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Abstract: The synthesis of silver nanoparticles using plant extracts, widely known as a green syn-
thesis method, has been extensively studied. Nanoparticles produced through this method have
applications as antibacterial agents. Bacterial and viral infection can be prevented by use of antibacte-
rial agents such as soap, disinfectants, and hand sanitizer. Silver nanoparticles represent promising
hand sanitizer ingredients due to their antibacterial activity and can enable reduced use of alcohol
and triclosan. This study employed silver nanoparticles synthesized using Kepok banana peel extract
(Musa paradisiaca L.). Nanoparticle effectiveness as a hand sanitizer can be enhanced by coating with a
biocompatible polymer such as chitosan. The characterization of silver nanoparticles was conducted
using UV-Vis, with an obtained peak at 434.5 nm. SEM-EDX analysis indicated nanoparticles with a
spherical morphology. Silver nanoparticles coated with chitosan were characterized through FTIR to
verify the attached functional groups. Gel hand sanitizers were produced using silver nanoparticles
coated with different chitosan concentrations. Several tests were undertaken to determine the gel
characteristics, including pH, syneresis, and antibacterial activity. Syneresis leads to unstable gels,
but was found to be inhibited by adding chitosan at a concentration of 2%. Antibacterial activity was
found to increase with increase in chitosan concentration.

Keywords: silver; nanoparticle; hand sanitizer; green synthesis; chitosan

1. Introduction

The emergence of new pathogens, including the coronavirus responsible for the current
COVID-19 pandemic, has presented new challenges for the protection of public health
worldwide. This global phenomenon has stimulated the most widely used strategy to deal
with potential pathogens, which is prevention of infection by attention to hand hygiene.
The use of hand sanitizers, without water and soap, in the form of foam, gel, and liquid, is
a practical approach to sanitization that is readily available and widely recognized in the
community. The three forms of hand sanitizer vary in their effectiveness in killing bacteria
and viruses due to the different mechanical friction methods they employ to physically
remove pathogens [1]. It has been found that hand sanitizer in gel form is considered more
beneficial than foam or liquid sanitizers, based on adherence and effectiveness, due to
properties such as the ability to create a protective layer at the site of application, longer
protection time on the skin, an enhanced moisturizing sensation, adherence to the skin,
and higher retention time [2]. Currently, the most effective hand sanitizer products are
those with an alcohol content of 62–95%, because of the effect of alcohol in denaturing
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microbial proteins and inactivating viruses. However, continuous or excessive usage of
hand sanitizers containing alcohol with this formulation poses several challenges and
concerns due to negative effects such as burning and damage to the skin, especially for
sensitive types of skin [3]. Therefore, the development of non-alcoholic active ingredients
as safe antibacterial and antiviral agents is necessary.

There have been a wide range of applications of nanotechnology in biomedical science,
including the use of various oxides such as those of copper (Cu) [4], zinc (Zn) [5], gold (Au),
and silver (Ag) [6], as well as titanium dioxide (TiO) [7], and magnesium oxide (MgO) [8].
Silver is used in metal nanoparticles for biomedical applications because of their non-toxic
properties and effective antibacterial activity. Anamala and Nallamuthu [9] reported that
silver nanoparticles were able to kill 650 types of microorganism.

Furthermore, silver (Ag) nanoparticles have been widely studied due to their anti-
fungal and antiviral properties. Silver in the form of nanoparticles has a large surface-
area-to-volume ratio, enabling penetration of bacterial cell walls, changing the structure of
cell membranes, and even killing of targeted cells. Silver nanoparticles work by releasing
silver ions, increasing cell membrane permeability, producing reactive oxygen species, and
interfering with deoxyribonucleic acid replication. The safety of silver nanoparticles has
been widely recognized, with no reports of systemic toxicity resulting from ingestion of
silver nanoparticles [10].

According to FDA regulations, silver nanoparticles must comply with new drug
application standards (NDA) with respect to their composition, effectiveness, labeling,
manufacturing methods, and safety for commercialization. The FDA explicitly allows the
use of silver nanoparticles in the biomedical field where they are shown to be safe and
biocompatible, and where they meet appropriate quality standards in the manufacturing
process. Recently, several silver nanoparticle products have been used in fabrics, cosmetics,
storage containers, and medicine [11], reflecting the biocompatibility of silver nanoparticles
for application to the skin.

Lu et al. [12] investigated the toxicity to the skin of silver nanoparticles coated with
biocompatible polymers with light exposure. It was found that silver nanoparticles in
colloidal form which were exposed to sunlight for one to three weeks did not show a toxic
effect on keratinocyte cells. However, silver nitrate samples caused up to 98% cell death
within one week, even with half the dose of silver nanoparticles. It was concluded that
colloidal silver nanoparticles are stable and safe for use on the skin.

Physical, chemical, or biological methods for the synthesis of nanoparticles can be classi-
fied in terms of two main types of approach: (1) the top-down approach, which breaks down
larger structures into smaller parts, and (2) the bottom-up approach, which involves the
synthesis of materials at the atomic level to create larger nanostructures [13]. Various metal
nanoparticles have previously been fabricated using top-down approaches, such as mechan-
ical milling [14,15]), etching [16], laser ablation [17], sputtering [18], and electro-blasting [19].
Bottom-up approaches to the synthesis of nanostructures have included the synthesis of
supercritical fluids [20], the use of templates [21], sol-gel processes [22], laser pyrolysis [23],
molecular condensation [24], chemical reduction [25,26] and green synthesis [27–29].

Among these methods, biological approaches to the synthesis of nanoparticles using
plant extracts, also referred to as green synthesis methods, have been more widely used
than physical or chemical methods. Such biological methods are considered to have more
advantages in terms of being easier to use, more economical, and more environmentally
friendly. The constituents of some plants can act as metal bioreductors and capping
agents for the synthesis of silver nanoparticles. Several studies have reported successful
silver nanoparticle synthesis by application of bioreductors derived from plant extracts,
such as Clitoria ternatea and Solanum nigrum leaf extract [30], neem leaf extract (Azadirachta
indica) [31], Moringa leaf extract (Moringa oleifera) [32], teak (Tectona grandis) seed extract [33],
and Hagenia abyssinica leaf extract [34]. Another plant that can act as a bioreductor for
silver nanoparticles is the Kepok banana (Musa paradisiaca L.), the peel extract of which
contains several polyol and heterocyclic compounds. The Kepok banana is widely utilized
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for various food manufacturing purposes. However, its peel is usually not reusable and
is thrown away as waste, creating an opportunity for its use as a source of reducing
agents for silver nanoparticles [35]. However, little research related to the synthesis of silver
nanoparticles from Kepok banana peel as an alternative material for hand sanitizers has been
undertaken. Thus, further research is needed for the development of non-alcohol-based
hand-sanitizer products.

Ashmore et al. (2018) reported that silver nanoparticles are modifiable by coating
with polymers such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), citrate and
sodium dodecyl sulfate [36]. Such polymers can act as stabilizing agents, preventing the
aggregation of particles and promoting the interaction between silver nanoparticles and
bacteria cells, inducing biological activity. Chitosan is a type of biocompatible polymer,
widely applied in biomedical applications, which exhibits antibacterial activity. Chitosan
has the potential to be used as a capping agent on the surface of silver nanoparticles to
increase biocompatibility and the stability of nanoparticles to prevent agglomeration [37].
In this study, a non-alcoholic and non-triclosan hand sanitizer formulation was developed
with silver nanoparticles modified with biocompatible molecules in the form of chitosan.
The research involved the synthesis of silver nanoparticles using Kepok banana peel extract
and assessment of the effect of chitosan concentration on the characteristics of hand sanitizer
gels produced using silver nanoparticles, including their antibacterial activity.

2. Materials and Methods
2.1. Materials and Instrumentation

The following materials and chemicals were obtained from Merck: silver nitrate
(AgNO3, Merck Pte.Ltd., Singapore), low molecular weight chitosan (deacetylation degree
75–85%, Merck Pte.Ltd., Singapore), acetone (C3H6O, 99.5%, Merck Pte.Ltd. Singapore),
thickening agent carbopol 940 (Merck Pte.Ltd., Singapore), methyl paraben (C8H8O3,
Merck Pte.Ltd., Singapore), acetic acid glacial (CH3COOH, 99%, Merck Pte.Ltd. Singapore),
sodium hydroxide (NaOH, Merck Pte.Ltd., Singapore), and hydrogen peroxide (H2O2,
Merck Pte.Ltd., Singapore). In addition, Kepok banana (Musa paradisiaca L.) peel extract, as
a bioreductor, was collected from Malang, East Java, Indonesia. UV-visible spectroscopy
(UV-Vis, Shimadzu 1601 Series), Fourier transform infrared spectroscopy (FTIR, Shimadzu
8400s), dynamic light scattering (DLS, Malvern Zetasizer), scanning electron microscopy-
energy dispersive X-ray spectroscopy (SEM-EDX, Hitachi TM 3000), and X-ray diffraction
(XRD, PANalytical Japan) were used for the characterization of materials.

2.2. Methodology
2.2.1. Preparation of Kepok Banana (Musa paradisiaca L.) Peel Extract

Preparation of Kepok banana peel extract was conducted following the procedure
performed by Ibrahim [35], with several modifications. Firstly, Kepok banana peel was
cleaned with running water before being dried. The banana skin was then peeled and cut
into small pieces. A quantity of 50 mL of aquabidest was placed into a 250 mL beaker
and heated to boiling point. Next, 50 g of Kepok banana peel was boiled in distilled water
for 30 min at 85 ◦C. The boiled water filtrate was then separated from the peels using a
cheesecloth. After the separation process, acetone was added to the filtrate in a 1:1 ratio
and the filtrate centrifuged at 1000 rpm for five minutes. The resulting precipitates were
then filtered using Whatman paper No. 1 and were suspended in distilled water in a ratio
of 1:30 mL. Lastly, the extract was stored at 4 ◦C in a refrigerator for further study.

2.2.2. Synthesis and Characterization of Chitosan-Modified Silver Nanoparticles

Prior to the synthesis of silver nanoparticles, AgNO3 solution was prepared by dissolv-
ing 0.03 g of AgNO3 in 100 mL of distilled water, resulting in a 1.75 mM AgNO3 solution.
The synthesis of silver nanoparticles with Kepok banana peels was carried out by mixing
Kepok banana peel extract with AgNO3 solution in a 1:1 volume ratio. Afterwards, the solu-
tion was incubated in a dark room for 24 h at 30 ◦C. The formation of silver nanoparticles
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was indicated by a change in the color of the solution from a clear to a brownish-yellow. The
resulting silver nanoparticles were coated utilizing water-soluble chitosan. As an indepen-
dent variable in this research, silver nanoparticles were treated by coating with chitosan at
different concentrations of 0.5%, 1%, and 2%. For comparison, silver nanoparticles without
chitosan coating were also used for further analysis. The coating process of synthesized
silver nanoparticles was performed by adding a chitosan solution with 0%, 0.5%, 1%, and
2% concentrations, which had previously been optimized through depolymerization using
a solution of H2O2, 10% of sodium hydroxide, and acetic acid. Silver nanoparticles, with
the previous addition of chitosan, were stirred using a magnetic stirrer for 2 h, centrifuged,
and further washed with acetone. Before being characterized, the nanoparticles were dried
using a freeze-drying process. The silver nanoparticles were then characterized by FTIR
to determine the nature of the functional groups before and after coating with chitosan.
The silver nanoparticles were also characterized by XRD and SEM-EDX to confirm the
formation of silver nanoparticles and to determine their crystal structure and morphology.
Determination of the particle size distribution of silver nanoparticles, before and after
coating with chitosan, was performed using DLS.

2.2.3. Preparation of Hand Sanitizer Gel

A quantity of 0.5 g of carbopol 940 was sprinkled over 20 mL of distilled water in a
mortar and stirred until a gel mass was formed. A quantity of 0.1 g of methyl paraben
was weighed and dissolved in 5 mL of distilled water in a mortar and stirred until the
mixture was homogeneous. A quantity of 4 mL of glycerin was added and stirred until
the mixture was homogeneous. Quantities of 5 mL of silver nanoparticles with or without
chitosan coating were added to the mixtures and then stirred until dissolved. Then, 20 mL
of distilled water was added, mixed until homogeneous and crushed until a gel was
formed. Through this procedure, four different compositions of gel product containing
silver nanoparticles without chitosan, and silver nanoparticles coated by chitosan with
three different compositions of chitosan (0.5; 1; and 2%) were obtained. The resulting gels
were then placed in a container to be further tested.

2.2.4. pH and Syneresis Test of Gel

The acidity of the gel hand sanitizer was assessed to determine the compatibility of the
gel with human skin. The pH measurement was performed by dipping the pH meter into
the gel product at room temperature. A syneresis test was also performed. The syneresis
test was conducted by observing the weight of the gel before and after being placed in
storage at two different temperatures of 5 ◦C and 40 ◦C for 140 h.

2.2.5. Antibacterial Activity Test

An antibacterial activity test was performed using the well method to determine the
inhibition zone of each hand sanitizer gel product. The first step was performed to produce
a sterile nutrient medium which was then chilled to a temperature of 40–45◦. Afterwards,
the solid media were smeared with cultures of gram-positive (Staphylococcus aureus) and
gram-negative (Eschericia coli) bacteria utilizing sterile cotton buds in different cups. After
smearing with bacterial cultures, wells were made in the compacted agar medium using
an iron perforator or a clamp. The hand sanitizer gel sample was then inserted into the
wellbore, which was cleaned to remove gram-positive and gram-negative bacteria. A
commercial hand sanitizer gel containing 70% alcohol and 0.2% phenoxyethanol incubated
at 37 ◦C for 24 h was used as a positive control. The zone of inhibition of each sample was
calculated by measuring the diameter of the clear area using a caliper.

2.2.6. Molecular Docking Method

Molecular docking was conducted to compare the experimental results with in sil-
ico theoretical results utilizing ChemAxon’s marvinSketch 5.2.6, YASARA Bioscience’s
YASARA View 19.12.14, and ChemAxon’s PLANT. There were two types of ligands: stan-
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dard ligands and test ligands. SB 3gr6 receptors, generated from the Protein Data Bank were
used in this study [38]. A three-step docking technique was used. The first step involved
synthesis of the target protein and native ligands. The second step involved validation of
the docking protocol, and the third step involved docking of the test ligand. YASARA View
was employed to prepare the native ligands and target proteins by removing the native
ligand of the protein. By re-docking the native ligand to its protein using YASARA View,
the docking protocol validation enabled an RMSD (root median square deviation) value to
be obtained. The validation of the docking process was considered accurate if the RMSD
value was less than 2 [39]. PLANT was employed to type the commands for test ligand
docking in cmd.exe. SB 3gr6 active sites were coupled with the test ligand. PLANT was
used to analyze the commands to determine the best docking score. Combining of docking
techniques was performed to establish a synergistic relationship between the chemicals
and to bind ligands to each target protein with sufficient stability. The compounds were
arranged based on their average docking score to create the docking protocol combination.
The compounds with the highest docking scores and the target protein were further saved
in a file called protein.mol2 and docked to the compounds with the lowest docking scores.

3. Results and Discussion
3.1. Synthesis of Silver Nanoparticles with Kepok Banana Peel Extract (Musa paradisiaca L.)

Green synthesis of silver (Ag) nanoparticles in an aqueous solution was conducted by
mixing an AgNO3 precursor with Kepok banana peel extract as a bioreductor containing
active compounds of flavonoids, alkaloids, tannins, saponins, and triterpenoids [40]. Mix-
ing the precursor solution with banana peel extract reduced the Ag ions to produce silver
nanoparticles (Ag). In general, a biosynthesis approach using plant extracts is more widely
employed than chemical or physical methods. The biosynthesis process used to produce
silver nanoparticles using Kepok banana peel extract is illustrated in Figure 1.
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Figure 1. Ilustration of silver nanoparticle formation using banana peel extract as bioreductor.

All parts of plants, including the leaves, fruits, roots, seeds, and stems contain
biomolecules, such as enzymes, alkaloids, flavonoid, polysaccharides, tannins, terpenoids,
phenols, and vitamins which serve not only as agents to reduce Ag+ ions to Ag0 for the
synthesis of silver nanoparticles but also as capping agents for the surface of nanoparti-
cles produced.

The hydroxyl group attached to the carbon atom of the aromatic ring enabled reduction
of silver ions to produce silver nanoparticles. Due to a lower dissociation energy than for
other OH groups, the catechol OH group plays an important role in reducing metal ions.
One molecule of flavonoid and polyol compounds will produce two protons per catechol,
so that one molecule can reduce two silver ions [41]. The proposed reaction mechanism
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for the formation of silver nanoparticles using Kepok banana peel extract is illustrated
in Figure 2.
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The formation of Ag nanoparticles was characterized by a change in the color of the
solution. Initially, the obtained AgNO3 solution was clear. However, after being mixed
with Kepok banana peel extract, within 24 h of incubation time the color of the solution
turned brownish yellow, as shown in Figure 3.
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Figure 3. The color change of silver nitrate solution after adding banana peel extract within 24 h
of incubation.

Silver nanoparticles that had been successfully synthesized were then modified by
adding a water-soluble chitosan solution with different concentrations of 0.5, 1 and 2%
chitosan. In this study, chitosan was used as a stabilizing agent on the surface of the silver
nanoparticles to prevent agglomeration. In our previous study, it was found that chitosan
added as a coating agent on the surface of nanoparticles was able to prevent agglomeration
in a sample of iron oxide nanoparticles by decreasing the size of iron oxide clusters [42].

Similarly, Cinteza et al. [43] reported that chitosan acts as a stabilizing agent for silver
nanoparticles preventing nanoparticle agglomeration by breaking particle clusters into
smaller sizes. Chitosan coating of the surface of silver nanoparticles was able to prevent
the formation of aggregates with other silver nanoparticles. In this study, aggregation
only occurred if there was no addition of a stabilizing agent (such as chitosan) to the
nanoparticle samples.

In principle, bare metal nanoparticles will readily agglomerate due to van der Waals
interactions that occur on the surface. Phan et al. [44] stated that chitosan was an excellent
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stabilizing agent for metal nanoparticles. Chitosan acts as a steric barrier by covering the
metal surface with a positive charge. The use of chitosan as a stabilizing agent has been
demonstrated in the synthesis of gold nanoparticles using chitosan and citric acid reagents.
The presence of chitosan stabilized the nanoparticles, thereby preventing agglomeration.

Chitosan was dissolved in water to form a homogeneous hand sanitizer gel formula-
tion. Silver nanoparticles without modification were used as a control in the observations.
The formation of silver nanoparticles was observed using a UV-Vis spectrophotometer and
SEM-EDX for the purpose of characterization. In addition, samples of chitosan modified sil-
ver nanoparticles were observed for functional group characterization using FTIR. The gel
stability and antibacterial properties of hand sanitizer gel formulated using both modified
and unmodified silver nanoparticles were tested.

3.2. Characterization of Silver Nanoparticles Using UV-Vis Spectrophotometer

Characterization of silver nanoparticles with a UV-Vis spectrophotometer was con-
ducted to observe the characteristic absorption peaks or surface plasmon resonance of the
silver particles in the sample using distilled water as a blank solution. Sawalha et al. [45]
and Razy et al. [46] reported that the UV-Vis instrument is an essential instrument to obtain
information related to the SPR peaks in silver nanoparticle formation. To complement
UV-Vis, nanoparticles can be characterized by EDX, XRD, and FTIR. The results of UV-
Vis characterization showed that the solution containing silver nanoparticles produced
peaks with a maximum wavelength around 400 nm. The UV-Vis spectrum of the silver
nanoparticle samples produced in this study is illustrated in Figure 4.
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The characterization results indicated that the absorbance peak, or surface plasmon
resonance (SPR), appeared as a single peak at a maximum wavelength of 434.5 nm. Accord-
ing to a previous study, it was found that silver nanoparticle absorption peaks occurred
especially in the wavelength range of 390 to 470 nm [47]. According to Jyoti et al. [48],
SPR peaks in the 410–450 nm wavelength region indicate nanoparticle materials with a
more specific spherical shape. However, to confirm hypotheses regarding the shape or
morphology of nanoparticles, further testing is required using other instrumentation, such
as SEM-EDX.

In the formation of silver nanoparticles, several factors affect the size and shape of the
resulting nanoparticles, including the effect of the extract concentration and incubation
time. If the concentration of the extract is lower than that of the precursor, it will result in
the formation of nanoparticles with a larger size due to a slower rate of nuclei formation.
However, if the concentration of the extract is too high, it will quickly increase the reaction
rate and cause the nucleus to grow in a particular direction, producing nanoparticles
in the form of rods [49]. In addition, the incubation time affects the formation of silver
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nanoparticles, with longer incubation time causing the formation of silver nanoparticles in
larger quantities, reflected in a UV-Vis absorption peak profile showing absorbance values
of high intensity at the maximum wavelength of silver nanoparticles.

3.3. Morphology and Elemental Analysis of Silver Nanoparticles Using Scanning Electron
Microscope Energy Dispersive X-ray Spectroscopy

A characterization process was conducted using an SEM (scanning electron micro-
scope) to determine the morphology of the silver nanoparticles. The results indicated
that the silver nanoparticles were spherical with an average particle size in the range
of 100–300 nm. Previous results indicated that the maximum absorbance measured by
UV-Vis spectrophotometer was around 410–450 nm, reflecting the spherical morphology of
nanoparticles [48]. Additionally, a small portion of the nanoparticles underwent clustering,
generating a larger size of nanoparticles, due to the large surface energy of nanoparticles
and the length of storage prior to the characterization process. The result of the SEM-EDX
characterization is illustrated in Figure 5.
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The particle size distribution was determined by processing the SEM data using a
combination of Visio and Origin software. Visio software was employed to measure the size
of each single particle matched to the actual scale of particles from the SEM images. The
data was then transferred into Origin software to calculate the size distribution of the silver
nanoparticles. The size distribution of silver nanoparticles obtained is illustrated Figure 5B.

The EDX pattern of silver nanoparticles is depicted in Figure 5C. According to the
EDX pattern, the existence of Ag nanoparticles was identified at around 3 keV which is
consistent with the results obtained by Jain et al. [41]. Moreover, a prior study conducted
by Kgatshe et al. [50] suggested that absorption peaks below 5 keV indicated the existence
of pure silver metal ions. However, peaks corresponding to the presence of carbon and
oxygen were also observed in the EDX spectra attributed to the presence of the capping
agent originating from the Kepok banana peel extract. The EDX spectra confirmed that the
nanoparticles contained about 56% silver.

3.4. Characterization of Silver Nanoparticles Using X-ray Diffraction

The crystal structure of the silver nanoparticles was obtained using an X-ray diffraction
(XRD) technique. The XRD pattern obtained is shown in Figure 6. The diffractogram of
silver nanoparticles synthesized by Kepok banana peel extract showed an intense peak at
2 theta values of 38.16◦; 44.58◦; 64.53◦; and 77.88◦, which correspond to the standard Bragg
reflections (111), (200), (220), and (311) of a face-centered cubic lattice
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The additional peak observed with a lower intensity that appeared at 2 theta of 22◦

was due to the presence of the capping agent from the Kepok banana peel extract. The X-ray
diffraction pattern also confirmed the formation of silver nanoparticles, consistent with
earlier reports [51–53].

3.5. Functional Group Characterization of Nanoparticle Samples by Employing Fourier Transform
InfraRed Spectroscopy

FTIR analysis provided details of the characteristics of the presented surface structure
and of the functional groups involved in the reduction of Ag ions and of possible interac-
tions between chitosan and silver nanoparticles. The FTIR spectra for silver nanoparticles,
with and without chitosan coating, are illustrated in Figure 7. The absorption band for
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chitosan is depicted at wave numbers of around 3300 cm−1 and 2900 cm−1, indicating
amide A and amide B bands, in which amide A bands appeared due to the presence of O-H
alcohol groups or N-H amines. Amide B bands appeared mainly due to the strain vibration
of the aliphatic –CH bond. The absorption bands at 1550 cm−1, 1420 cm−1, and 1350 cm−1

were attributed to C=O strain vibration (Amide I), NH bending vibration (Amide II), and
CH2 wobble vibration (Amide III), respectively [54].
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Meanwhile, the absorption band for silver nanoparticles coated with chitosan (AgNP-
chitosan) indicated a slight change associated with chitosan. The absorption band for
AgNP-chitosan observed at 3410 cm−1 was attributed to the amide bond. The hypochromic
shift associated with this peak might have been due to the interaction of primary amino and
amide groups of the chitosan and silver nanoparticles. The existence of bands at 1564 cm−1,
1430 cm−1, and 1360 cm−1 confirmed the vibration of organic substances. These bands also
indicated the binding of silver nanoparticles with chitosan as a stabilizing agent [13]. Based
on previous research conducted by Hajj et al. [55], lower peak intensity at these bands occurs
due to the interaction of Ag, O, and N atoms of amide groups when compared to chitosan
spectra. These main bands for the AgNP-chitosan composite indicated the formation of
coordinate bonds between amino and hydroxyl groups of chitosan and silver nanoparticles.

Furthermore, based on the results of the FTIR spectra of silver nanoparticles without
chitosan coating, it was apparent that there was a characteristic peak at 3418 cm−1 of lower
intensity compared to the chitosan and AgNP-chitosan spectra, indicating stretching vibra-
tions of O-H or N-H groups. The presence of these phenolic and amine groups was due
to the utilization of Kepok banana peel extract as a bioreductor for the production of silver
nanoparticles (even wihout chitosan coating). This O-H group is a component of the phe-
nolic functional group derived from the plant extract. In addition, Saha et al. [56] reported
the presence of a shoulder peak that appears at a wavenumber lower than 3000 cm−1,
indicating the presence of O-H and N-H bonds from the extract on the surface of silver
nanoparticles. Moreover, the observed band at 1683 cm−1 indicates the presence of C=O or
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C=N groups derived from Kepok banana peel extract. The absorption band for the carbonyl
group indicates the presence of flovonone or terpenoid compounds adsorbed on the surface
of the nanoparticles.

3.6. Characterization of Particle Size Distribution of Silver Nanoparticles Coated by Chitosan
Using Dynamic Light Scattering

The particle size distribution of silver nanoparticles (AgNP), before and after coating
by chitosan polymer, was characterized using dynamic light scattering, as presented in
Figure 8. The particle size distribution varied from 51 to 255 nm, and 55 to 371 nm for silver
and silver-coated chitosan, respectively. In this study, the particle size distribution of silver
nanoparticles obtained by DLS was slightly different for the SEM image. This was probably
because the SEM only detected the surface morphology of the nanoparticles. The smaller
particles tended to form clusters after the drying process (observed by SEM). However,
these were distributed in the aqueous medium (as determined by DLS).

Materials 2022, 15, x FOR PEER REVIEW 12 of 22 
 

 

3.6. Characterization of Particle Size Distribution of Silver Nanoparticles Coated by Chitosan 
Using Dynamic Light Scattering 

The particle size distribution of silver nanoparticles (AgNP), before and after coating 
by chitosan polymer, was characterized using dynamic light scattering, as presented in 
Figure 8. The particle size distribution varied from 51 to 255 nm, and 55 to 371 nm for 
silver and silver-coated chitosan, respectively. In this study, the particle size distribution 
of silver nanoparticles obtained by DLS was slightly different for the SEM image. This was 
probably because the SEM only detected the surface morphology of the nanoparticles. The 
smaller particles tended to form clusters after the drying process (observed by SEM). 
However, these were distributed in the aqueous medium (as determined by DLS). 

 
Figure 8. Particle size distribution of dynamic light scattering (DLS) for silver nanoparticles (AgNP) 
and silver nanoparticles coated by chitosan (AgNP-chitosan). 

According to the results, the silver nanoparticles coated by chitosan had a wide range 
of size distribution due to the size of chitosan molecules and the number of chitosan layers 
on the surface of the nanoparticles. However, the smallest particle size of silver 
nanoparticles coated with chitosan was 55 nm. The smallest particle size of the silver 
nanoparticles without chitosan was 51 nm. Therefore, the values for these particles were 
slightly different. The average particle size of the chitosan-coated silver nanoparticles was 
133 nm, which was smaller than that of the particle sizes of the silver nanoparticles 
obtained using SEM images. This implies that the presence of the chitosan polymer 
collapsed the silver nanoparticle clusters to form smaller particle sizes resulting in 
reduced agglomeration. 

3.7. Visual Characterization of Gel Hand Sanitizer 
Visual quality inspection indicated that the resulting hand sanitizer formulation pos-

sessed good characteristics, with respect to gel texture and homogeneity, with a clear 
golden yellow color for gels containing silver nanoparticles without chitosan coating, and 
a transparent color for gels containing nanoparticles with chitosan coating. Furthermore, 
the gels were found to be freshly scented. The hand sanitizer gels with different formula-
tions are illustrated in Figure 9. 

0

5

10

15

20

25

0 100 200 300 400 500

Fr
eq

ue
nc

y 
(%

)

Particle Size (nm)

AgNP AgNP-Chitosan

Figure 8. Particle size distribution of dynamic light scattering (DLS) for silver nanoparticles (AgNP)
and silver nanoparticles coated by chitosan (AgNP-chitosan).

According to the results, the silver nanoparticles coated by chitosan had a wide range
of size distribution due to the size of chitosan molecules and the number of chitosan layers
on the surface of the nanoparticles. However, the smallest particle size of silver nanoparti-
cles coated with chitosan was 55 nm. The smallest particle size of the silver nanoparticles
without chitosan was 51 nm. Therefore, the values for these particles were slightly different.
The average particle size of the chitosan-coated silver nanoparticles was 133 nm, which was
smaller than that of the particle sizes of the silver nanoparticles obtained using SEM images.
This implies that the presence of the chitosan polymer collapsed the silver nanoparticle
clusters to form smaller particle sizes resulting in reduced agglomeration.

3.7. Visual Characterization of Gel Hand Sanitizer

Visual quality inspection indicated that the resulting hand sanitizer formulation pos-
sessed good characteristics, with respect to gel texture and homogeneity, with a clear
golden yellow color for gels containing silver nanoparticles without chitosan coating, and a
transparent color for gels containing nanoparticles with chitosan coating. Furthermore, the
gels were found to be freshly scented. The hand sanitizer gels with different formulations
are illustrated in Figure 9.
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The color change from yellow to transparent was due to the presence of silver nanopar-
ticles dispersed in the chitosan matrix [57]. The color change generally depends on two
factors, including the amount of Ag and the average particle size. This phenomenon also
indicates that silver nanoparticles undergo declustering with the addition of chitosan poly-
mer. Therefore, the average size of the single silver particles was reduced when combined
with the chitosan polymer to produce an optically transparent gel. This optical color change
has also been observed during the formation of nanocomposite and hydrogel films with
silver-chitosan nanoparticle components [58,59].

In addition, the gel was found to be easy to apply and to spread easily, without the
presence of coarse particles when spread on transparent glass. The resulting gels exhibited
similar characteristics to those reported in a study by Booq et al. [2] which found gel
characteristics such as homogeneity, clarity, ease of application, lightness of spread, and
consistent flow.

3.8. pH Test of Gel Hand Sanitizer

The pH value of the hand sanitizer gel was measured using a pH meter for each
different formulation of hand sanitizer gel. The pH values for hand sanitizer gel, as
prepared with 0%, 0.5%, 1%, and 2% chitosan, were 4.65, 4.66, 4.65 and 4.67, respectively.
The acidity (pH) which is safe for the skin and conforms to the ideal standard for the pH
value of the topical dosage should fall within a skin pH range of 4.0 to 7.0 to prevent
inflammation and skin irritation.

It was reported that the optimal conditions for the growth of several pathogenic
bacteria infecting the skin are in the neutral pH and alkaline pH range [17,18]. On the
other hand, normal bacteria are more likely to remain on the skin if the pH conditions
are slightly acidic. According to previous research reported by Booq et al. [2], the average
pH value of the natural skin surface is less than 5.0, providing the optimal conditions for
dermal biological processes, and thus the activity of antimicrobial compounds will enhance
this condition. Thus, increasing the acidity level of hand sanitizer gel, even slightly, from
neutral pH (pH 7) to a more acidic pH (pH 4.5–6.5) will boost its effectiveness against
pathogenic bacteria [2,60,61].

3.9. Syneresis Test

Syneresis refers to the occurence of impulsive liquid released out of the gel, squeezing
water from the inside, thereby shrinking and solidifying the gel [62]. According to Hesarine-
jad et al. [63], syneresis is affected by some organic compounds; a higher concentration of
protein or other materials that contain amine groups reduces the potential for syneresis,
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since proteins and materials containing amine groups are able to absorb water to a greater
degree. In this study, a decrease in syneresis was observed with higher concentrations
of chitosan on the nanoparticle surface. During the investigation, the gels were stored in
a refrigerator at ±5 ◦C and in an oven at ±40 ◦C for 140 h; it was found that gels with
different chitosan concentrations at 5 ◦C storage temperature lost more weight than gels
stored in 40 ◦C, as shown in Table 1.

Table 1. Syneresis test result at two different temperatures of 5 ◦C and 40 ◦C for different gel formulation.

Chitosan
Concentration in
Gel Formulation

Storage Temperature (5 ◦C) Storage Temperature (40 ◦C)

Gel Mass before
Storage (g)

Gel Mass after
Storage (g)

Gel Mass
Loss (%)

Gel Mass before
Storage (g)

Gel Mass after
Storage (g)

Gel Mass
Loss (%)

0% 10.2885 9.994 2.87 10.3795 10.3650 0.14
0.5% 10.3863 10.2110 1.69 10.0369 9.9236 1.13
1% 10.3235 10.2021 0.32 10.6330 10.423 1.97
2% 10.3787 10.2685 1.06 10.0811 9.975 1.05

The stability of nanoparticles with gel composition was also evaluated by Kopytov
et al. [64], which indicated that silver nanoparticles coated with polymer (polyvinylpyrroli-
done) had good stability at 5 ◦C when stored for 36 months. In this study, a syneresis test
was also conducted within 140 h (±6 days) at extreme temperatures of 5 ◦C and 40 ◦C. The
results of the syneresis test indicated that the gel-contained nanoparticles were stable at
different compositions and only experienced a mass decrease of less than 3% and 2% for
storage at 5 ◦C and 40 ◦C, respectively. These results indicated that the stability of silver
nanoparticle aggregates with polymer as a stabilizing agent contained in gel form could be
maintained for a long period.

The results shown in Table 1 indicate that gel formulation was relatively stable under
those two conditions. Since the stability of the gel is indicated by low levels of syneresis, the
gel with 1% chitosan was the most stable at a storage temperature of 5 ◦C. However, when
both treatments are considered, gel with 2% chitosan concentration showed insignificant
change. The same observations were reported by Kalia et al. [65] when considering the
water holding capacity of chitosan and chitosan-metal nanocomposites. The addition of
ZnO and CuO nanoparticles to nanocomposites significantly reduced their water holding
capacity (WHC) by up to 37%. If the WHC decreases, an increase occurs in syneresis events.
If syneresis increases, both the material and the gel will lose their stability. Therefore, in-
creasing the chitosan concentration plays an important role in enhancing WHC, decreasing
the syneresis effect.

3.10. Antibacterial Acitivity

An antibacterial activity test was conducted using a well diffusion method against
Staphylococcus aureus and Eschericia coli. Antibacterial activity is indicated by the presence
of a clear zone around the well. The diameter of the clear zone around the well containing
the hand sanitizer gel with different formulations was measured and compared with
the positive control, a commercial hand sanitizer gel consisting of 70% alcohol and 0.2%
phenoxyethanol. The results of the antibacterial activity test in this study indicated that the
inhibition zone produced by chitosan-modified non-alcoholic hand sanitizer gel was larger
than that for the commercial hand sanitizer gel, as shown in Figure 10, and Tables 2 and 3.

Table 2. Antibacterial activity of hand sanitizer gel towards Staphylococcus aureus bacteria.

Dose
The Diameter of Inhibition Zone (mm)

Average
1 2 3 4 5 6 7 8

0% 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
0.5% 17.11 15.37 15.49 17.06 19.01 19.02 17.25 18.17 17.31
1% 20.54 19.22 16.83 18.19 19.31 16.77 16.84 17.46 18.14
2% 20.12 19.41 17.23 19.59 22.15 18.18 18.09 20.34 19.39

Positive
Control 7.08 6.81 7.03 6.74 6.66 6.59 7.45 6.78 6.89
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Figure 10. Diameter of inhibition zone of hand sanitizer gel against (A) S. aureus and (B) E. coli with
eight times measurement repetition.

Table 3. Antibacterial activity of hand sanitizer gel towards Escherichia coli bacteria.

Dose
The Diameter of Inhibition Zone (mm)

Average
1 2 3 4 5 6 7 8

0% 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
0.5% 7.24 8.56 8.67 9.18 7.25 8.44 6.29 8.51 8.02
1% 8.61 8.42 9.12 9.17 8.38 10.14 7.83 8.23 8.74
2% 9.29 7.91 10.45 10.09 8.87 9.85 10.04 8.37 9.36

Positive
Control 6.15 6.17 7.29 7.06 7.11 7.21 6.73 6.42 6.77

Based on the results of the antibacterial activity test, the modified non-alcoholic hand
sanitizer gels containing silver nanoparticles and chitosan exhibited a higher inhibition
response compared to commercial hand sanitizer gels. However, silver nanoparticles with-
out chitosan coating exhibited a similar clear zone diameter compared with the commercial
hand sanitizer gel. This suggests that silver nanoparticles show antibacterial activity. How-
ever, antibacterial activity significantly increased compared to commercial hand sanitizer
gel with the addition of chitosan. Therefore, chitosan has a synergistic effect, enhancing the
antibacterial activity of silver nanoparticles in the formulation of gel hand sanitizers.
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Silver nanoparticles coated with a polymer (chitosan) have also been successfully
synthesized in several previous studies [52,66,67]. A similar diameter of the inhibition zone
was found in the present study compared to previous research. The average diameter of
the inhibition zone resulting from adding nanoparticles into bacterial strains (S. aureus
and E. coli) was found to be 8–19 nm [53,68,69]. The diameter depended on the amount of
chitosan and silver nanoparticles in the different samples.

According to the diameter of inhibition zone obtained in this study, modified hand
sanitizer gel with chitosan had a greater impact on S. aureus than on E. coli bacteria. Similar
results were obtained (Table 4) by Nithya et al. [69] and Mirda et al. [52] using a nanocom-
posite product, as well as by Ahmad et al. [66], using a produced hydrogel. The effect
occured because S. aureus is a gram-positive bacterium with a simple, single-layered cell
wall structure with low lipid content, enabling bioactive compounds to penetrate the cells.
E. coli, however, is a gram-negative bacterium with a more complex cell structure, having
a three-layer lipoprotein coat, consisting of an outer layer, a middle layer of lipopolysac-
charide, and a peptidoglycan layer with high lipid content. These layers act as a barrier to
antibacterial bioactive ingredients, thus hindering the penetration of the cell membrane.
However, this study confirmed that hand sanitizer gels containing silver nanoparticles
and chitosan achieved higher antibacterial activity against pathogenic bacteria [70] by
comparison with the antibacterial activity of silver nanoparticles coated by chitosan against
S. aureus bacterial strain observed in previous research.

Table 4. Comparison of antibacterial activity of silver nanoparticles coated with chitosan against
S. aureus bacterial strain for previous and current studies.

Dose/Composition Diameter of Inhibition
Zone (mm) Source

AgNP-Chi-Spheres (in 20% NaOH) 15.40 [52]
AgNP coated Chitosan 8.80 [66]

AgNP-Chitosan (Chitosan + 2% AgNP) 12.42 [68]
Chitosan-Ag (10 µg) 13.00 [69]

AgNP coated Chitosan (with 2% Chitosan) 19.29 Current Research

In our previous research, we also investigated the phenomenon of bacteria-killing by
silver nanoparticles using FE-SEM. FE-SEM images obtained indicated that silver nanopar-
ticles changed bacteria cell morphology. Bacterial cell death occurred due to swelling and
shrinking mechanisms in the bacterial cells [51].

3.11. Docking Studies

This study sought to validate the experimental results against in silico theoretical
results for docking studies. The protein data bank (http://www.rcsb.org./pdb, accessed
on 24 January 2022) was employed to obtain the crystal structures of Staphylococcus aureus
enoyl-acyl carrier protein reductase in complex with NADP and triclosan (PDB ID: 3gr6).
Table 5 displays the docking score values obtained during the molecular docking stage
of chitosan to receptors. With a spontaneous process, the highest docking score energies
represent the best possible geometry of the compounds inside the protein.

Table 5 illustrates the values of docking scores for native ligand, chitosan, chitosan-Schiff
base, and chitosan-Schiff base-Ag(I) which were: −72.8008 kcal·mol−1, −81.1968 kcal·mol−1,
−85.8808 kcal·mol−1, and −92.4815 kcal·mol−1, respectively. The chitosan, chitosan-Schiff
base, and chitosan-Schiff base-Ag(I) compounds showed lower binding energies than their
native ligands. Table 6 depicts all the compounds’ interactions. The docking conformation
and bonding interactions of ligands are depicted in Figure 11.

http://www.rcsb.org./pdb
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Table 5. The docking results of native ligand, chitosan, chitosan-Schiff base and chitosan-Schiff base
Ag(I) to 3gr6.

Ligand Docking Score against 3gr6 (kcal·mol−1)

Ligand native −72.8008
Chitosan −81.1968

CS-Schiff base −85.8808
CS-Schiff base-Ag(I) −92.4815

Table 6. The interaction of Staphylococcus aureus amino acids with various compounds.

Residue Hydrogen Bond

Native ligand Ile94, Thr145, Tyr 91, Ala144, His92 Thr 145 (2.22 Å)

Chitosan Thr145, Ala144, His92, Ile94, Met12,
Ser93, Tyr91

His92 (2.59 Å), Thr145 (3.14 Å), Ser93
(2.47 Å) dan Ser 93 (2.75 Å)

Chitosan SB Lys164, ser93, Met12, Tyr91,
Ala144, Ala95

Met12 (2.37 Å), Tyr91 (3.20 Å), Lys164
(2.94 Å)

Chitosan SB Ag(I) Thr146, Ala144, Ile94, Ser93, Met12,
Tyr91, His92 Met12 (2.29 Å)

In sum, the findings indicated that the native ligand was more selective for 3gr6 than
chitosan and chitosan-Ag complexes. In addition, the computational studies suggested that
chitosan compounds were potential inhibitors in the treatment of antibacterial infections.
Silver nanoparticles added to chitosan (chitosan-Schiff base-Ag(I)) had the most antibacte-
rial potential. The results of this theoretical study strengthen the experimental findings.

4. Conclusions

Hand sanitizer gel is preferred as an alternative for hand hygiene. This study in-
volved the formulation of gels using chitosan-modified silver nanoparticles as an active
antimicrobial agent. The results indicated that silver nanoparticles with a spherical shape
were obtained using Kepok banana peel extract. The nanoparticles were formulated as
gel preparations with several chitosan concentrations. According to the results of pH,
syneresis, and antibacterial activity tests, it can be concluded that the gel formulations
produced, with or without chitosan, exhibited excellent characteristics with appropriate pH
values (less than 5) (comparable to skin pH), high stability, and effectiveness as antibacterial
agents. Furthermore, the presence of chitosan as a coating on the surface of silver nanopar-
ticles acted as a stabilizing agent to prevent agglomeration, increasing the effectiveness of
nanoparticles as an antibacterial agent. In summary, silver nanoparticles, produced by a
green synthesis method with chitosan coating, are promising for the formulation of gel
hand sanitizer products without alcohol content.
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