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Abstract: In this study, we investigated the viscosity, squeeze-film damping, and a SiC-based capaci-
tive micro-accelerometer in rarefied air. A specific expression for the effective viscosity coefficient
of the air was derived, and when the air pressure drops from the standard atmospheric pressure,
the viscosity of the air will decrease accordingly. Decreases in the air pressure and the viscosity of
the air lead to the change in the squeeze-film air damping in the micro-accelerometer, and both the
viscous damping force and the elastic damping force of the air film between the moving electrode
plate and the fixed electrode plate will also decrease. The damping coefficient and relative damp-
ing ratio of the micro-accelerometer in rarefied air were calculated, which was also confirmed by
simulations. The changes of the damping coefficient and the relative damping ratio of the system
will directly affect the dynamic characteristics of the micro-accelerometer. When the air pressure in
the working environment is below the standard atmospheric pressure, the micro-accelerometer will
be in an underdamping state. With the decrease in the air pressure, the working bandwidth of the
micro-accelerometer will decrease significantly, and the resonant phenomenon may appear. However,
the decrease in the air pressure will not have a notable impact on the response time of the micro-
accelerometer. Therefore, this work provides a theoretical basis for the study of the performance
characteristics of a SiC-based capacitive accelerometer in rarefied air.

Keywords: micro-accelerometer; rarefied air; squeeze-film damping; dynamic characteristics

1. Introduction

Since about 1946, due to the possibility of high-speed flight in the high-altitude field,
researchers have greatly increased their interest in rarefied gas dynamics [1]. The newly
developed aircraft spend more and more time flying in rarefied gas, and it is important to
understand the performance characteristics of various electronic devices of aircraft flying
in rarefied gas [2,3]. In MEMS sensors, the microstructures usually have the characteristics
of some small gaps between the moving elements and the substrates [4,5]. When the gas
pressure is low, the mean free path of gas molecules and the gap distance are comparable, so
the viscosity coefficient of gas will be changed accordingly [6,7]. The models of the rarefied
gas flow in the small gap have been developed since the middle of the last century [8–11].

In the 1960s, Cercignani et al. from the University of Milano introduced a general
variational principle applied to kinetic models and utilized it to solve the Poiseuille flow
problem of a rarefied gas between two parallel plates [12,13]. In the 1980s, a generalized
Reynolds equation in the lubrication theory was derived from a linearized Boltzmann equa-
tion by Fukui and Kaneko, and the effective viscosity of gas at low pressures was quantified
by an approximate expression [14–16]. In 1995, Veijola et al. of Helsinki University of
Technology proposed a novel electric equivalent circuit for the air damping forces created
by the squeeze-film damping between the parallel plates. The circuit model was also used
to calculate the effective viscosity in the gap between the parallel plates [17].

In 2009, Mol et al. performed an experiment on the squeeze-film effect in rarefied
air and compared the experimental results with the molecular dynamics model and the
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model based on the modified Reynolds equation [18]. In 2010, a 3D simulation approach
was proposed by Leung et al. for modeling the squeeze-film damping on flexible micro-
resonators in highly rarefied air. Compared with the existing methods, this simulation
method was more general, and it could simulate resonators of various shapes [19]. In 2020,
an analytical model was established for the squeeze-film effect on the perforated plate
structure, which had been widely used in MEMS sensors. Compared with the existing
damping models, the model could be applicable to a wider geometry range [20].

In [21], we designed a capacitive micro-accelerometer based on a silicon carbide
microstructure by the finite element method (FEM). The physical model and the process
flow of the accelerometer are shown in Figure 1, and the optimized structural parameters
are listed in Table 1. Silicon carbide has the advantages of excellent mechanical durability
and thermal stability, so it was deposited as the structural layer of micro-accelerometer
by the low-pressure chemical vapor deposition (LPCVD) technique. In this case, the
accelerometer had the characteristics of high natural frequency, wide range, favorable
dynamic characteristics, and remarkable high-temperature resistance. When the sensitive
structure of the micro-accelerometer moves in the air, squeeze-film air damping will be
produced between the fixed electrode plate and the moving electrode plate, which may
affect the dynamic performances of the micro-accelerometer in a low-pressure environment.
Therefore, it is necessary for this impact to make an accurate theoretical analysis and a
necessary simulation verification, in order to obtain the conclusion of long-term use of the
micro-accelerometer in a low-pressure environment.
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Figure 1. Model of a single-axis, comb-type capacitive micro-accelerometer. (a) Physical model
of the accelerometer, (b) mechanical model of the accelerometer, and (c) process flow of the
accelerometer [21].
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Table 1. The structural parameters for the capacitive micro-accelerometer [21].

Accelerometer Length (µm) Width (µm) Thickness (µm)

Mass block 500 350 20
Movable electrode

plates 300 4 20

Fixed electrode plates 300 4 20
Folded support

beams 350 4 20

In this paper, we study the viscosity, squeeze-film effect, and a SiC-based capacitive
micro-accelerometer in rarefied air. When the air pressure drops from the standard atmo-
spheric pressure, the viscosity of the air will decrease accordingly. The decreases in the air
pressure and the viscosity of the air lead to the decrease in the damping coefficient and
relative damping ratio of the micro-accelerometer, and the change in the dynamic char-
acteristics of the micro-accelerometer. With the decrease in the air pressure, the working
bandwidth of the micro-accelerometer will decrease significantly, but it will not have a
great impact on the response time of the micro-accelerometer.

2. Effective Viscosity in the Rarefied Air
2.1. Effective Viscosity Coefficient

At the standard atmospheric pressure, the air can be regarded as a viscous fluid due
to frequent collisions between air molecules. The experimental results show that the effect
of air damping is quite constant when the air pressure is close to the standard atmospheric
pressure. Nevertheless, when the air is rarefied to a pressure well below the atmospheric
pressure, the air damping decreases significantly.

At present, two basic methods have been used to consider the damping in rarefied
air: the “effective viscosity coefficient” and the free molecule model [22–24]. The first
method proposed that the governing equation of squeeze-film air damping is still valid
in rarefied air, but the “viscosity coefficient” should be replaced by an effective coefficient
(µe f f ), which depends on the air pressure through the Knudsen number (Kn) of the system.
The Knudsen number is an important parameter for the fluid in micro- and nano-scale
structures; it is defined as the ratio of the mean free path of fluid molecules to the typical
size of the structure [25].

Kn =
λ

h
(1)

Here, λ represents the mean free path of the fluid molecules. For the air, the mean
free path of molecules refers to the average distance that molecules travel between two
collisions. h is the typical size of the damping structure. For the squeeze-film air damping,
it is the distance between the plate and the substrate.

The mean free path of air molecules can be written as [26]

λ =
1√

2πnd2
(2)

where n is the number density of air molecules and d is the diameter of the air molecules.
According to the relationship between the air pressure and the temperature,

p = nkBT (3)

where kB is the Boltzmann constant, and the mean free path of air molecules can be written
as follows:

λ =
kBT√
2πd2 p

(4)
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By substituting Equation (4) into Equation (1), the Knudsen number of the air in the
MEMS structure can be obtained:

Kn =
kBT√

2πd2 ph
(5)

According to the work of Veijola et al. [17], an approximate equation for the effective
viscosity coefficient could be obtained:

µe f f =
µ0

1 + 9.638K1.159
n

=
µ0

1 + 9.638× ( kBT√
2πd2 ph

)
1.159 (6)

where µ0 is the viscosity coefficient at the standard atmospheric pressure.

2.2. Analysis of Effective Viscosity

According to the value of the Knudsen number, the nature of the air flow area can
be judged. Generally speaking, air flow can be divided into four zones. When Kn ≤ 10−3,
the air flow is in the continuous zone; when 10−3 < Kn ≤ 0.1, the air flow is in the slip
zone; when 0.1 < Kn ≤ 10, the air flow is in the transition zone; and when Kn > 10, the
air flow is in the free molecule zone. When the air flows in the continuous zone, it can be
described by the governing equation based on the continuous medium assumption. If the
viscous effect of air is not considered, the Euler equation is used. If the viscous effect of air
is to be considered, the Navier–Stokes (N-S) equation and no-slip boundary condition are
used. When the air flows in the slip zone, it gradually deviates from the thermodynamic
equilibrium, but the air can still be described by the N-S equation, and the slip boundary
conditions need to be adopted on the boundary. When the air flows in the free molecule
zone, the particle dynamics methods must be used to study the air movement, such as the
direct simulation Monte Carlo (DSMC) method. Finally, when air flows in the transition
zone, it can be regarded neither as a pure continuous medium nor as a free molecule flow.
At this time, the simulation calculation of air is difficult [25].

In the study, the rarefied air in the continuous zone and the slip zone are considered,
and Equation (6) is used for the analysis of the effective viscosity. The Boltzmann constant
is kB = 1.38× 10−23 J/K, and the ambient temperature is at room temperature (T = 15 ◦C).
Generally speaking, the effective diameter of the gas molecule is related to the molecular
type, which is basically in the range of d = 2 ∼ 6× 10−10 m.

Figure 2 shows the relationship between the effective viscosity coefficient of the air
and the air pressure when the air pressure is lower than the standard atmospheric pressure.
The variation values of the relevant parameters of air can be seen in Table 2. When the
air pressure is the standard atmospheric pressure, the mean free path of air molecules is
2.45× 10−8 m. At this time, the Knudsen number of air is Kn = 0.0012, so the effective
viscosity coefficient of air is µe f f = 1.78× 10−5 N·s/m2. When the air pressure drops to
12,400 Pa, the mean free path of air molecules becomes 2.01× 10−7 m. At this time, the
Knudsen number of air is Kn = 0.01, so the effective viscosity coefficient of air becomes
µe f f = 1.71× 10−5 N·s/m2. When the air pressure drops to 1243 Pa, the mean free path
of air molecules is 2× 10−6 m. At this time, the Knudsen number of air is Kn = 0.1, so
the effective viscosity coefficient of air becomes µe f f = 1.07× 10−5 N·s/m2. It can be seen
from the above data that when the air pressure decreases by an order of magnitude from
the standard atmospheric pressure, the mean free path of the air molecules increases by
one order of magnitude, the Knudsen number of the air also increases by one order of
magnitude, and the effective viscosity coefficient of the air decreases accordingly. The
calculation results show that when the air pressure drops from the standard atmospheric
pressure (Kn = 0.0012) to 12,400 Pa (Kn = 0.01), the effective viscosity coefficient of the air
decreases by about 4.1%, and the decline is not obvious, but when the air pressure drops
from the standard atmospheric pressure (Kn = 0.0012) to 1243 Pa (Kn = 0.1), the effective
viscosity coefficient of the air decreases by about 39.9%, and the decline is very obvious.



Materials 2022, 15, 4692 5 of 14

Materials 2022, 14, x FOR PEER REVIEW 5 of 14 
 

 

by about 4.1%, and the decline is not obvious, but when the air pressure drops from the 
standard atmospheric pressure ( 0.0012nK = ) to 1243 Pa ( 0.1nK = ), the effective viscosity 
coefficient of the air decreases by about 39.9%, and the decline is very obvious. 

 
Figure 2. The dependence of the effective viscosity coefficient of air on the air pressure. 

Table 2. The changes in the relevant parameters of the air when the air pressure drops. 

Air Pressure 101,325 Pa (1 atm) 12,400 Pa 1243 Pa 
Mean free path (m) 2.4537 × 10−8 2.005 × 10−7 2.0001 × 10−6 
Knudsen number 0.0012 0.01 0.1 

Effective viscosity coefficient 
(N·s/m2) 

1.7821 × 10−5 1.7098 × 10−5 1.0716 × 10−5 

Decline ratio (%) - 4.1% 39.9% 

3. Squeeze-Film Air Damping in the Rarefied Air 
In Section 2, we detailed the effect of the drop in the air pressure on the viscosity 

coefficient of the air. In this section, we examine the effect of the drop in the air pressure 
on the squeeze-film air damping in the MEMS accelerometer. 

3.1. Squeeze-Film Effect 
As shown in Figure 3, when the comb-type capacitive accelerometer vibrates, 

squeeze-film air damping will be produced between the moving electrode plate and the 
fixed electrode plate. The length and the width of the overlapping area of the movable 
electrode plate and the fixed electrode plate are 290 µm and 20 µm, respectively, while 
the length and the width of both plates are 300 µm and 20 µm, respectively. The gap dis-
tance between the movable electrode plate and the fixed electrode plate is 1.23 µm. When 
the displacement of the movable plate is 1 cos( )h h tω= , the analytical expressions of the 
viscous damping force 0F  and elastic damping force 1F  of the rectangular plate can be 
derived [21]: 

2 2
1

0 6 2 2 2 2 2 4,n;odd
0

64 ( / )
( ) {[ ( / ) ] / }m

hplw m nF
h mn m n

σ β
π β σ π

+= Σ
+ +

 (7)

2
1

1 8 2 2 2 2 2 4,n;odd
0

64 1
( ) {[ ( / ) ] / }m

hplwF
h mn m n

σ
π β σ π

= Σ
+ +

 (8)

where l  and w  are the length and the width of the rectangular plate, respectively; 
w lβ =  is the aspect ratio of the rectangular plate; 0h  is the gap distance between the 

movable electrode plate and the fixed electrode plate; p  is the initial pressure in the comb 
structure; and 2 2

012 l h pσ μω=  is the squeeze number. 

103 104 105

Pressure (Pa)

0.8

1

1.2

1.4

1.6

1.8 10-5

Kn = 0.1, 1243 Pa

Kn = 0.01, 12,400 Pa
Kn = 0.0012, 1 atm

Figure 2. The dependence of the effective viscosity coefficient of air on the air pressure.

Table 2. The changes in the relevant parameters of the air when the air pressure drops.

Air Pressure 101,325 Pa (1 atm) 12,400 Pa 1243 Pa

Mean free path (m) 2.4537 × 10−8 2.005 × 10−7 2.0001 × 10−6

Knudsen number 0.0012 0.01 0.1
Effective viscosity coefficient

(N·s/m2) 1.7821 × 10−5 1.7098 × 10−5 1.0716 × 10−5

Decline ratio (%) - 4.1% 39.9%

3. Squeeze-Film Air Damping in the Rarefied Air

In Section 2, we detailed the effect of the drop in the air pressure on the viscosity
coefficient of the air. In this section, we examine the effect of the drop in the air pressure on
the squeeze-film air damping in the MEMS accelerometer.

3.1. Squeeze-Film Effect

As shown in Figure 3, when the comb-type capacitive accelerometer vibrates, squeeze-
film air damping will be produced between the moving electrode plate and the fixed
electrode plate. The length and the width of the overlapping area of the movable electrode
plate and the fixed electrode plate are 290 µm and 20 µm, respectively, while the length and
the width of both plates are 300 µm and 20 µm, respectively. The gap distance between the
movable electrode plate and the fixed electrode plate is 1.23 µm. When the displacement
of the movable plate is h = h1 cos(ωt), the analytical expressions of the viscous damping
force F0 and elastic damping force F1 of the rectangular plate can be derived [21]:

F0 =
64plwσ

π6
h1

h0
Σ

m,n;odd

m2 + (n/β)2

(mn)2{[m2 + (n/β)2]
2
+ σ2/π4}

(7)

F1 =
64plwσ2

π8
h1

h0
Σ

m,n;odd

1

(mn)2{[m2 + (n/β)2]
2
+ σ2/π4}

(8)

where l and w are the length and the width of the rectangular plate, respectively; β = w/l
is the aspect ratio of the rectangular plate; h0 is the gap distance between the movable
electrode plate and the fixed electrode plate; p is the initial pressure in the comb structure;
and σ = 12µωl2/h2

0 p is the squeeze number.
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Figure 3. The comb structure in the micro-accelerometer.

Additionally, it is assumed that the vibration amplitude of the movable electrode
plate is h1 = 0.1 µm. According to Equations (7) and (8), when the air pressure drops
from the standard atmospheric pressure (Kn = 0.0012) to 1243 Pa (Kn = 0.1), the rela-
tionship between the viscous damping force produced by the air film and the vibration
frequency of the micro-accelerometer is shown in Figure 4a, and the relationship between
the elastic damping force produced by the air film and the vibration frequency of the
micro-accelerometer is shown in Figure 4b.
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Figure 4. (a) The relationship between the viscous damping force and the vibration frequency of the
micro-accelerometer, and (b) the relationship between the elastic damping force and the vibration
frequency of the micro-accelerometer when the air pressure drops from the standard atmospheric
pressure to 1243 Pa.

It can be seen from the curves in the two figures that when the air pressure drops
from the standard atmospheric pressure (Kn = 0.0012) to 1243 Pa (Kn = 0.1), the viscous
damping force and elastic damping force at different air pressures have the following
characteristics. When the vibration frequency of the micro-accelerometer is low, the viscous
damping force will increase linearly with the increase in the vibration frequency. At this
time, the elastic damping force increases slowly. However, when the vibration frequency
of the micro-accelerometer increases gradually, the viscous damping force decreases with
the increase in the vibration frequency. At this time, the elastic damping force increases
rapidly. The results provide evidence that when the micro-accelerometer vibrates, damping
is the main form of the air film in the low-frequency vibration, and stiffness is the main
form of the air film in the high-frequency vibration. In this capacitive micro-accelerometer,
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as it works at a low frequency, the viscous damping force is the main source of its air
damping force.

Furthermore, the viscous damping force and elastic damping force of the air will
decrease with the decrease in air pressure. When the air pressure decreases by one order
of magnitude, the viscous damping force and elastic damping force of the air will also
decrease by one order of magnitude.

3.2. Damping Coefficient and Relative Damping Ratio

The spring constant for the micro-accelerometer can be determined as [27]

k = 2ET
W3

L3 (9)

where E is the Young’s modulus of the silicon carbide, and L, W, and T are the length,
width, and thickness of the folded support beam, respectively.

The relative damping ratio is an important parameter of the micro-accelerometer,
which can determine the dynamic characteristics of the system. Its expression is

ς =
c

2
√

mk
(10)

where the damping coefficient c can be obtained by Equation (7) (F0 = c·v), and the spring
constant k can be derived from Equation (9).

Due to the small size and the light weight of the MEMS sensor, it is easily affected by
the air, and it has a notable impact in most cases [28,29]. It can be seen from
Equations (7) and (10) that when the air pressure drops, the damping coefficient and rel-
ative damping ratio of the system will change with the change in air pressure. After
the calculation, when the air pressure drops from the standard atmospheric pressure
(Kn = 0.0012) to 1243 Pa (Kn = 0.1), the relationship between the damping coefficient of the
micro-accelerometer and the vibration frequency is shown in Figure 5, and the relationship
between the relative damping ratio of the micro-accelerometer and the vibration frequency
is shown in Figure 6.
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The results show that when the micro-accelerometer is at the standard atmospheric
pressure, its damping coefficient is c = 8.73× 10−4, and its relative damping ratio is ς = 0.7.
When the micro-accelerometer works at 12,400 Pa, the damping coefficient and relative
damping ratio become c = 8.16× 10−4 and ς = 0.66. When the micro-accelerometer works
at 1243 Pa, the two parameters become c = 5.12× 10−4 and ς = 0.41. Therefore, it can be
seen from the above results that with the decrease in the air pressure, the corresponding
damping coefficient of the micro-accelerometer decreases, and the corresponding relative
damping ratio also decreases.

It can be seen from Equation (7) that the damping coefficient is related to the air
pressure and the viscosity coefficient of the air. As shown in Table 2 in Section 2.2, the
decrease in the viscosity coefficient of the air at 12,400 Pa is not obvious, while the decrease
at 1243 Pa is obvious. Therefore, compared with the damping coefficient at the standard
atmospheric pressure, the decrease in the damping coefficient at 12,400 Pa is not obvious,
while the decrease at 1243 Pa is obvious. Similarly, the analysis is also applicable to the
relative damping ratio of the micro-accelerometer.

3.3. Simulation of Squeeze-Film Air Damping

In order to verify the theoretical analysis of the squeeze-film damping in the rarefied
air, a physics-level simulation is proposed by Ansys/Fluent to simulate the squeeze-film
air damping between the fixed electrode plate and moving electrode plate in the micro-
accelerometer (the comb structure). As described in Section 3.1, it is assumed that the
lengths and widths of the two plates are 290 µm and 20 µm, respectively, and the gap
distance between them is 1.23 µm. The physical model of the comb structure is shown in
Figure 7a, and the meshing model is shown in Figure 7b. When the moving electrode plate
moves to the fixed electrode plate at a certain speed, the air between two plates is squeezed,
and squeeze-film air damping will be produced.

After modeling and meshing the comb structure, some simulation parameters are set
up, as listed in Table 3. When the air pressure is below the standard atmospheric pressure,
the density and viscosity coefficient of the air will change with the change in air pressure.
According to the ideal gas law (pV = nRT), the air density is directly proportional to the
air pressure, so the air density at 12,400 Pa is 0.15 kg/m3, and the air density at 1243 Pa
is 0.015 kg/m3. The viscosity coefficients of the air at different air pressures have been
calculated, as shown in Section 2.2. The environment temperature is constant (15 ◦C).
Moreover, it is assumed that the speed of the moving electrode plate is 10 µm/s, which can
be set up through a profile file in Fluent.
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Table 3. Simulation parameter settings under low pressures.

Parameters 12,400 Pa 1243 Pa

Acceleration of gravity (m/s2) 9.8 9.8
Air density (kg/m3) 0.15 0.015

Effective viscosity coefficient (N·s/m) 1.7098 × 10−5 1.0716 × 10−5

Environment temperature (◦C) 15 15
Speed of the moving plate (µm/s) 10 10

Two groups of simulations under low pressures are carried out. One is when the air
pressure is 12,400 Pa; the moving electrode plate moves towards the fixed electrode plate
along the x-axis at the speed of 10 µm/s, and the air pressure distribution between the plates
is shown in Figure 7c. The other is when the air pressure is 1243 Pa; the moving electrode
plate moves towards the fixed electrode plate along the x-axis at the speed of 10 µm/s, and
the air pressure distribution between the plates is shown in Figure 7d. It can be seen from
both figures that high pressures appear in the middle of the air film and low pressures
appear at the edges of the air film. There are two important parameters for the comb
structure, including the air damping force of the moving electrode plate and the damping
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coefficient of the comb structure. The theoretical values of these two parameters can be
obtained from Equation (7), and the simulated values can be calculated by Fluent, as shown
in Table 4. There are 40 pairs of the comb structures in the micro-accelerometer, and the
corresponding air damping force and the damping coefficient of the micro-accelerometer
under low pressures are also shown in Table 4. These results show that the simulated values
of the relevant parameters for the comb structure and the micro-accelerometer are close to
the theoretical values, which effectively verifies the theoretical analysis of the squeeze-film
air damping in rarefied air.

Table 4. Comparisons between theoretical values and simulated values of two parameters for the
comb structure under low pressures.

Structure Parameter
12,400 Pa 1243 Pa

Theoretical
Value

Simulated
Value

Theoretical
Value

Simulated
Value

Comb structure
Air damping force (N) 2.04 × 10−10 1.96 × 10−10 1.28 × 10−10 1.23 × 10−10

Damping coefficient 2.04 × 10−5 1.96 × 10−5 1.28 × 10−5 1.23 × 10−5

Accelerometer
Air damping force (N) 8.16 × 10−9 7.84 × 10−9 5.12 × 10−9 4.92 × 10−9

Damping coefficient 8.16 × 10−4 7.84 × 10−4 5.12 × 10−4 4.92 × 10−4

Based on the above analysis, the damping coefficient and the relative damping ratio
of the micro-accelerometer decrease with the decrease in the air pressure, and the change
will directly lead to the change in the dynamic characteristics of the micro-accelerometer,
which includes amplitude–frequency characteristics and step responses. Therefore, we
assume that the air pressure drops from the standard atmospheric pressure (Kn = 0.0012)
to 1243 Pa (Kn = 0.1), and the micro-accelerometer in this condition is analyzed in the
frequency domain and the time domain.

4. Dynamic Characteristic Analysis
4.1. Amplitude–Frequency Characteristics

According to the content of automatic control principle, the logarithmic amplitude–
frequency characteristic of the MEMS sensor is

L(ω) = −20lg
√
(1−ω2/ω2

n)
2 + 4ς2ω2/ω2

n (11)

where ωn =
√

k/m is the resonant frequency of the MEMS sensor, ω is the vibration
frequency of the MEMS sensor, and ς is the relative damping ratio of the MEMS sensor.

The amplitude–frequency characteristics of the micro-accelerometer when the air
pressure decreases from the standard atmospheric pressure (Kn = 0.0012) to 1243 Pa
(Kn = 0.1) are shown in Figure 8, which are only determined by the relative damping ratio
of the micro-accelerometer. It can be seen from the figure that when the micro-accelerometer
is at the standard atmospheric pressure, its relative damping ratio is ς = 0.7, which will
give the micro-accelerometer two advantages at the same time. The first advantage is that
the micro-accelerometer has a large working bandwidth of about 0–30,000 Hz. The second
advantage is that the amplitude–frequency characteristic curve of the micro-accelerometer
has no resonant peak and the resonant phenomenon will not occur. When the air pressure
drops to 12,400 Pa, the damping ratio will become ς = 0.66. At this time, the working
bandwidth of the micro-accelerometer increases to about 0–33,500 Hz, and its amplitude–
frequency characteristic curve has almost no resonant peak. When the air pressure drops to
1243 Pa, the damping ratio will become ς = 0.41. At this time, the amplitude–frequency
characteristic curve of the micro-accelerometer has a resonant peak, and the working
bandwidth drops to about 0–17,500 Hz.
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Figure 8. The logarithmic amplitude–frequency characteristics of the micro-accelerometer when the
air pressure drops from the standard atmospheric pressure to 1243 Pa.

In summary, when the air pressure in the working environment is below the standard
atmospheric pressure, the micro-accelerometer will be in the underdamping state. With
the decrease in the air pressure in the working environment, the working bandwidth of
the micro-accelerometer will decrease significantly, and the resonant peak will appear
in the amplitude–frequency characteristic curve—that is, the vibration amplitude of the
micro-accelerometer will become very large, and the micro-accelerometer may be damaged
when the vibration frequency approaches its resonant frequency.

4.2. Step Responses

As shown in Figure 1b, the comb-type capacitive micro-accelerometer could be equiv-
alent to a second-order damping system:

m· ..x(t) + c· .x(t) + k·x(t) = m·a(t) (12)

where m, c, and k are the mass, damping coefficient, and spring constant of the micro-
accelerometer, respectively. x(t) is the displacement of the micro-accelerometer, a(t) is the
external acceleration, and t is time.

The step responses of the micro-accelerometer at the external acceleration of 100 g
when the air pressure of the working environment drops from the standard atmospheric
pressure (Kn = 0.0012) to 1243 Pa (Kn = 0.1) are shown in Figure 9, which are only
determined by the relative damping ratio of the micro-accelerometer.
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As illustrated in Figure 9, when the micro-accelerometer is at the standard atmospheric
pressure, its relative damping ratio is ς = 0.7, and the response time is RT = 4× 10−4 s.
When the air pressure drops to 12,400 Pa and 1243 Pa, the relative damping ratio will
become ς = 0.66 and ς = 0.41, and the response time will become RT = 5× 10−4 s and
RT = 7× 10−4 s. It can be seen from the above results that when the air pressure of the
working environment is below the standard atmospheric pressure, the micro-accelerometer
will be in the underdamping state. With the decrease in the air pressure in the working
environment, the response time of the micro-accelerometer will increase accordingly. When
the air pressure decreases from 101,325 Pa to 1243 Pa, the response time of the system
increases to 1.75 times. However, since it is still in the same order of magnitude (10−4 s),
the decrease in the air pressure will not have a considerable impact on the response time of
the micro-accelerometer.

5. Discussion

In this work, we studied the viscosity in rarefied air and derived a specific expres-
sion for the effective viscosity coefficient of the air. When the air pressure decreases by
an order of magnitude from the standard atmospheric pressure, the mean free path of
the air molecules increases by one order of magnitude; the Knudsen number of air also
increases by one order of magnitude, and the effective viscosity coefficient of the air
decreases accordingly.

The decreases in the air pressure and the viscosity coefficient of the air lead to the
change in the squeeze-film air damping in the micro-accelerometer based on a silicon
carbide microstructure. When the micro-accelerometer vibrates in the rarefied air, damping
is the main form of air film in low-frequency vibration, and stiffness is the main form of air
film in high-frequency vibration. Both the viscous damping force and the elastic damping
force of the air decrease with the decrease in the air pressure. As the micro-accelerometer
works at a low vibration frequency, the viscous damping force is the main source of its air
damping force.

It was found that with decreases in the air pressure and the viscosity coefficient of
the air, the corresponding damping coefficient and relative damping ratio of the micro-
accelerometer decreases. A physics-level simulation was proposed in Ansys/Fluent to sim-
ulate the squeeze-film effect of rarefied air in the comb structure of the micro-accelerometer.
The simulation results agree well with the theoretical analysis and effectively verify the
theoretical analysis of the squeeze-film damping in rarefied air.

The changes in the damping coefficient and relative damping ratio of the micro-
accelerometer will directly affect the micro-accelerometer’s dynamic characteristics, in-
cluding amplitude–frequency characteristics and step responses. Therefore, the micro-
accelerometer in the rarefied air was analyzed in the frequency and time domains. When
the air pressure of the working environment is below the standard atmospheric pressure,
the micro-accelerometer will be in an underdamping state. It can be seen from the analysis
in the frequency domain that with the decrease in the air pressure, the working bandwidth
of the micro-accelerometer will decrease significantly, and the resonant peak will appear
in the amplitude–frequency characteristic curve; that is, the resonant phenomenon may
appear. It can be seen from the analysis in the time domain that the response time of the
micro-accelerometer will increase with the decrease in the air pressure. However, as it is
still in the same order of magnitude (10−4 s), the decrease in the air pressure will not have
a notable impact on the response time of the micro-accelerometer.

6. Conclusions

In this work, we investigated the viscosity, the squeeze-film effect, and a SiC-based
capacitive accelerometer in rarefied air. When the air pressure drops from the standard
atmospheric pressure to 12,400 Pa and 1243 Pa, the effective viscosity coefficient of the air
decreases by about 4.1% and 39.9%, respectively. The decreases in the air pressure and
the viscosity of the air lead to the decrease in the relative damping ratio (ς = 0.66 and
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ς = 0.41) of the micro-accelerometer, which will directly affect the dynamic characteristics
(amplitude–frequency characteristics and step responses) of the micro-accelerometer. When
the air pressure in the working environment is below the standard atmospheric pressure,
the micro-accelerometer will be in an underdamping state. With the decrease in the air
pressure, the working bandwidth of the micro-accelerometer will decrease significantly, and
the resonant phenomenon may appear. However, the decrease in the air pressure will not
have a considerable impact on the response time of the micro-accelerometer. Therefore, this
work is of great significance for the study of the performance characteristics of SiC-based
capacitive micro-accelerometers in rarefied air.
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