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Abstract: AA1050 plates of 8 mm thickness were processed via bobbin-tool friction stir process-
ing technique at a constant rotation speed of 600 rpm and different travel speeds ranging from
50 to 300 mm/min using three-pin geometries of triangle, square, and cylindrical. The temperatures
of the processed zone, the advancing side, and the retreating side were measured; the machine torque
during processing was also recorded. The processed materials were evaluated in terms of surface
roughness, macrostructure, tensile properties, and hardness measurements. The fracture surfaces
of the tensile fractured specimens were investigated using SEM. The results indicated that the pin
geometry and processing speed significantly affect the generated heat input and the morphology
of the processed zone. The peak temperature in the center of the processed zone decreases with
increasing the travel speed from 50 to 300 mm/min at all applied pin geometries. The maximum
temperature of ~400 ◦C was reached using the cylindrical pin geometry. The machine torque in-
creases with increasing the travel speed at all applied pin geometries, and the highest torque value
of 73 N.m is recorded using the square pin geometry at 300 mm/min travel speed. The top surface
roughness of the processed area using the cylindrical pin is lower than that given by the other pin
geometries. Under all applied conditions, the hardness of the processed area increases with increasing
travel speed, and the cylindrical pin shows a higher hardness than the other pin geometries with
19% enhancement over the BM. The AA1050 processed using a cylindrical pin at 200 mm/min travel
speed and a rotation speed of 600 rpm produces a sound processing zone with the highest ultimate
tensile strength of 79 MPa.

Keywords: AA1050; bobbin tool friction stir processing; mechanical properties; thermal cycle; torque;
surface roughness; fracture surface

1. Introduction

AA1050 alloy has received particular attention in many industrial sectors due to its
exceptional properties: low density, formability, ease of fabrication, excellent ductility,
high electrical conductivity, and high corrosion resistance [1,2]. Based on friction stir
welding (FSW) principles, friction stir processing (FSP) has been developed as a solid-state
technique for processing ferrous [3–5] and nonferrous alloys [6–9]. In recent years, FSP
technology using a conventional tool (CT) design has been widely applied to aluminum
and its alloys only to modify the microstructure of the material surface with and without
ceramic particles additions [10,11]. For AA1050 alloy, many researchers have paid attention
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to utilizing the FSP technique with a CT design for welding [12–14] and processing [15–17]
based on different parameters. Bobbin tool (BT) design is an innovative tool design and
was initially used in the FSW of aluminum alloys [18–21]. The BT refers to the tool shape,
two shoulders (lower and upper) connected by a pin. The bobbin tool friction stir welding
(BT-FSW) has several advantages over the FSW using CT. The two shoulders offer higher
symmetric frictional heat contribution through the welded full-thickness compared to the
CT-FSW, resulting in more uniform plastic deformation in the stir zone (SZ) and lower
distortion of the produced welded joints [22]. Moreover, the lower shoulder of the BT-
FSW has another benefit, as it is used instead of the supporting backing plate with the
CT-FSW; thus, the BT-FSW of hollow structures is utilized [19,23]. Thus, many researchers
used the BT design to weld aluminum alloys due to its many advantages in producing
high-quality welds. Li et al. [24] studied the effect of BT rotation speeds of 600–1200 rpm
at a constant travel speed of 500 mm/min using a cylindrical (Cy) pin. They found that
the maximum tensile strength (262.7) was obtained at a rotation speed of 800 rpm. The
effect of travel speeds ranging from 130 to 250 at 350 rpm rotation speed on the BT-FSW
of AA2219 was investigated by Wen et al. [25]. They reported that the grain size was
decreased with increasing the welding speed. The maximum tensile strength (330 MPa)
with 70% joint efficiency was observed at 210 mm/min travel speed. Fuse and Badheka [26]
investigated the effects of BT shoulder diameters (20, 22 and 24 mm) using 8 mm Cy pin
diameter on the BT-FSW of AA6061-T6 alloy at a constant rotation speed of 380 rpm and
31.5 mm/min. They reported that the best-welded joint in terms of tensile properties was
produced using the 24 mm shoulder diameter. Liu et al. [27] studied the effect of two
different BT pin geometries (threaded and threaded with three planes) on the welding of
5A05-H112 at a constant rotation speed of 250 rpm and 200 mm/min travel speed. They
remarked that the macro of dumbbell-shaped and drum-shaped appearances correspond
with the two-pin geometries. BT-FSW of dissimilar AA2219 and AA6056 alloys was studied
by Wen et al. [28]. They concluded that an excellent mixed material was observed at
the bonding interface. It can be seen from the above survey and available literature that
BT has been intensively used in welding different aluminum alloys. This gives great
motivation to the researchers to apply the BT in the processing of aluminum alloys to
modify the microstructure or produce composites. There is a lack of studies on the BT-
FSP of aluminum and aluminum alloys. In addition, until now, one research utilized
the BT-FSP to produce AA6061/B4C composite [29]. They only studied the effect of the
number of paths on AA6061/B4C composite properties processed at a constant 350 rpm
and 31.5 mm/min. The produced composites using three paths displayed a more uniform
dispersion of B4C particles with 25% hardness enhancement over the base material (BM).
In fact, the quality of the processed material using the BT-FSP technique is related to
many parameters such as pin geometries, processing travel speeds, rotational speeds,
and shoulder features. These factors affect the internal material flow of the SZ, the heat
generation, and then the properties of the processed materials. Therefore, this work aims to
determine the influence of BT pin geometries (cylindrical, triangle, and square) and the
processing travel speeds (50, 100, 200, and 300 mm/min) at a constant rotation speed of
600 rpm on the mechanical properties of the processed 8 mm thickness AA1050 in terms
of hardness and ultimate tensile strength. Moreover, the BT-FSP thermal cycle including
processing zone, advancing side, and retreating side temperatures in light of the applied
torque was measured and discussed.

2. Materials and Methods

AA1050 plates with dimensions of 150 mm length, 75 mm width, and 8 mm thick,
were supplied by Egyptian Aluminum Company, Egypt, and processed using the BT-FSP
technique. The chemical composition of the as-received AA1050 was investigated using
Foundry-Master pro, (Oxford Instruments, Abingdon, UK). The chemical composition and
mechanical properties of AA1050 alloy are listed in Table 1.
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Table 1. The chemical composition and mechanical properties of AA1050 plates.

Chemical Composition

Element Cu Zn Mg Mn Cr Ti Si Fe Al
Wt. % 0.0031 0.0019 0.0030 0.0002 0.0012 0.0139 0.0889 0.257 Bal.

Mechanical Properties

Property UTS (MPa) E (%) HV
AA1050 59 ± 2 37 ± 3 31 ± 2

For BT-FSP of AA1050 experiments, the plates were first fixed on the machine table
using a fixture designed for BT-FSP purposes (Figure 1), and the BT was fixed in the
machine shank, as shown in Figure 2a. Then BT-FSP of AA1050 was carried out using the
EG-1 FSW/FSP machine (Suez University, Suez, Egypt) [30]. The experimental setup of
BT-FSP of AA1050 is shown in Figure 2a–c, and an example of upper and lower surface for
the AA1050 BT-FSPed materials is shown in Figure 2d,e.
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Figure 1. BT-FSP fixture setup configuration to process AA1050. (a) Assembled view (b) Exploded view.

The influence of processing travel speed and pin geometry on BT-FSP of AA1050 was
investigated using different travel speeds of 50, 100, 200, and 300 mm/min and different pin
geometries of triangular (Tr), cylindrical (Cy), and square (Sq) at a constant rotation speed
of 600 rpm. The plunge depth of both the upper and lower tool shoulders was constant
and set to be 0.2 mm. The dimensions of the top and the bottom shoulders have the same
diameter of 25 mm with three grooves. The diameter of the Cy pin is 8 mm. Moreover, the
Tr and Sq pins were formed inside the circle having an 8 mm diameter. The volume for
each tool pin has been calculated and the values were 166.32, 256.28, and 402.12 mm3 for
the Tr, Sq, and Cy, respectively. Figure 3 represents (a) the main dimensions and volumes of
the BT and pin profiles of (b) Tr, (c) Sq, and (d) Cy. The BT-FSP tools were machined from
W302 cold worked tool steel and were heat-treated to get a 52 HRC.
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Figure 2. (a,b) Front images of the BT-FSP setup configuration, (c) back view of the BT location
before processing, and example of (d) the upper and (e) lower surface of a processed specimen.
(f) A schematic showing measuring temperature in the PZ using an infrared thermometer.
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(b) Tr, (c) Sq, and (d) Cy.

The BT-FSP of AA1050 temperature in the processed zone (PZ) during the BT-FSP
was measured and recorded using an infrared thermometer (Quicktemp 860-T3,
Testo Company—Berlin, Germany) for all the processed samples. The temperature was
measured behind the tool at a constant distance of 30 cm (Figure 2f). Moreover, the tem-
peratures on the advancing side (AS) and the retreating side (RS) were measured and
recorded by the Modern Digital Multimeter (MDM) model (UT61B-Zhejiang, China) using
two thermocouples (type K). The locations of these thermocouples are given in Figure 4a.
The surface roughness of the processing paths for all processed materials was measured
using PosiTector Surface Profile Gages (Ogdensburg, NY, USA). The PZ areas achieved
using the different pin geometries were measured using the AutoCAD mechanical (Student
version) software 2022. The bobbin tool friction stir processed (BT-FSPed) AA1050 materials
and the AA1050 base material were cut perpendicular to the processing path direction
(Figure 4a) for macrostructure and hardness examinations. The tensile test specimen was
cut parallel to the processing path direction to evaluate the AA1050 processed materials as
shown in Figure 4a,b, representing the dimensions of the tensile test samples according to
ASTM-E8. The processed cross-section specimens for macrostructure investigation were
ground with different emery paper up to 2400 and polished using an 0.05 µm Al2O3 paste,
followed by etching with Keller’s reagent. The macrostructure examinations were carried
out using Stereomicroscope Model: Optika SZR-10, OPTIKA, Ponteranica (BG)-Italy. The
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tensile properties in terms of the ultimate tensile strength (UTS) and elongation percentage
(E%) of the processed materials and BM were evaluated using a universal testing machine
(model: WDW-300D Testing Machine, 30-ton, Guangdong, China) at room temperature.
Four samples at each BT-FSPed condition were used for tensile testing. The fracture sur-
faces of the tensile failed specimens were examined using a scanning electron microscope
(SEM, Thermo-Scientific, Quattro S, Waltham, MA, USA).
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Figure 4. Schematic drawing shows (a) the location of cutting test specimens for the processed
materials and (b) the dimensions of tensile test specimens (thermocouple in Figure 4).

To evaluate the hardness of the BT-FSPed AA1050, the cross-section of the processed
materials is divided into five lines to present three layers: upper layer (L1), middle layer
(L2), and lower layer (L3), as shown in Figure 5. Hardness were measured at all layers on
the polished cross-sections by a hardness tester machine (HWDV-75, TTS Unlimited, Osaka,
Japan) with a load of 0.3 kg and a dwell time of 15 s. The measurements were repeated
for three specimens at each condition and plotted in terms of hardness contour map and
average hardness.
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3. Results and Discussion
3.1. BT-FSP Temperature

The processed zone (PZ) temperature was measured during the BT-FSP of 8 mm
thickness AA1050, and the average values were plotted versus the different processing
travel speeds of 50, 100, 200, and 300 mm/min for the different pin geometries of Tr, Sq,
and Cy, as illustrated in Figure 6. It can be noted that the temperature of PZ decreases as
the processing travel speed increases for all the used pin geometries. In addition, among
all the BT-FSP, the Cy pin geometry shows the highest PZ temperatures compared to Tr
and Sq pins at all processing travel speeds. In contrast, the Tr pin geometry provides the
lowest PZ temperatures at the applied range of processing travel speeds. By applying the
lowest processing travel speed of 50 mm/min, the highest PZ temperatures of 380, 389, and
399 ◦C are obtained using the pin geometries of Tr, Sq, and Cy, respectively. Whereas with
applying the highest processing travel speed of 300 mm/min, the lowest PZ temperatures
of 286, 309, and 318 ◦C are attained using the Tr, Sq, and Cy pins, respectively. For BT-FSP
using the Tr pin, the stirring volume in the PZ is minimum due to the small pin volume
relative to the other tool pins. Since a large volume pin must generate more frictional heat
during the BT-FSP, thus, the frictional heat generated by the Tr pin should be lower than
that given by the other pin geometries. The frictional heat generated by the Cy pin showed
the highest PZ temperature values. Moreover, as the processing travel speed increases, the
heat input per unit length along with the processing path decreases, and heat dissipation
increases resulting in lower stir zone temperature compared to in case of decreasing the
processing travel speed.
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The study of thermal cycle history is essential for the analysis of the material flow
and mixing during the BT-FSP. Thus, the thermal cycle at AS and RS as a function of
time for the BT-FSPed AA1050 at a constant rotation speed of 600 rpm and the different
processing travel speeds of 50, 100, 200, and 300 m/min using the Cy pin were recorded
and presented in Figure 7a,b, respectively. It can be remarked that the BT-FSP thermal
cycle of both AS and RS is divided into three stages. First, insert the rotating BT tool at
the applied rotation speed of 600 rpm into the suggested processing zone centerline of
the fixed 8 mm AA1050 plate at a slow processing travel speed of 20 mm/min to pre-heat
the AA1050 material. Second, apply a 20 s holding time to attain enough temperature for
stirring action during BT-FSP. The measured temperature of the first and second stages was
around 110 ◦C. Third, applying the required processing travel speed to start conducting the
processing pass of AA1050, in this stage, the temperature rises gradually during BT-FSP
to reach the peak temperature. After ending the BT-FSP, the temperature of the processed
specimens gradually decreases during the air cooling. The RS shows a peak temperature of
357 ◦C, and the AS shows a peak temperature of 372 ◦C using Cy pin at a travel speed of 50
mm/min. It should be mentioned that the same trend of thermal cycles was obtained using
the other pin geometries (Tr and Sq) at the currently applied processing speed parameters
with a difference in the recorded peak temperatures of the thermal cycle at each processing
travel speed.
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Figure 8a,b displays the recorded peak temperatures during BT-FSP of AA1050 using
the different pin geometries at different processing speeds at the AS and RS, respectively.
In general, the temperature of the AS and RS decreases with increasing processing travel
speed. And the BT with Cy pin generates higher temperatures on both sides than the other
pin geometries. In contrast, the Tr pin generates lower temperatures on both sides. The
recorded temperatures of the AS are slightly higher than the RS at all the pin geometries.
After the BT penetration, the plasticized materials flow around the pin and transfer from the
AS to RS during BT-FSP. The transferred materials cooled in the RS [31]. The AS generates
higher shear stress (friction force) than the RS during stirring action and generates more
frictional heat [32–34].
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3.2. BT-FSP Torque

The BT-FSW and BT-FSP are related to many factors affecting the success of the
process. Among these factors, torque is considered one of the essential parameters to
achieving high-quality joint and processed materials. The heat input generated by the
stirring action between the tool and the material under processing depends on the applied
torque. Thereto, monitoring and governing the BT-FSP torque is vital for expecting the BT
life and performance. The value of BT-FSP torque presented in the monitor of the FSW
and FSP full-automatic machine in the current study can be used as an indicator for the
material’s resistance to moving around the pin during the BT-FSP. The recorded torque
during BT-FSP of AA1050 using different pin geometries (Tr, Sq, and Cy) at the processing
travel speed of 100 mm/min and 600 rpm rotational speed are shown in Figure 9. The
plotted torque data reveals four regions: (1) tool penetration, (2) dwell time, (3) material
processing, and (4) tool exit. These distinct regions are typically similar to that reported by
Ahmed et al. [19] to BT-FSW AA1050 lap joints. In the beginning, the BT moves to penetrate
the workpiece during tool penetration, and the torque value sharply increases to attain
the maximum value for all pin geometries. After that, 20 s was applied as a dwell time
to achieve pre-heating. In this region, the torque values decrease to the minimum value
(around 10 N.m) due to a low amount of stirring material around the BT. In the third region
(processing time), the torque values rise again because the material around the tool resists
the stirring process in the PZ. In this stage, the processed path is achieved with nearly a
steady-state torque value. The recorded values of BT-FSP torque are around 63, 60, and
52 N.m using BT with pin geometries of Sq, Cy, and Tr, respectively. Finally, the torque
curve decreases sharply due to the BT exiting from the workpiece (process end).
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The average torque values during BT-FSP of AA1050 were calculated with the applied
pin geometries at the range of the processing travel speed and presented in Figure 10.
It can be seen that the measured torque values for all pin geometries increase with the
increase in travel speed from 50 to 300 mm/min; with increasing the travel speed, the
heat input decreases and leads to difficulty in moving the processed material around the
tool, also hindering the tool from traveling through the material. Furthermore, it can be
mentioned that the average torque value increases with increasing the pin volume. It can
be recommended that the torque required with the Cy pin geometry (large volume) to
achieve the AA1050 processing path is lower than that needed by the other pin geometries,
Tr (small volume) and the Sq (intermediate volume) pins. This result should be considered
in designing the tool pin.
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3.3. Surface Roughness and Macrostructure Evaluation

The surface roughness or finish of a component under loading is considered one
of the important parameters in determining its performance and lifespan. The surface
roughness of the BT-FSPed AA1050 specimens at different travel speeds of 50, 100, 200, and
300 mm/min and a constant rotation speed of 600 rpm using Tr, Sq, and Cy pin geometries
was measured and plotted in Figure 11. It can be seen that for all the used pin geometries,
the average roughness value increases with increasing the processing travel speed. Among
the used pin geometries, the Tr pin shows the highest surface roughness values compared
to those with the Sq and Cy pin geometries. Using the Tr pin geometry attains the highest
surface roughness value of 245.8 µm at 300 mm/min travel speed. In contrast, the lower
surface roughness values of 95.6 µm attain at 50 mm/min using the Cy pin. The height of
the ripples and the distances between them express the surface roughness of the processed
materials. Figure 12 represents the photo images showing the macro-morphology of the
BT-FSPed AA1050 at 50 and 300 travel speeds and a constant rotation speed of 600 rpm
using different pin geometries. It can be noted that the height and the distance between the
ripples increase with increasing travel speed. For all the used pin geometries, the height and
distance between the ripples (the surface roughness) at 50 mm/min travel speed are lower
than that given at 300 mm/min travel speed, as shown in Figure 12. The appearance of the
weld and/or the processed surface that is formed beneath the tool shoulder after the FSW
and FSP is directly related to the heat input in terms of the stirring process parameters and
its main features are represented by the distance between ripples. The distance between the
ripples is governed mainly by the rotation speed [24,35] and the travel speed [35]. Li et al.
remarked that the distance between the ripples decreases with increasing the rotation
speed from 600 to 1200 rpm at a constant travel speed of 500 mm/min for the BT-FSWed
6082-T6 Aluminum alloy. They detected the highest surface roughness at the welding
condition of 1200 rpm and 500 mm/min. Shigematsu et al. [35] Studied the effect of the
rotation speeds and the travel speed on the surface roughness of the dissimilar friction stir
welding of A5052P-O aluminum and AZ31B-O magnesium alloys. They reported that the
surface roughness of the SZ decreases with increasing the tool rotation speed from 1000 to
1400 rpm at a constant travel speed of 300 mm/min. Low surface roughness is attained at
a rotation speed of 1400 rpm and a travel speed of 300 mm/min. They also reported that
the increase in the travel speed led to the decrease in the surface roughness of the SZ at the
welding condition from 100 to 500 mm/min travel speeds and a constant rotation speed of
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1400 rpm. The low surface roughness attains at the travel speed of 500 mm/min and the
rotation speed of 1400 rpm.
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Figures 13–15 show the macrostructures of the AA1050 BT-FSPed at travel speeds of
50, 100, 200, and 300 mm/min and a constant rotation speed of 600 rpm using three-pin
geometries of Tr, Sq, and Cy, respectively. The typical regions of SZ, thermo- mechanically
affected zone (TMAZ), heat-affected zone (HAZ), and BM can be observed at all the applied
processing parameters. It can be seen also that a sharp transition between the SZ and the BM
appears on the AS, while a more diffuse transient region is obtained in the RS on the cross-
section of the processed materials. This is ascribed to the different behaviors of the material
flow on both sides (AS and RS) during the BT-FSP. Furthermore, the macrostructure of the
AA1050 BT-FSPed using Cy pin geometries reveals sound processing zones at all applied
travel speeds from 50 to 300 mm/min, as shown in Figure 15. Tiny tunnel defects were
only observed on the cross-sections of the processed material produced at 300 mm/min
travel speed for the processed material using the Tr (Figure 13d) and Sq (Figure 14d) pin
geometries. Due to improper stirring, these tunnels are expected with a lower heat input
(lower PZ temperature, Figure 6). Many works [23,36] showed that inadequate movement
around the pin during the stirring process and insufficient heat input in the SZ lead to
various defects such as cavities, kissing bonds, and tunnel defects.
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Figure 13. Macrostructure of the AA1050 BT-FSPed specimens at a constant rotation rate of 600 rpm
using Tr pin (where BM: base material, SZ: stir zone, HAZ: heat-affected zone, and TMAZ: thermo-
mechanically affected zone) and different travel speeds of (a) 50 mm/min; (b) 100 mm/min;
(c) 200 mm/min, and (d) 300 mm/min.
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Figure 14. Macrostructure of the AA1050 BT-FSPed specimens at at a constant rotation rate of
600 rpm using Sq pin (where BM: base material, SZ: stir zone, HAZ: heat-affected zone, and TMAZ:
thermo-mechanically affected zone) and different travel speeds of (a) 50 mm/min; (b)100 mm/min;
(c) 200 mm/min, and (d) 300 mm/min.
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Figure 15. Macrostructure of the AA1050 BT-FSPed specimens at a constant rotation rate of 600 rpm
using Cy pin (where BM: base material, SZ: stir zone, HAZ: heat-affected zone, and TMAZ: thermo-
mechanically affected zone) and different travel speeds of (a) 50 mm/min; (b) 100 mm/min;
(c) 200 mm/min, and (d) 300 mm/min.

The PZ areas for all the applied processing conditions are measured and plotted in
Figure 16. It can be seen that the PZ areas decrease with the increase in travel speed. In
fact, the processing zone area is governed by the amount of heat input introduced to the
PZ. The higher the heat input, the higher the material plasticity and the higher the PZ area.
The heat input increases with decreasing the travel speed. Thus, the maximum PZ areas of
214.80, 185.18, and 178.40 mm2 are observed at a 50 mm/min lower travel speed using the
Tr, Sq, and Cy pin geometries, respectively. In contrast, the minimum PZ areas of 201.42,
142.71, and 138.15 mm2 of AA1050 BT-FSPed at a higher travel speed of 300 are obtained
using Tr, Sq, and Cy pin geometries, respectively.
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3.4. Mechanical Properties

Hardness is considered one of the essential mechanical properties and indicators of
the microstructure change associated with friction stir welding and processing. Thus, the
average hardness values for all the BT-FSPed AA1050 materials at the applied processing
conditions were measured and analyzed. Moreover, the hardness contour maps across
the BT-FSPed using the Cy pin geometry were plotted as an example to evaluate the
hardness values through the 8 mm thickness of AA1050. Figure 17 shows the PZ average
hardness values of the AA1050 BT-FSPed using the Tr, Sq, and Cy pin geometries at 50, 100,
200, and 300 mm/min travel speed and a constant rotation speed of 600 rpm. Generally,
the hardness values increased with increasing the travel speed from 50 to 300 mm/min
using all the pin geometries. This hardness trend is likely due to the decrease in heat
input with increasing travel speed [20,37,38]. The decrease in the heat input will result in
colder plastic deformation conditions which suppress the grain coarsening upon dynamic
recrystallization and result in a significant grain size reduction in the processed zone. This
behavior has been reported by Ahmed et al. [39] for friction stir welded AA7075 and
AA5083, where a significant grain refining occurred in the nugget (NG) zone of AA7075
with an average grain size of 6 µm at 50 mm/min welding speed that was reduced to 2 µm
by increasing the welding speed to 200 mm/min, and in case of AA5083 joints, NG zone
the average grain size of 9 µm at 50 mm/min was reduced to 3 µm at 200 mm/min. This
reduction in the grain size will cause the hardness to increase in the processed zone. A lower
hardness was obtained using the Tr pin geometry than the other pin geometries, where
the hardness in the PZ attains 86.4, 91.2, 101.1, and 101.0% of the AA1050 BM hardness
(Table 1), while using Sq pin, the hardness values achieved 93.8, 101.3, 117.0, and 119.0%
at the travel speed of 50, 100, 200, and 300 mm/min, respectively. The hardness values of
the processed specimens using Sq pin geometry fall in between the values reached using
the other pin geometries. Figure 18a–d represents the Vickers hardness contour maps of
AA1050 BT-FSPed at the travel speeds of 50, 100, 200, and 300 mm/min and a constant
rotation speed of 600 rpm using Cy pin geometry. For the applied travel speeds, it can
be seen that a significant increase in the hardness can be observed in the hardness map
due to the increase in the processing travel speed. The hardness is mainly affected by the
generated thermal cycle experienced during FSP. As noted above from the temperature
measurements, the increase in the processing travel speed from 50 to 300 mm/min has
resulted in a significant reduction in temperature and also a reduction in the thermal cycle.
This results in a colder FSP condition and consequently reduces the recrystallized grain
size [39]. The hardness of the PZ increased with increasing the travel speed, as shown in
Figure 18. It can be remarked from the hardness map that is described in blue color with
a hardness value of about 29 HV (Figure 18a) at the 50 mm/min travel speed, and the
color map changed to red color with hardness values around 36 HV (Figure 18d) using the
Cy pin at the 300 mm/min travel speed. The correlations between microstructures and
mechanical properties in terms of hardness and joint strength of the friction stir-welded
aluminum alloys under different travel speeds have been studied in many works [39,40].
Increasing travel speeds can improve the mechanical properties of the friction stir welded
joints through the enhancement of the material flow and plastic deformation [41,42], but
extremely high travel speed can cause defects such as voids, tunnels, kissing bond, and lack
of penetration due to the lack of heat input [43,44]. In contrast, extremely low travel speed
promotes very high heat input, which can cause a serious softening manner in the weld zone.
Lin et al. [40] studied the effect of travel speed (50–200 mm/min) on the microstructure
and mechanical properties of 12-mm thick Al–Zn–Mg alloy at a constant rotation speed of
450 rpm. They found that both the average grain sizes of the shoulder-affected zone, NZ,
and the widths of TMAZ decreased with the increase of travel speed.
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The ultimate tensile strength (UTS) of AA1050 BT-FSPed at different travel speeds
ranging from 50 to 300 mm/min and 600 rpm rotation speed using the pins of Tr, Sq, and
Cy is shown in Figure 19. For all the used pin geometries, the UTS value is higher than that
of the BM (59 MPa) and increases with increasing the travel speed from 50 to 200 mm/min.
This enhancement in strength compared to the BM is likely due to grain refining through dy-
namic recrystallization in the AA1050 PZ. Shigematsu et al. [45] produced grain refinement
for both AA1050 rolled and annealed plates using friction stir processing [33]. It is reported
that the grain refining in the NZ of the friction stir welded aluminum alloys ascribes to
the dynamic recrystallization [46,47]. The fine grain structure increases the strength of the
processed materials due to hindering the dislocation movement [48–50]. This trend of UTS
values agrees well with that observed for the average hardness values processed at the
same travel speed range (Figure 17). The highest UTS values of the processed materials
were obtained at 200 mm/min travel speed at all applied pin geometries. These UTS values
are 72, 77, and 79 MPa for the used pin geometries of Tr, Sq, and Cy, respectively, at the
processing travel speed of 200 mm/min. The UTS of the BT-FSPed materials produced at
300 mm/min travel speed shows the lowest UTS values of 54 and 63 MPa using Tr and Sq
pin geometries, respectively. This reduction in UTS values compared to AA1050 BM, and
all the processed materials may ascribe to the formed tunnel defect using the Tr (Figure 13d)
and Sq (Figure 14d) pin geometries. It is noticeable that the difference between UTS values
produced by the Cy and Sq pin geometries is insignificant and falls within the error bar.
Thus, among the applied processing parameters, it may be concluded that both pin geome-
tries (Sq and Cy) could be recommended to achieve the highest UTS of AA1050 BT-FSPed at
200 mm/min processing travel speed and 600 rpm rotation speed. Goel et al. [48–50] investi-
gated the effect of pin geometries (Cy, tapered Cy, Sq, Tr, and hexagonal) on microstructural
and mechanical properties of the FSWed AA6063 using two butt joint configurations. The
results showed that the Tapered and Cy tools showed the highest UTS; in contrast, the Tr
pin displayed the lowest UTS. They ascribed the deterioration in strength to using Tr pin
geometry due to inappropriate stirring action and insufficient material plasticization during
FSW. From the point of view of design, tool life, and operating efficiency, it was found that
the cylindrical tool is easier to manufacture and more efficient compared with the Tr and
Sq pin geometries. Aluminum does not stick to it during the stirring process, unlike the
tool with a triangle or square section. It is observed that there is aluminum stuck on the pin
edges, as shown in Figure 20. Thus, machining is required from time to time during the
BT-FSP to remove the stuck materials. This phenomenon is considered as an additional
cost and time consumed during the processing than the Cy pin. Based on the mechanics
and theory of machining principles, Mehta et al. [51] reported that during FSW, polygonal
tool pins are subjected to severe stresses and, in some cases, loss of functionality because
of the adhesion of plasticized material to their surfaces. Moreover, the computed stresses
on the tool pins indicate that circular cross-sections will have lower stresses than the pins
of polygonal cross-sections. In recent experimental work, Ahmed et al. [19] detected the
adhesion of plasticized material on the pin edges of the Tr pin shape after the BT-FSW lap
joint of AA1050.

Figure 21 represents the fracture surfaces of the failed specimens after tensile testing
for AA1050 BM (Figure 21a) and the processed materials using different pin geometries
at the processing parameters of 600 rpm rotation speed and travel speeds of 50 mm/min
(Figure 21b,d,f) and 300 mm/min (Figure 21c,e,g). The fractography SEM image of AA1050
BM shows large and small dimples with tearing edges and serrations, indicating ductile
fracture, as shown in Figure 21a. In general, the fracture surfaces of AA1050 processed using
different pin geometries (Figure 21b–g) contain equiaxed deep and shallow dimples that
are smaller in size than detected for the BM. This denotes grain refining in the PZ because
of dynamic recrystallization combined with the applied processing of travel speeds and pin
geometries at a constant rotation speed of 600 rpm. Furthermore, the materials processed
using different pin geometries of Tr, Sq, and Cy at a lower travel speed of 50 mm/min (a
higher heat input) show large and deep dimples, as given in Figure 21b,d,f, respectively,
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compared to those processed at the higher travel speed of 300 mm/min (a lower heat input)
using Tr (Figure 21c), Sq (Figure 21e), and Cy (Figure 21g). Finally, the fracture surface of
the BT-FSPed specimen at 200 mm/min travel speed and 600 rpm rotation speed using Cy
pin geometry is dominated by equiaxed, uniform, and homogeneous smaller dimples with
thinner edges (Figure 22a–c) compared to the AA1050 BM (Figure 21a), and all the AA1050
processed specimens (Figure 21b–g), indicating more grain refining. These features are
confirmed with the highest attained mechanical properties of tensile strength and hardness.
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4. Conclusions

BT-FSP of 8 mm thickness AA1050 was carried out at processing travel speed ranging
from 50 to 300 mm/min and a constant rotation speed of 60 rpm using different pin
geometries of Tr, Cy, and Sq. Based on the obtained results, it is possible to conclude
the following:

1. In the BT-FSP, the travel speed and the pin geometry are two essential factors that
control the temperature of the PZ. In addition, the Cy pin promotes a higher PZ
temperature than other pin geometries.

2. The temperature of the advancing side is higher than the retreating side under any
processing condition using the applied pin geometries.

3. The BT-FSP machine torque values increase with increasing the processing travel
speed from 50 to 300 mm/min at all applied pin geometries. The highest torque value
of 73 N.m was recorded using the Sq pin profile at 300 mm/min.

4. BT-FSP of AA1050 using Cy pin leads to an 8 mm full-thickness defect-free processing
path at all the travel speeds. Furthermore, the processing path using the Tr and Sq
obtained sound paths at 50, 100, and 200 mm/min travel speeds.

5. At 300 mm/min travel speed, Tr and Sq pins show tunnel defects which cause
deterioration of the UTS.

6. Under all applied conditions, the hardness of the PZ increases with increasing travel
speed. The Cy pin geometry reveals a higher hardness than the other pin geometries.

7. The AA1050 BT-FSPed using Cy pin at 200 mm/min travel speed and rotation speed
of 600 rpm delivers a sound processing path with the highest ultimate tensile strength
of 79 MPa with an enhancement of 33.8 % over the BM.

8. The optimized BT-FSP parameters of 8 mm thickness AA1050 to achieve the high
hardness and UTS with a sound processing path are 200 mm/min travel speed and
600 rpm rotation speed using Cy pin geometry.

9. From an economic point of view, the Cy pin geometry is recommended to BT-FSP
AA1050 instead of the Tr and Sq pin geometries.
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