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Abstract: Based on the theory of magnetoacoustic coupled dynamics, the purpose of this paper
is to evaluate the dynamic stress concentration near an elliptical opening in exponential-gradient
piezomagnetic materials under the action of antiplane shear waves. By the wave function expansion,
the solutions for the acoustic wave fields and magnetic fields can be obtained. Stress analysis is
performed by the complex function method and the conformal mapping method, which are used
to solve the boundary conditions problem, and is used to express the dynamic stress concentration
coefficient (DSCC) theoretically. As cases, numerical results of DSCCs are plotted and discussed with
different incident wave numbers and material parameters by numerical simulation. Compared with
circular openings, elliptical openings are widely used in material processing techniques and are more
difficult to solve. Numerical results show that the dynamic stress concentration coefficient at the
elliptical opening is strongly dependent on various parameters, which indicates that the elliptical
opening is more likely to cause crack and damage to exponential-gradient piezomagnetic materials.

Keywords: exponential-gradient piezomagnetic materials; magnetoacoustic coupled dynamics;
dynamic stress concentration coefficient; conformal mapping

1. Introduction

Functional-gradient piezomagnetic materials, as sophisticated materials in the field of
high technology, can adapt to changes in the environment, achieve the mutual transforma-
tion of magnetic and mechanical energy, and have unique features of combining sensing,
execution, and control. These materials are critical to electronics, radar, microdisplacement
control, and aeronautical technologies in the future [1]. Functional-gradient piezomagnetic
materials have many advantages over typical component materials; however, they are brit-
tle and have low fracture toughness in nature. The failure mechanism of functional-gradient
piezomagnetic materials incorporates flaws such as cavities, fractures, and inclusions under
the action of dynamic loadings. The study of its failure mechanism is crucial in the design
of devices and components [2].

In recent years, in order to study the structural strength and stability of materials,
many scholars have carried out a lot of experimental research and theoretical analysis on
the propagation of coupled elastic waves in functional materials, and provided theoretical
results at the same time [3–9]. Hei et al. [3], based on complex function theory, investigated
an analytical solution for the dynamic stress concentration due to an arbitrary cylindrical
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cavity in an infinite inhomogeneous medium. The scattering of arbitrary cavities with
variable-coefficient Helmholtz equations is solved by introducing two different conformal
maps. Assuming that the density index of the medium changes continuously, the complex-
value displacements and stresses of the inhomogeneous medium can be explicitly obtained.
With the aid of Green’s function method and the image method, Qi et al. [4] considered the
problem of scattering of an SH wave by a semicylindrical salient near-vertical interface in a
bimaterial half-space. They calculated the dynamic stress concentration factor around the
edge of a semicylindrical salient, and discussed the influences of incident wave number,
incident angle, effect of interface and different combinations of material parameters, etc.,
on the dynamic stress concentration factor. An et al. [5] evaluated the stress concentration
at the tip of a permeable interfacial crack near an eccentric elliptical hole in piezoelectric
bimaterials under antiplane shearing. Green’s function method and the conformal mapping
method, which are used to solve the boundary conditions problem, are used to analyze
fracture. In addition, the method proposed can also deal with noneccentric problems and
has wider applicability. Based on the study of the dynamic antiplane characteristics for
a radial crack emanating from a circular cavity in piezoelectric bimaterials, An et al. [6]
established the mechanical model of interfacial cracks emanating from an eccentric circular
cavity. Green’s function method, the coordinate transformation method, and conjunction
and crack-deviation techniques are adopted to express the dynamic stress intensity factor
theoretically. Liu et al. [7] presented the solutions of two-dimensional elastic wave equations
in terms of complex wave functions and general expressions for boundary conditions for
steady-state incident waves. Dynamic stresses around a cavity of arbitrary shape are
then expressed in a series of complex ‘domain functions’; the coefficient of the series
can be determined by truncating a set of infinite algebraic equations. Zhao et al. [8]
theoretically investigated the problem of dynamically debonded cylindrical inclusion near
the interface of semi-infinite piezoelectric materials, and discussed the effects of different
geometric and physical parameters on the dynamic stress intensity factor of the crack
tip. Sahu et al. [9] studied the propagation behavior of horizontally polarized shear waves
in a three-layer composite structure consisting of a piezomagnetic wave layer, a functional-
gradient piezoelectric material layer, and an elastic substrate. The effects of layer width,
ripple number, and material gradient on horizontally polarized shear waves are obtained.

Research on functional composite materials is also attracting more and more atten-
tion. Shin et al. [10] considered the transient response of an interface crack between two
dissimilar functionally graded piezoelectric material layers under antiplane shear impact
loading, using the integral transform method. The properties of the functionally graded
piezoelectric material layers vary continuously along the thickness, and the two layers
are connected weak-discontinuously. Jiang et al. [11] researched the dynamic response
of a shallow circular inclusion under an incident SH wave in a radially inhomogeneous
half-space by applying complex function theory and the multipolar coordinate system. In
addition, the mass density of the half-space varies along with the radius direction. Tan
et al. [12] presented constitutive equations for the nonlinear electromagnetoelastic proper-
ties of piezoelectric/piezomagnetic fiber-reinforced composite materials. These equations
are derived on the basis of the thermodynamic principle using Gibbs free energy expanded
into a Taylor series, with emphasis being placed on quadratic nonlinearities. Pang et al. [13]
analyzed the energy band structure of piezoelectric/piezomagnetic periodic-layered com-
posites and used the transfer matrix method and the stiffness matrix method to calculate
the dispersion curve, energy/displacement transmission coefficient, and localization factor
to describe the composite material. The band gap is passed, and the corresponding charac-
teristics of the dispersion curve, positioning factor, and response spectrum are obtained.
Xue et al. [14] used the wave function expansion method to solve the problem of acous-
tic wave scattering and dynamic stress concentration around the two openings in e-type
piezomagnetic composites. Jiang et al. [15] developed a theoretical method to study the
magnetoelastic coupled wave and dynamic stress intensity around a cylindrical aperture in
exponential-graded piezomagnetic materials. By employing the decoupling technique, the
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coupled magnetoelastic governing equations are decomposed, and the numerical examples
of the dynamic stress intensity factor near the aperture are presented. The materials used
in the above literature include functional-gradient materials, piezomagnetic materials,
piezoelectric materials and their composite materials, such as CoFe2O4/BaTiO3 [9], PZT-
5H [10], LiNbO3/CoFe2O4 [12], PZT-5H/CoFe2O4 [12], BaTiO3/PZT-4 /CoFe2O4 [13], and
CoFe2O4 [14].

According to the reviewed literature, there is no suitable method regarding the dy-
namic antiplane elliptical opening problem of exponential-gradient piezomagnetic materi-
als. Based on the theory of magnetoacoustic coupled dynamics [16,17], the diffraction and
dynamic stress concentration around the elliptical opening of exponential-gradient piezo-
magnetic materials under the action of magnetoacoustic coupled waves have been studied.
Exponential-gradient piezomagnetic materials have great prospects in the application of
actuation and high-precision sensors, and the study of their dynamic properties can play a
strong guiding role in the development of top equipment. The purpose of the present paper
is to suggest an effectively theoretical method for solving the dynamic stress concentration
coefficient (DSCC) around the elliptical opening in exponential-gradient piezomagnetic
materials.

2. The Wave Equation and the Solution of the Coupled Field in Exponential-Gradient
Piezomagnetic Materials

A cylindrical coordinate system is established in an infinite exponential-gradient
piezomagnetic material. The center of the ellipse is the origin, as shown in Figure 1, and
the z-direction is the polarization direction. In addition, the material parameters vary
exponentially along the polar axis.
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Figure 1. Antiplane shear waves are incident into an elliptical opening of an exponential-gradient
piezomagnetic material.

The antiplane shear wave propagates along the polar axis. The governing equations
expressed by the acoustic field and magnetic potential, in the absence of body forces, can
be written as:

τrz
r + ∂τrz

∂r + 1
r

∂τθz
∂θ = ρ ∂2w

∂t2
∂(rBr)

∂r + ∂Bθ
∂θ = 0

(1)

where τrz and τθz are the shear stress components, ρ is the density, w is the displacement in
the z-direction, and Br and Bθ are the magnetic displacement components.

The constitutive equations of the exponential-gradient piezomagnetic materials can be
written as [5]:
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τrz = c44
∂w
∂r + h15

∂ψ
∂r

τθz = c44
1
r

∂w
∂θ + h15

1
r

∂ψ
∂θ

Br = h15
∂w
∂r − µ11

∂ψ
∂r

Bθ = h15
1
r

∂w
∂θ − µ11

1
r

∂ψ
∂θ

(2)

where c44 is the acoustic constants of piezomagnetic materials, h15 is the piezomagnetic
constant of piezomagnetic materials, µ11 is the magnetic permeability, and ψ is the magnetic
potential in materials.

Considering the general situation, the solution of the steady-state wave can be written
as:

w = w̃e−iωt (3)

ψ = ψ̃e−iωt (4)

where ω is the frequency of incident waves, and i is an imaginary unit.
It is assumed that all the material properties of the exponential-gradient piezomagnetic

materials have the same exponential function distribution along the polar axis, and the
material properties are given as [9]:

c44 = c440e2βr cos θ , ρ = ρ0e2βr cos θ , h15 = h150e2βr cos θ , µ11 = µ110e2βr cos θ (5)

where c440 is the initial Young’s modulus, ρ0 is the initial density, h150 and µ110 are the
initial piezomagnetic constant and the initial magnetic permeability, respectively, and β is
the inhomogeneity coefficient of the exponential distribution along the polar axis.

Substituting Equation (2) into Equation (1), the expressions are given as:

c440

(
∇2w + 2β cos θ ∂w

∂r −
2β sin θ

r
∂w
∂θ

)
+h440

(
∇2ψ + 2β cos θ

∂ψ
∂r −

2β sin θ
r

∂ψ
∂θ

)
= ρ0

∂2w
∂t2

h150

(
∇2w + 2β cos θ ∂w

∂r −
2β sin θ

r
∂w
∂θ

)
−µ110

(
∇2ψ + 2β cos θ

∂ψ
∂r −

2β sin θ
r

∂ψ
∂θ

)
= 0

(6)

where ∇2 = ∂2

∂r2 +
1
r

∂
∂r +

1
r2

∂2

∂θ2 is the polar coordinate Laplacian operator.
To simplify the calculation by introducing a new function ϕ = ψ − (h150/µ110)w,

Equation (6) can be simplified as:

∇2w + 2β cos θ
∂w
∂r
− 2β sin θ

r
∂w
∂θ

= ξ2 ∂2w
∂t2 (7)

∇2 ϕ + 2β cos θ
∂ϕ

∂r
− 2β sin θ

r
∂ϕ

∂θ
= 0 (8)

where ξ =
√

ρ0/χ is the reciprocal of the propagation velocity of the antiplane shear waves,
and χ = c440 + h2

150/µ110.
The steady-state solution to this problem is studied. Let w = w0We−iωt, and Equation (7)

can be written as:
∇2W + 2β

(
cos θ

∂W
∂r
− sin θ

r
∂W
∂θ

)
+ k2W = 0 (9)

where ω is the incident wave frequency, and k = ωξ is the incident wave number.
We can write the conformational solution of Equation (9) as:

W = e−βr cos θ f (r, θ) (10)

where f (r, θ) is a constructor.
Substituting Equation (10) into Equation (9) yields the standard Helmholtz equation:

∇2 f + κ2 f = 0 (11)
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where κ =
√

k2 − β2.
Denote χ1 = h150/µ110, we also can derive the magnetic potential as:

ϕ = w0χ1e−βr cos θe−i(iβr cos θ−ωt) (12)

Based on the complex function theory, the complex variable can be defined as
z = r(θ)eiθ . Because of the time-harmonic behavior of all field quantities, the common
multiplier e−iωt is suppressed here and in the following [13]. We use an infinite series
to express the incident wave, and the expression for incident waves stratifying can be
expressed as [8]:

w(i) = w0e−βRe(z)
∞

∑
n=−∞

in Jn(κ|z|)
{

z
|z|

}n
(13)

ϕ(i) = w0χ1e−βRe(z)
∞

∑
n=−∞

in Jn(iβ|z|)
{

z
|z|

}n
(14)

Similarly, the form of the scattering waves in Equations (7) and (8) can be written
as [8]:

w(s) = w0e−βRe(z)
∞

∑
n=−∞

An H(1)
n (κ|z|)

{
z
|z|

}n
(15)

ϕ(s) = w0χ1e−βRe(z)
∞

∑
n=−∞

BnH(1)
n (iβ|z|)

{
z
|z|

}n
(16)

where An is the undetermined coefficient to describe the scattered acoustic field, Bn is the
undetermined coefficient to describe the scattered magnetic field, and H(1)

n (·) is the nth
order Bessel function of the third kind.

Taking the incident field and scattered field together, the total field of acoustic in the
exponential-gradient piezomagnetic materials is expressed as:

w(t) = w(i) + w(s) (17)

The total magnetic potential is expressed as:

ψ(t) = ϕ(i) + ϕ(s) + χ1w(t) (18)

Without loss of generality, it should be noted that there is only a magnetic field in the
opening, which can be expressed as:

ψc = w0χ1e−βRe(z)
∞

∑
n=−∞

Cn Jn(iβ|z|)
{

z
|z|

}n
(19)

where Cn is the undetermined coefficient describing the internal magnetic field.

3. Determine the Boundary Conditions and Modal Coefficients of the Elliptical Opening

Considering the case of a noncircular opening with a smooth boundary, the method of
conformal mapping is used, and the complex variables can be defined as λ = ε + iη and
λ = ε− iη. Therefore, the conformal mapping function can be taken as [2]:

z = Ω(λ) = R

(
λ +

∞

∑
l=1

Clλ
−l

)
(20)

where R is the real constant, and Cl is the complex constant.
The expression of the elliptical opening under the conformal mapping function is:

z = Ω(λ) =
a

1 + m

(
λ +

m
λ

)
, λ = ζeiα (21)
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where m ∈ (0, 1) is the relative eccentricity of the elliptical opening.
At the opening interface of an infinite exponential-gradient piezomagnetic materials,

the boundary conditions of free stress and magnetic continuous are as follows:
τrz|r=|z| = 0
Br|r=|z| = Bc

r |r=|z|
ψ(t)

∣∣∣
r=|z|

= ψc|r=|z|
(22)

Substituting Equations (2), (18), and (19) into Equation (22), by magnetoacoustic
coupled theory, a definite infinite system of linear algebraic equations can be obtained [3]:

∞

∑
n=−∞

EnXn = Ei, (i = 1, 2, 3) (23)

where

En =

E11 E12 E13
E21 E22 E23
E31 E32 E33

 Xn =

An
Bn
Cn

 E =

E1
E2
E3

 (24)

Multiply both sides of Equation (23) by e−isθ and integrate on the interval (−π,π),
and Equation (23) can be transformed into:

∞

∑
n=−∞

EnsXn = Es (25)

where Ens =
1

2π

∫ π
−π Ene−isθdθ, Es =

1
2π

∫ π
−π Eie−isθdθ.

Using Equation (25), the mode coefficients An, Bn, and Cn can be obtained, where
n = −∞ ∼ +∞.

4. Dynamic Stress Concentration Coefficient

In the complex plane, Equation (2) can be rewritten as:

τθz = c150e2βRe(z)
(

∂wt

∂z
z
|z| +

∂wt

∂z
z
|z|

)
+ h150e2βRe(z)

(
∂ψt

∂z
z
|z| +

∂ψt

∂z
z
|z|

)
(26)

Substituting Equations (17) and (18) into Equation (26), we can obtain:

τθz =
1
κ

χkw0
rΩ′(λ) e(−β+iκ)Re(Ω(λ))(β− iκ)Im[λΩ′(λ)]

+ 1
κw0

1
rΩ′(λ) e−βRe(Ω(λ)) ×

∞
∑

n=−∞
An

{[
βIm(λΩ′(λ)) + inRe

(
λ

Ω′(λ)
Ω(λ)

)]
H(1)

n (κ|Ω(λ)|)

− κ
2 Im

(
λ

Ω(λ)
|Ω(λ)|Ω

′(λ)
)[

H(1)
n−1(κ|Ω(λ)|)− H(1)

n+1(κ|Ω(λ)|)
]}{

Ω(λ)
|Ω(λ)|

}n
(27)

and Equation (27) uses the following equations [7].

∂
∂z

[
Hn(κ|z|)

{
z
|z|

}n]
= κ

2 Hn−1(κ|z|)
{

z
|z|

}n−1
z′

∂
∂z

[
Hn(κ|z|)

{
z
|z|

}n]
= − κ

2 Hn+1(κ|z|)
{

z
|z|

}n+1
z′

(28)

where z = Ω(λ).
According to the definition of DSCC, which is the ratio of the circumferential shear

stress in the opening to the stress amplitude [4]:

DSCC = |τθz/τ0| (29)

where τθz is dimensionless stress, which represents dynamic stress concentration, and
τ0 = χkw0 is the amplitude of the incident wave.
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Therefore, from Equation (29), we can obtain that the DSCC around the elliptical
opening in the exponential-gradient piezomagnetic materials is expressed as:

DSCC =∣∣∣∣∣∣∣∣∣
1
κ

1
rΩ′(λ) e(−β+iκ)Re(Ω(λ))(β− iκ)Im[λΩ′(λ)]

+ 1
κw0

1
rΩ′(λ) e−βRe(Ω(λ)) ×

∞
∑

n=−∞
An

{[
βIm(λΩ′(λ)) + inRe

(
λ

Ω′(λ)
Ω(λ)

)]
H(1)

n (κ|Ω(λ)|)

− κ
2 Im

(
λ

Ω(λ)
|Ω(λ)|Ω

′(λ)
)[

H(1)
n−1(κ|Ω(λ)|)− H(1)

n+1(κ|Ω(λ)|)
]}{

Ω(λ)
|Ω(λ)|

}n

∣∣∣∣∣∣∣∣∣
(30)

5. Numerical Examples and Discussion

Analysis of the above expressions reveals Equation (30) is a convergent infinite-series
equation; when n ≥ 15, the result satisfies the engineering accuracy. Simultaneously, we
choose NiOFe2O3 as the example of the exponential-gradient piezomagnetic materials. The
related material properties are:

ρ0 = 5.35× 103kg ·m−2, c440 = 1.7× 1010N ·m−2

h150 = 454N ·A−1 ·m−1, µ110 = 5.53× 10−5N ·A−2 (31)

In the numerical results, the variables are dimensionless. The dimensionless incident
wave numbers ka ∈ (0.1, 6) are taken, and βa ∈ (−0.1, 0.1) are the material parameters.

It can be obtained from the data in Figures 2–7 how the DSCC is distributed around
the opening at different wave numbers ka and various relative eccentricity m. The dimen-
sionless incident wave numbers ka = 0.1, 1.0, 2.0, the relative eccentricities m = 1/6, 1/4,
and the material parameters βa = −0.05, 0, 0.025, 0.05. According to the results from the
figures, it seems that the DSCC distribution in the opening is strongly influenced by the
relative eccentricity m and the material parameters βa.
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Figure 2. Polar graph of DSCC around the elliptical opening with ka = 0.1 and m = 1/6.

Taking ka = 0.1 and βa = −0.05, 0, 0.025, 0.05, the stress amplitudes around the
elliptical opening are 2.40, 2.15, 2.08, and 2.41, as shown in Figure 2 (taking m = 1/6), but
change to 3.85, 3.46, 3.36, and 3.87 in Figure 3 (taking m = 1/4). Interestingly, the data
between Figures 2 and 3 show that the big relative eccentricity would make the DSCC
amplitude change easily.
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Figure 4. Polar graph of DSCC around the elliptical opening with ka = 1.0 and m = 1/6.

Taking the discussion further, it can be observed that the DSCC distribution in the
opening in Figures 2 and 3 has an obvious pattern of ka = 0.1: the distribution of the DSCC
in the opening is symmetric about the vertical and horizontal axes, and its maximum value
occurs at θ = π/2 and θ = 3π/2, which meets the engineering experience.

With the frequency of the incident wave increasing, as shown in Figure 4 (ka = 1.0)
and Figure 5 (ka = 1.0), the antiplane shear wave has a strong effect on the distribution of
DSCC. Comparing Figures 2 and 4, two changes in DSCC distribution can be obtained: the
first one is the DSCC distribution on the oncoming side is smaller than the back distribution,
and then the values of the DSCC, which are located in the opening at high frequency, are
significantly lower than those at low frequency, which indicates that the incident wave can
change the material stiffness to some extent.

As seen in Figures 6 and 7, the main lobe position is shifted to the oncoming side
differently from the low-frequency case. The DSCC on the oncoming side is larger than that
at the back side. The side lobes increase, and the whole distribution of the DSCC remains
symmetric about the horizontal axis.
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Figure 8 shows the trend of the DSCC amplitude in the opening with the incident
wave number ka (m = 1/6). From the figure, it can be found that the stress amplitude
has a specific undulating pattern, and the effect of the material parameter βa on the DSCC
amplitude changes as ka changes.
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According to the above discussion, the DSCC has a great correlation with wave number
ka. Reasonable design parameters for the environment can greatly increase the service
life of materials. In practice, most materials operate at low frequencies, so small openings
need to be considered. A material with high-frequency vibration can increase the material
parameter βa appropriately to obtain better material stiffness.

6. Conclusions

The purpose of this paper is to research the response of stress concentrations to
incident wave numbers and material parameters in exponential-gradient piezomagnetic
materials. The expression for the considered antiplane shear wave has been obtained in a
complex function. The material properties have an exponential variation, and the relative
eccentricity is variable.

To deal with the complexity of elliptical openings, conformal mapping is used to map
the ellipse to the unit circle for the theoretical calculation. The displacement and stress
components are represented by the superposition of wave functions, which are the Bessel
and Hankel functions. The modal coefficients can be calculated by the boundary conditions
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at the opening and a nonlinear system of equations. One of the highlights of this paper is
that the problem is transformed from the real number field to the complex number field by
the complex function method, which greatly simplifies the complexity of the problem. In
addition, the nonlinear system of equations is transformed into the solvable linear system
of equations by orthogonalization. This strategy provides a solution to similar challenges.

More details can be obtained from numerical calculations:

1. The relative eccentricity is significant to the DSCC among the material parameters. It
is important to reduce relative eccentricity when designing elliptical openings in the
exponential-gradient piezomagnetic materials.

2. With other parameters unchanged, the dynamic stress concentration coefficient in-
creases with the increase in relative eccentricity. We can regard that as the relative
eccentricity increases, the material stiffness decreases.

3. As the incident wave number ka grows, the DSCC amplitude rises and falls signifi-
cantly. The DSCC amplitude is effectively suppressed by the incident wave number
ka in a specific frequency range. This property can provide reference for engineering
processing.

4. The material parameter βa of exponential-gradient piezomagnetic materials signifi-
cantly impacts the amplitude of the DSCC with the elliptical opening. The material
parameter βa is inversely proportional to the amplitude of the DSCC under a larger
incident wave number (ka > 4.5).
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