
most stable interactions between the clusters and graphene with defects. For the NiPd
dimer supported on the modified graphene, the most stable interaction was with the Ni
atom trapped in the vacancy of modified graphene (Figure 3). For the Ni2Pd2 cluster
deposited on the graphene with defects, the most stable interaction was with two Ni atoms
joined with the graphene substrates, whereby one of the atoms was anchored in the vacancy
(Figure 4). Finally, for the Ni3Pd3 cluster supported on the graphene with defects, the
most stable interaction was Ni atoms joined with the graphene substrates (Figure 5). For
example, for the Ni3Pd3 cluster supported on PNG with three N atoms, the most stable
interaction occurred with three Ni atoms, whereby one atom was anchored in the vacancy
of the PNG (Figure 5).
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The Eb between the NinPdn (n = 1−3) clusters and graphene with defects was also
computed (Table 2). It was observed that Eb was substantially higher than that previously
reported for Pd-based clusters supported on pristine graphene [46,47]. Therefore, it could
be inferred that graphene with a vacancy and PNG with a different number of N atoms are
good support materials for NiPd alloy clusters. It was also found that the calculated Eb for
the NinPdn (n = 1−3) clusters deposited on graphene with a vacancy was higher compared
with that calculated for the same clusters supported on PNG with a different number of N
atoms. These results are similar to those reported in the literature, where it was observed
that the Eb of Nin (n = 1−4) clusters supported on graphene with a vacancy was higher
than that computed for the same clusters supported on PNG with a different number of
N atoms [48,49]. After, the charge transfer between the NinPdn (n = 1−3) clusters and
modified graphene was also calculated (Table 2). The results suggested that the clusters
transferred a charge to graphene with defects, as these supports ended with a total positive
charge greater than 0.5 e, which can be associated with higher Eb, whereas for the charge
transfer between the metal clusters and pristine graphene, the charge transfer is lower,
which produces a low Eb [50]. In addition, it was observed that the Ni atoms transferred
more charge than the Pd atoms to the modified graphene. This tendency is attributed to the
lower electronegativity of the Ni atoms compared with Pd atoms. It was also observed that
as the size of the clusters increased, the transfer of charge from the clusters to the graphene
supports tended to increase.

Table 2. Properties of NinPdn (n = 1−3) supported on graphene with defects.

System Eb (eV) Charge (e) VIP (eV) VEA (eV) η (eV)

NiPd/C53H18 −6.47 0.50 5.64 1.83 1.91
NiPd/C52H18N −4.72 0.65 5.50 1.78 1.86
NiPd/C51H18N2 −5.26 0.66 5.15 1.67 1.74
NiPd/C50H18N3 −4.05 0.73 4.85 1.74 1.56
Ni2Pd2/C53H18 −6.86 0.65 5.49 1.97 1.76
Ni2Pd2/C52H18N −4.92 0.65 5.20 2.13 1.51
Ni2Pd2/C51H18N2 −5.54 0.75 5.17 2.04 1.54
Ni2Pd2/C50H18N3 −4.65 0.73 5.37 1.99 1.69
Ni3Pd3/C53H18 −6.22 0.70 5.42 2.28 1.57
Ni3Pd3/C52H18N −4.43 0.70 5.17 2.13 1.54
Ni3Pd3/C51H18N2 −4.79 0.81 4.99 1.94 1.52
Ni3Pd3/C50H18N3 −4.26 0.82 5.09 1.91 1.59

Finally, some energetic properties were calculated (Table 2). The VIP calculated for the
clusters supported on modified graphene decreased compared with that calculated for free
clusters. For example, the VIPs of the NiPd dimer deposited on modified graphene ranged
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from 4.85 to 5.64 eV, which was less than the reported value for this dimer. Regarding the
VEA, the computed values for the clusters supported on graphene with defects increased
compared with those calculated for free clusters. Next, the η was calculated from the VIP
and VEA. Interestingly, the η calculated for the clusters supported on modified graphene
decreased compared with free clusters, suggesting that the clusters supported on modified
graphene can present greater reactivity than free clusters as a small η implies an increase in
the reactivity.

4. Conclusions

A DFT study was conducted to investigate the stability, energy, and reactivity prop-
erties of NinPdn (n = 1−3) clusters supported on graphene with defects (i.e., graphene
with a vacancy and PNG with one, two, and three N atoms). The computed properties
for the clusters were similar to those reported in the literature, demonstrating the relia-
bility of the method used in this study. Regarding the stability of the NinPdn (n = 1−3)
clusters supported on modified graphene, the charge was transferred from the clusters to
graphene, and the Eb between them was substantially higher than that previously reported
for Pd-based clusters supported on pristine graphene. The VIP calculated for the clusters
supported on modified graphene decreased compared with that calculated for free clusters.
The computed VEA for the clusters supported on modified graphene increased compared
with those calculated for free clusters. The η computed for the clusters supported on
modified graphene decreased compared with that calculated for free clusters, suggesting
that the clusters supported on modified graphene can present greater reactivity than free
clusters as a small η implies an increase in the reactivity. Therefore, it could be inferred
that graphene with defects is a good support material because it enhances the stability and
reactivity of the Pd-based alloy clusters supported on PNG.
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