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Abstract: Bolted joints are commonly used for assembling carbon fiber/resin composite structures.
Since drilling may generate defects at hole edges which affect mechanical properties, it is of great
engineering significance to develop proper repair methods to restore the mechanical properties of
the defective parts. However, there are few studies on hole edge defects and their repair methods.
Therefore, a novelty short fiber filling repair method was proposed to repair defective holes in this
study. The mechanical properties of intact, defective and repaired countersunk composite joints were
compared and investigated. Experimental tensile tests showed that defective joints had lower initial
stiffness and failure loads compared to intact joints, while the mechanical properties were effectively
restored after repair. Three-dimensional finite element models were also established to analyze the
damage process of the joints. Results of numerical modelling were consistent with the experimental
results. The simulations showed that changes in contact behaviors and local deformations caused by
hole edge defects led to the low initial stiffness and stiffness transition point of the joint, while this
phenomenon was reduced after repair. Additionally, despite different joint types, laminate failure
mainly occurred around the hole and countersink.

Keywords: countersunk composite joints; defects; repair; mechanical behaviors; finite element

1. Introduction

Composite materials have been used in the aviation industry for more than forty years
as they provide the high specific stiffness/strength required for the challenging operating
conditions. Three types of joints are commonly used in aircraft composite structures: bolted
joints, bonded joints and hybrid bolted/bonded joints [1]. Among them, bolted joints are
the most common type used for joining different composite parts, and many studies have
been conducted regarding the mechanical behavior of such structures.

The hole clearance has a significant influence on the mechanical behavior of composite
bolted joints. Mccarthy et al. [2] conducted a series of experiments to evaluate the effects
of hole clearance on the stiffness and ultimate strength of single-lap composite joints. The
results showed that increasing the clearance reduced joint stiffness and increased ultimate
strains. Moreover, a delay in initial load take-up, which might change load distributions in
multi-bolt structures, was also observed for joints with a large clearance value. Compared
to composite joints without clearance, Scalea et al. [3] found that the compressive stresses
in holes of composite joints with clearance were much higher due to the reduced contact
area. Zhai et al. [4] performed single-lap, single-bolt composite joint bearing tests, showing
that both the bolt-hole clearance and torque had an influence on the failure load.

In addition to experiments, advanced three-dimensional (3D) finite element (FE)
simulations have also been widely used to analyse stress states and damage processes
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in composite structures [5–7]. Qin et al. [8] showed that different contact areas and local
deformations between composite joints with protruding shear bolts and countersunk bolts
caused different stress distributions near the hole edge. Stocchi et al. [9] established a
very detailed FE model of composite joints with countersunk bolts to accurately determine
the stress state and contact between the holes and bolts. Additionally, many studies
have employed Hashin-type failure criteria and the constant degradation law to predict
the failure loads of composite bolted joins; the numerical results agreed well with the
experimental results [10–14]. Hashin-type failure criteria were shown to be computationally
efficient in FE models.

Previous research has mainly focused on intact composite bolted joints with hole edge
clearances. However, in the manufacturing process, especially during manual drilling
operation, composite bolted joints may easily get damaged due to unreasonable operations
or accidents, and have defects, such as over-tolerance holes, burrs, spalling and cracks,
which should also be considered [15,16]. The effect of these defects on the joint may be
greater than that of ordinary hole edge clearance. Some researchers have studied the
relationship between drilling parameters and hole defects, and the results showed that
drilling quality was a key factor affecting the mechanical properties and service life of
composite joints [17–19]. Therefore, it is quite important to evaluate the residual strength
and stiffness of defective joints in engineering.

In addition to the hole edge defect, the need of maintenance and repair for the defective
holes is also a major concern for both the manufacturers and the end-users. In order to
ensure the safety of structures in service, it is necessary to repair defective composite joints
to avoid damage propagation from the defects and restore their strength and stiffness as
much as possible. Current mainstream repair methods for composite structures include
external patch bonding [20], scarf repair [21], bolted repair [22] and resin injection [23]
techniques. However, most of these methods are used to repair penetration damage, impact
damage or delamination defects and there are rare reports of repairing defective holes.
Therefore, the repair method for defective holes and the mechanical properties of the
repaired structure also need to be further studied, which is of great significance to the
practical application of composite joints in aeronautical engineering.

In this article, in order to realize an economic and practical maintenance solution, a
short fiber filling repair method (filling the geometric defects with short fiber composite
materials and redrilling the hole into the intact size) was proposed to repair defective
countersunk composite joints. Through quasi-static uniaxial bearing tests, the mechanical
behaviors of intact, defective and repaired single-lap single-bolt composite joints were
compared, and the effectiveness of the repair method was evaluated. Then, to better
understand the tensile loading and damage process of the joints, 3D FE models considering
progressive failure analysis were developed for each type of joint. Based on the simulation
results, laminate/bolt contact behaviors and damage modes of different types of joints
were discussed.

2. Materials and Methods

As shown in Figure 1a, three types of single-lap single-bolt countersunk composite
joints were analyzed in this study, which were intact, defective and repaired, respectively.
For each type, there were 3 samples, and altogether 9 samples were used. All samples were
manufactured from T700/QY9611 carbon fiber/bismaleimide composites with a lay-up of
[45/90/−45/0/45/−45/90/0]2s (widely used in aircraft structures). The joint samples and
their basic geometry are shown in Figure 1b.

The intact joints were prepared according to the recommendations in ASTM D5961/
D5961M. The nominal ply thickness was 0.125 mm, and the total thickness of the laminate
was 4 mm. The mechanical properties of the lamina, measured by basic mechanical
experiments, are listed in Table 1.
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Figure 1. Photographs and schematic diagram of the tensile test specimen (all dimensions in mm).

Table 1. Material properties of T700/QY9611.

Elastic Property Value Strength Value

Longitudinal Young’s modulus E11 (GPa) 146 Longitudinal tensile strength XT (MPa) 2391

Transverse Young’s modulus E22 = E33 (GPa) 104 Longitudinal compression strength XC (MPa) 1410

Longitudinal shear modulus G12 = G13 (GPa) 6.45 Transverse tensile strength YT = ZT (MPa) 67

Transverse shear modulus G23 (GPa) 3.37 Transverse compression strength YC = ZC (MPa) 219

Longitudinal Poisson’s ratio v12 = v13 0.28 Longitudinal shear strength S12 = S13 (MPa) 94

Transverse Poisson’s ratio v23 0.30 Transverse shear strength S23 (MPa) 94

Density ρ (g/cm3) 1.6

As mentioned above, due to the quality of the manual drilling process, machining
defects, such as over-tolerance, burrs and spalling may appear on the hole of a composite
joint (see Figure 2a). In order to eliminate the impact of defects, the defective countersunk
composite joints were repaired using a short fiber filling repair method. The repair proce-
dure in this study involved three steps (see Figure 2b–d): removing the machining defects
by reaming, filling the hole with short fiber composite materials, then redrilling the hole to
the intact size.
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The short fiber composite material was prepared using a mixture of T700 short fibers
and DG-3 epoxy adhesive (made in China), as shown in Figure 3.
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Figure 3. Short fiber composite materials before curing.

The lengths of the short fibers were 2 to 3 mm, and the fiber fill fraction in the mixture
was 3%. The fibers and DG-3 epoxy adhesive were well mixed to produce a mixture with
randomly oriented fibers. Before filling the defective hole with the short fiber composite,
the surface of the hole was cleaned with alcohol. The laminate samples with repaired
holes were vacuumed to −0.8 MPa using a vacuum system and cured at room temperature
(26 ◦C) for 48 h. After curing, the filler material had an elastic modulus of 10 GPa, Poisson’s
ratio of 0.36, and compression strength of 290 MPa (measured by basic mechanical tests
and shown in Table 2).

Table 2. Mechanical properties of the short fiber composite material.

Mechanical Property Value

Elastic modulus Esf (GPa) 10

Poisson’s ratio vsf 0.36

Compression strength σsf (MPa) 290

Density ρsf (g/cm3) 1.2

The detailed geometries of three sample types are shown in Figure 4. In this study,
the defective samples had over-tolerance holes which represented the most severe case of
geometric defects. The diameter of the holes in intact samples was 5 mm, while that of
defective samples was 6 mm (with a larger size to represent geometric over-tolerance holes).
The initial diameter of the holes in repaired samples was also 6 mm. Short fiber composite
materials were used to fill the defective holes, and then the holes were drilled again to
a diameter of 5 mm with a 100◦ countersink, nominally identical to the intact laminates;
this process is shown in Figure 2. XH714 vertical machining centers and diamond-coated
carbide drills were used for drilling. The spindle speed was 500 rpm, and the feed speed
was 110 mm/min. Aerospace-grade titanium alloy bolts with a diameter of 5 mm and 100◦

countersink were used for all composite joint samples. A torque of 1 Nm was applied using
a calibrated torque wrench.
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All tensile tests were performed using an Instron 8803 machine with a load capacity
of 250 kN at room temperature. The system was hydraulically driven, and the load was
applied in displacement control mode at a rate of 2 mm/min. The applied load and grip
holder displacement were automatically recorded by the system software. The sample
clamping method used in the tests is shown in Figure 5. The tests were stopped when
catastrophic failure of the samples occurred or the load suddenly dropped 30% from the
peak value.
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3. Experimental Results
3.1. Load-Displacement Curve

The load–displacement curves of the intact, defective and repaired samples are shown
in Figure 6. It can be seen that curves of intact joints included three stages. In the first
stage, the curves were almost linear before the loads reached about 6.5 kN. The slopes of
the curves (stiffness of the joint) then gradually decreased during the second stage, as the
bearing damage in the holes gradually expanded. Finally, the curves suddenly dropped
when the countersunk bolts fractured due to shear stresses and the joints could no longer
bear loads.
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In the case of the repaired samples, the curves were similar to those of the intact
samples, including a linear region of constant stiffness, a gradual decrease in stiffness and
finally a sharp drop due to catastrophic shear-out damage. However, the stiffness of the
repaired joints was lower than that of the intact joints.

In contrast to the intact and repaired curves, the load–displacement curves of the
defective samples showed four distinct stages. In the first stage, the joint showed a low
stiffness when the load was below 3 kN as the bolt shank could not completely bear the
load. There was a clear transition in the stiffness between the first and second stages, where
the stiffness in the second stage was higher than that in the first stage. In the third stage,
with the increase of load, the propagation of bearing damage reduced the stiffness of the
joint. Finally, the curve sharply dropped when the bolt fractured.

In general, due to the influence of hole edge geometric defects, the initial stiffness (and
hence, bearing capacity) of defective samples was much lower compared with the other
composite joints, especially at low load conditions. The repair method used here increased
the stiffness of defective composite joints, although the original stiffness of the samples was
not fully restored.

3.2. Failure Load

The failure loads of the intact, defective and repaired composite joints are shown in
Table 3 and Figure 7. The variation coefficients of three types of joints are all within 6%,
which reflects the validity of the experiment. The average failure load of the defective
samples was 9.70 kN, while that of the intact samples was 12.94 kN. The average failure
load of defective joints was only 74.9% of the intact joints; hence, defective holes greatly
reduced the strength of the composite joint. The average failure load of repaired samples
was 12.55 kN, which was 96.9% of the intact samples, indicating that the proposed repair
method could compensate the geometric defects and almost restore the strength of the
joint. Moreover, compared with the intact joints, the lower and upper limit of load capacity
recovery ratio of the repaired joints were 93.4% and 99.1%, respectively, representing
excellent repair efficiency.

Table 3. Failure loads of the intact, defective and repaired composite joints.

Sample Types Failure Load (kN) Average Failure Load (kN) Standard Deviation (kN) Variation Coefficient (%)

Intact samples
12.95

12.94 0.60 4.613.54
12.34

Defective
samples

9.52
9.70 0.52 5.410.29

9.30

Repaired
samples

12.08
12.55 0.41 3.212.82

12.74

3.3. Failure Mode

Although bolt shear-off was the final failure mode of intact, defective and repaired
composite joints, obvious bearing damage was observed in the holes of three sample types
before final failure. Therefore, the experimental data were effective.

Figure 8 shows the failure modes of the upper laminates, where parts (a,b), (c,d) and
(e,f) correspond to the intact, defective and repaired samples, respectively. Figure 8a,c,e
show the front sides of the upper laminates, while Figure 8b,d,f show the back sides of
the upper laminates. It can be seen from the figure that bearing damage was the main
failure mode for all joints. Since the initial hole diameter of the defective joint (6 mm)
was larger than that of the intact and repaired joints (5 mm), the contact area between the
bolt and hole of the defective sample was less that of the other samples. Therefore, more
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pronounced bearing deformations occurred in defective samples compared to intact and
repaired samples, as shown in Figure 8. This indicates that stress concentration may be one
of the causes of the early fracture of the bolt in the defective joint, resulting in the lower
failure load (see Table 3). In the case of the repaired samples, the shape and extent of hole
deformation were similar to those of the intact samples. Moreover, Figure 8f shows that the
filler material near the hole of the laminate was almost crushed.
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4. Numerical Analysis
4.1. FE Modelling

To further analyze and explain the mechanical behaviors of the intact, defective and
repaired samples, three corresponding FE models were created using Abaqus 6.13/Ex-
plicit, as shown in Figure 9. The models had the same geometries and initial mechanical
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properties as the specimens. Three-dimensional eight-node reduced integration solid ele-
ments (C3D8R) were used for model meshing. The hole edge mesh was refined to ensure
calculation accuracy. After convergence verification, the minimum size of elements near
the hole edges of laminates was set to 0.2 mm. In the thickness direction, each layer was
represented by one solid element. Altogether 106,428 elements were used to discretize
the joint. The clamping area of FE models was the same as that of experimental samples,
which was shown in Figure 1. The boundary condition at the clamping area of the lower
laminate was UX = UY = UZ = 0. To define the contacts, a surface-to-surface algorithm was
implemented, which allowed pressure to be transferred between contacting surfaces and
prevented contact areas from penetrating each other. The friction coefficient between all
contacts was 0.2 [10,24]. The relationship between master surfaces and slave surfaces and
the model details are shown in Figure 9.
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The effect of bolt torque was simulated through the compression deformation of
the bolt. According to the measurement of our colleagues, a torque of 1 Nm produced
76 micro-strains in the axial direction of the bolt. Therefore, during step 1 of the finite
element model, a corresponding 0.0053 mm relative compression displacement was applied
to the upper and lower sections of the bolt (see Figure 9). After step 1, an x-displacement
was applied at the reference point of the clamping area of the upper laminate using a
smooth step to achieve a quasi-static state during step 2.

The bolts and nuts in FE models were made of Ti-6Al-4V alloy (Eb = 108 GPa, νb = 0.33)
and were considered as a single structure for simplification. The Johnson-Cook model was
used to describe the plasticity of the bolt. The expression of the Johnson-Cook model is
shown as follows [25]:

σ = (A + Bεn)(1 + C ln
.
ε
∗
) (1)

where σ is the equivalent stress, ε is the equivalent plastic strain,
.
ε
∗ is the equivalent

strain rate and A, B, C and n are material parameters. The titanium alloy has values of
A = 1098 MPa, B = 1092 MPa, C = 0.014 and n = 0.93 [26].
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In the FE model for repaired samples, the filler material was tied with the composite
laminates, assuming no significant debonding between the filler material and laminates
(from digital camera observation during experiments and post-test failure analysis).

4.2. Failure Criteria and Degradation Rules

Hashin-type failure criteria [27] are widely used in fiber reinforced polymer material
research. As shown in Table 4, Hashin-type failure criteria and constant degradation rules,
based on a previous study [10], were employed in this study for T700/QY9611 composite
materials via the Abaqus VUSDFLD subroutine.

Table 4. Failure criteria and degradation rules for T700/QY9611 composite materials.

Failure Mode Failure Criterion Degradation Rule

Fiber tensile failure (FT) fFT = (
σ11
XT

)
2
+ (

τ12
S12

)
2
+ (

τ13
S13

)
2 ≥ 1, (σ11 > 0)

E11 = 0.1E11, v12 = 0.1v12, v13 = 0.1v13, G12 = 0.1G12, G13 = 0.1G13

Fiber compressive failure (FC) fFC = (
σ11
XC

)
2 ≥ 1, (σ11 < 0)

Matrix tensile failure (MT) fMT = (
σ22
YT

)
2
+ (

τ12
S12

)
2
+ (

τ23
S23

)
2 ≥ 1, (σ22 > 0)

E22 = 0.3E22, v12 = 0.3v12, v23 = 0.3v23, G12 = 0.3G12, G23 = 0.3G13

Matrix compressive failure (MC) fMC = (
σ22
YC

)
2
+ (

τ12
S12

)
2
+ (

τ23
S23

)
2 ≥ 1, (σ22 < 0)

Delamination in tension (DT) fDT = (
σ33
ZT

)
2
+ (

τ13
S13

)
2
+ (

τ23
S23

)
2 ≥ 1, (σ33 > 0)

E33 = 0.2E33, v23 = 0.2v23, v13 = 0.2v13, G13 = 0.2G13, G23 = 0.2G23

Normal crushing (NC) fNC = (
σ33
ZC

)
2
+ (

τ13
S13

)
2
+ (

τ23
S23

)
2 ≥ 1, (σ33 < 0)

Fiber-matrix shear failure (SS) fSS = (
σ11
XC

)
2
+ (

τ12
S12

)
2
+ (

τ13
S13

)
2 ≥ 1, (σ11 < 0) v12 = 0.2v12, G12 = 0.2G12

Considering that the short fiber composite material for repair is isotropic, the maxi-
mum stress failure criteria and constant degradation rule were used for the filler material,
as shown in Table 5.

Table 5. Failure criteria and degradation rules for the short fiber composite material.

Failure Criterion Degradation Rule

f = |σ11| ≥ σsf
f = |σ22| ≥ σsf
f = |σ33| ≥ σsf

Esf = 0.4Esf

Since the termination of the tests was caused by bolt fracture, damage of the bolt
material was also considered in FE models. To this end, Johnson–Cook damage criteria in
Abaqus/Explicit was used for predicting the damage initiation of Ti-6Al-4V alloy, where
the general expression is shown as follows [28]:

ε
pl
D = [d1 + d2 exp(−d3η)][1 + d4 ln(

.
ε

pl

.
ε0

)] (2)

where ε
pl
D is the equivalent plastic strain at the onset of damage, d1–d4 are failure parameters,

η is the stress triaxiality and
.
ε0 is the reference strain rate. The values of d1, d2, d3, d4 and

.
ε0

for the Ti-6Al-4V alloy are −0.09, 0.27, 0.48, 0.014 and 1, respectively [26]. After damage
onset occurs, a fracture-energy-based criterion is applied during the damage evolution
stage, as given by:

d = 1− exp(−
upl∫
0

σy
.
u

pl

Gf
dt) (3)
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where d is the damage variable and Gf is the fracture energy. Once the damage variable d
of the element reaches 1, the element will be removed from the FE model.

5. Numerical Results and Discussions
5.1. Load–Displacement Curves

The obtained numerical results were compared with the experimental results to val-
idate the FE models. The load–displacement curves are compared in Figure 10. When
the bolt was completely broken, all calculations were stopped and the displacement–load
curves reached their end points, which was the same as the experimental cases. The FE
models accurately reproduced the non-linearity of the load–displacement responses caused
by the degradation of mechanical properties. Additionally, the main feature of the experi-
mental curve was also successfully captured. In the defective joints, the obvious transition
points in the stiffness occurred at the same position (at the load of 3 kN) in both numerical
and experimental curves.
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Figure 10. Comparison of the numerical and representative experimental load-displacement curves.

In terms of stiffness and failure loads, a good agreement between the numerical and
experimental data was also observed. The predicted failure loads of the intact, defective
and repaired joints were 12.84, 10.50 and 12.08 kN, respectively, while the experimentally
determined values were 12.94, 9.70 and 12.55 kN, respectively, which yielded the differences
of −1%, 8% and −4%, respectively. The main reason for the differences between the
predicted and experimental values may be that the bolt and nut were simplified into a whole
structure for modelling to improve the computational efficiency. This simplification ignored
the clearance and relative displacement between the bolt and nut. For defective joints, since
the overall deformation was more severe, the effect of clearance and relative displacement
on the predicted value was more significant. Therefore, compared with the intact and
repaired joints, the calculation discrepancy of the defective joints was slightly larger.

5.2. Contact Behavior and Local Deformation

The contact behavior was investigated in order to elucidate the reason for the transition
point in the stiffness of defective joints, as shown in Figure 11. The over-tolerance defect
resulted in large clearances and mismatched countersinks in the joints. Therefore, at a low
applied load, the bolt shank did not come in contact with the inner surface of the hole. In
this case, the load transfer of the upper laminate mainly depended on the contact with
the countersink area, as shown in Figure 11a, which resulted in low joint stiffness. As the
applied load increased, the clearance between the bolt shank and the upper laminate at the
bearing side of the hole gradually decreased. When the bolt shank came into contact with
the hole (see Figure 11b), the load could be transmitted through the bolt shank, leading
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to an increase in the stiffness of the entire joint. As a result, transition points could be
observed in the load–displacement curves.
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transition point.

In the case of the repaired joints, the filler material compensated the large clearance
and mismatched countersink, resulting in higher initial stiffness and no transition point
in the load–displacement curve compared with the defective joints. However, since the
stiffness of the filler material was lower than that of the laminate, stiffness of the repaired
joints could not be completely restored to that of the intact joint.

It should be noted that due to the large clearance and mismatched countersink in
the defective joint, the bending deformation of the bolt in this joint was larger than those
in intact and repaired joints under the same applied load, as shown in Figure 12. Large
local deformations of the bolt tended to cause premature fracture, which resulted in a low
failure load. The filler material in the repaired joint hindered the bending deformation and
increased the failure load. The numerical results are consistent with the experimental results.
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5.3. Failure Mechanisms

To analyze the failure of different joints, final damage distributions around the holes of
upper laminates were simulated, as shown in Figure 13. For the sake of simplicity, only the
main failure modes (fiber compressive failure, matrix compressive failure, normal crushing,
fiber–matrix shear failure and filler material failure) are displayed.

The final damage was mainly located around the area between the cylindrical hole and
the countersink, which was typical for bearing damage under unidirectional tensile loading.
The predicted final damage location was similar to our experimental results and other FE
studies [10,12], which validated our numerical models. Due to the secondary bending
effect, the applied load was mainly transmitted to the cylindrical hole of the laminate via
the bolt shank. Therefore, the location of fiber compressive failure in all three models
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was concentrated around the cylindrical hole, where the lower plies were damaged more
seriously.
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In the case of matrix compressive failure, the damage was also concentrated around
the cylindrical hole due to the secondary bending effect. However, as the defective and
repaired laminates (not including the short fiber composite material part) had mismatched
countersinks, their countersinks were larger than that of the intact sample, while the depth
of the cylindrical holes were shallower than that of the intact laminate. Therefore, compared
with intact laminates, the countersink area beared a greater load and more damage in the
defective and repaired laminates.

In the case of normal crushing, the distribution of material crushing was also domi-
nated by secondary bending. The load exerted by the bolt shank caused damage mainly
on the cylindrical hole, while the compressive load exerted by the bolt head damaged the
top plies on the opposite side. For the same reason, the damage observed in defective and
repaired laminates was located closer to the top ply than that in the intact laminates due to
the mismatched countersink.

In the case of fiber–matrix shear failure, the final damage was mainly distributed
around the cylindrical hole. However, in the case of filler material failure in the repaired
laminate, the filler material compensated for the dimensional mismatch and improved the
stress distribution, although the filler material around the cylindrical hole was eventually
crushed, as observed in the experimental results.
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6. Conclusions

In this study, a short fiber filling repair method was proposed to repair composite
joints with defective holes. The mechanical performances of intact, defective and repaired
joints under the tensile load were compared experimentally and numerically, and the
results could be summarized as follows:

1. Hole edge defects would reduce the mechanical properties of the joints. Defective
joints with over-tolerance countersink had a significantly lower failure load than the
other samples (the average failure load of defective samples was only 74.9% of intact
samples). Moreover, the initial stiffness of defective joints was lower than that of the
other joints, where a transition point in the stiffness at about 3 kN was observed.

2. The average failure load of repaired samples was 96.9% of intact samples (the lower
and upper limit of load capacity recovery ratio were 93.4% and 99.1%, respectively).
The short fiber filling repair method proposed in this study could adequately restore
the ultimate strength and partial stiffness of the samples, showing excellent repair
efficiency.

3. Numerical analysis indicated that the low initial stiffness and transition point for
defective joints were due to the load being transmitted by the bolt head instead of
the bolt shank during initial deformation, which was caused by the large clearance
and mismatched countersink. The short fiber material filled the geometric defect and
improved the mechanical behavior of the repaired joints, resulting in a higher initial
stiffness and failure load compared with the defective joints, which explained the
repair mechanism.

4. Both the experimental and numerical results showed that the laminate failure of three
types of joints mainly occurred around the hole and countersink; nevertheless, due
to the effects of geometric defects and secondary bending, the failure distribution of
defective joints differed slightly from the other joints.
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