
Citation: Kamel, S.M.; Samy, N.M.;

Tóth, L.Z.; Daróczi, L.; Beke, D.L.

Denouement of the

Energy-Amplitude and

Size-Amplitude Enigma for

Acoustic-Emission Investigations of

Materials. Materials 2022, 15, 4556.

https://doi.org/10.3390/ma15134556

Academic Editors: Andres Sotelo,

Vlassios Likodimos and

Xiangyang Ma

Received: 27 May 2022

Accepted: 24 June 2022

Published: 28 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Denouement of the Energy-Amplitude and Size-Amplitude
Enigma for Acoustic-Emission Investigations of Materials
Sarah M. Kamel 1,2, Nora M. Samy 1,2,3, László Z. Tóth 1, Lajos Daróczi 1 and Dezső L. Beke 1,*
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Abstract: There are many systems producing crackling noise (avalanches) in materials. Temporal
shapes of avalanches, U(t) (U is the detected voltage signal, t is the time), have self-similar behaviour
and the normalized U(t) function (e.g., dividing both the values of U and t by S1/2, where S is the
avalanche area), averaged for fixed S, should be the same, independently of the type of materials
or avalanche mechanisms. However, there are experimental evidences that the temporal shapes of
avalanches do not scale completely in a universal way. The self-similarity also leads to universal
power-law-scaling relations, e.g., between the energy, E, and the peak amplitude, Am, or between
S and Am. There are well-known enigmas, where the above exponents in acoustic emission mea-
surements are rather close to 2 and 1, respectively, instead of E ∼ A3

m and S ∼ A2
m, obtained from

the mean field theory, MFT. We show, using a theoretically predicted averaged function for the
fixed avalanche area, U(t) = at exp

(
−bt2) (where a and b are non-universal, material-dependent

constants), that the scaling exponents can be different from the MFT values. Normalizing U by Am

and t by tm (the time belonging to the Am: rise time), we obtain tm ∼ A1−ϕ
m (the MFT values can be

obtained only if ϕ would be zero). Here, ϕ is expected to be material-independent and to be the same
for the same mechanism. Using experimental results on martensitic transformations in two different
shape-memory single-crystals, ϕ = 0.8 ± 0.1 was obtained (ϕ is the same for both alloys). Thus,
dividing U by Am as well as t by A1−ϕ

m (~tm) leads to the same common, normalized temporal shape
for different, fixed values of S. This normalization can also be used in general for other experimental
results (not only for acoustic emission), which provide information about jerky noises in materials.

Keywords: shape memory alloys; acoustic emission; scaling relations; temporal shapes of avalanches

1. Introduction

It is well-known that many systems produce crackling noise (avalanches) with power-
law-distribution characteristics (i.e., the probability-distribution-density function (PDF),
P(x), can be given as P(x) ∼ x−η exp

(
− x

xc

)
, where x can be the peak amplitude, Am, size,

S, energy, E, or duration, T; η is the characteristic exponent, and xc is the cut-off value) [1–9].
The power-law distributions reflect a self-similar behaviour spanning wide range of the
parameter, x (e.g., the temporal shape of an avalanche looks the same at different time
scales). Examples for such behaviour can be the classical Barkhausen noise, sand piles,
fracture, martensitic transformations in shape memory materials, plastic deformations, etc.
In many cases, the avalanches are jerky responses to slowly changing driving force or field.
Thus, considerable efforts were devoted to predict how the corresponding exponents of the
above distributions can be grouped into universality classes [5,10,11]. In addition, power-
law-scaling relations between the exponents of the above parameters were obtained (e.g.,
the energy, E, is related to the amplitude, Am, as E ∼ Aχ

m) with predictions that these should
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be the same within one universality class [1,6,12–14]. Furthermore, the self-similarity leads
not only to power laws, but to universal-scaling functions, which can have predictive power,
and in recent publications the authors have gone beyond the power laws and focused on
the universal, (properly normalized) temporal shape of avalanches [1,2,4,5,10].

For experimental investigations of the above power-law relations or temporal shapes
of avalanches, different experimental techniques can be used in which the measured
parameter (e.g., the voltage, U(t), in acoustic emission, AE, or magnetic measurements) is
proportional to the corresponding interface velocity v(t), characteristic for the crackling-
noise emission. Until now, Barkhausen noise measurements provided excellent agreement
between the predicted [7] and experimentally determined, normalized temporal-avalanche
shapes at fixed duration or shape [15]. Besides Barkhausen noise measurements, other
techniques such as AE [8,16–22] or high-resolution detection of the deformation or stress
drops during plastic deformation (see e.g., [9,23,24]) are also used, but the agreement
with theoretical predictions is far less satisfactory than those obtained from Barkhausen
noise investigations. For instance, there are observations that the normalized shapes of
avalanches do not collapse on the same reduced curve for different size or duration bins
(see e.g., [7–9]). There are two factors, which can have an influence on the experimentally
determined characteristic parameters of avalanches. The finite value of the threshold, C, at
small signals can lead to deviations from the predicted behaviour. The effects caused by
the transfer properties of the detection system can also cause distortions. The AE signals
depends not only on the properties of the source function (e.g., on v(t)) but also on the
macroscopic vibration (ringing) of the sample. This means that the detected signal is the
convolution of the source function, v(t), and the transfer function, which can be taken as a
form of damped oscillation [8,17,25]:

f (t) = cos(wt) exp
(
− t

τa

)
, (1)

where τa is the characteristic attenuation time of the signal, and ω is the resonant frequency.
Thus, it was concluded in [25] that the measured AE spectrum does not reflect the temporal
shape of avalanches (i.e., the v(t) distribution) nor the model predictions. Therefore, a
detailed analysis of the observed AE jerk profiles only reveals information about the transfer
function of the measuring system (material properties + detector: see Figure 1 in [25]) and
says little about the local avalanche mechanism. It was also shown, from the convolution
of the transfer function with different model functions for the source [25], that while the
characteristic exponents of the energy and size PDF’s were invariant, the detected duration
time, D, was significantly distorted compared to the true duration time, T. Furthermore,
the so-called energy-size enigma was exposed: while the mean field theory (MFT) predicts
χ = 3 for the scaling exponent between the energy and amplitude, their model simulations
for AE results provided χ = 2. It is worth mentioning that in a set of papers by Barcelona’s
group [17–19] a less pessimistic conclusion was drawn. It was argued that if one considers
the convolution of a simple rectangular-signal source, then for signals with long duration
times, T, as compared to τa, i.e., τa

T � 1, the detected duration time can be close to the true
duration time, T. On the other hand, for τa

T � 1, the results provide information about the
attenuation time, τa [17–19], and the scaling exponents between the energy and duration
time or the energy and amplitude are considerably different from the values predicted by
the MFT. For intermediate values of τa

T a transition between the above two limits can be
observed. On the other hand, surprisingly, as it was also mentioned in [25], it was obtained
that even for τa

T � 1, E ∼ A2
m was observed.

In this communication we will start from the theoretically predicted form of the
avalanche’s temporal shape [7–9] for a fixed avalanche area, U(t) = at exp

(
−bt2) (where a

and b are non-universal, material-dependent constants). We will show that, e.g., deviations
from the universal, normalized avalanche shape can be described by a parameter, ϕ. ϕ is the
exponent describing the relation between the two recently proposed scaling parameters [25],
the maximum voltage, Am, and the maximum time (raising time), tm. We assume that their
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ratio, Am
tm

, instead of being constant, is given as Am
tm
∼ Aϕ

m. ϕ is material-independent, and
the same is the same for the same mechanism. It appears, as a correction term, in the scaling
exponents, and, thus, provides the denouement of the enigmas. Thus, we will illustrate,
using experimental data obtained during martensitic transformation in two ferromagnetic
shape-memory alloys, that this indeed leads to deviations from the predicted scaling
exponents and, e.g., the slopes of the logS versus logAm or logE versus logAm are given by
3− ϕ and 2− ϕ, respectively, i.e., they can be much smaller than the predicted MFT values
(2 and 3). Furthermore, dividing U(t) by Am as well as t by A1−ϕ

m (~tm) leads to the same
common, normalized temporal shape for different fixed values of S. Our results can also be
valid in general for scaling relations between the experimentally determined parameters
from other types of measurements of avalanches (magnetic emission [26], high-resolution
detection of the deformation or stress drops, etc.) and not only for AE.

We will also demonstrate that, by using a properly chosen scaling window and taking
into account corrections determined by the parameters, ϕ, τa

T , and C
Am

, the scaling relations
are in excellent agreement with the predictions of the MFT. The lower and upper bounds of
such a scaling window are related to the combined conditions of the C

Am
� 1 and τa

T � 1, as
well as to the possible overlaps of avalanches and/or to small numbers of hits, respectively.

2. Expressions for the Exponents of Scaling Relations

Self-similarity (see e.g., [1,2]) implies that the average temporal shape v(t) ~ U(t) of
avalanches scales in a universal way. For instance, in [2] the average of U(t) (averaged over
avalanches of fixed durations, T) was considered, if the time scale was reduced by T:

〈U(T, t)〉 = u
(

T,
t
T

)
, (2a)

and u
(
T, t

T
)

was compared to itself on a slightly increased time scale. It was obtained, that

u
(

T,
t
T

)
= uo

(
t
T

)
Tb, (2b)

i.e., if the voltage is scaled by Tb, then the scaling function, uo
( t

T
)
, is a universal theoretical

prediction (for large sizes and long times) [1,2]:〈
U
(

T,
t
T

)〉
= uo

(
t
T

)
Tb. (3)

From the definition of the avalanche size, S, we obtain:

S =
∫ T

0
Tbuo

(
t
T

)
dt = T1+b

∫ 1

0
uo

(
t
T

)
d
(

t
T

)
= T1+bFS, (4)

i.e., since the integral is a constant (FS = const.) for universal uo
( t

T
)
, we arrive at the scaling

relation
S ∼ Tb+1 = Tγ. (5)

In theoretical papers, derivations for the power exponent, γ, are given and, e.g., the
mean field approximation [6] gives that γ = 2.

In order to obtain an exponential relation between the average voltage, Uav, and T, we
can write from (4)

Uav =
S
T
∼ Tγ−1. (6)
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Similarly, as for the avalanche size, using the definition of the energy of the detected
signal, E, (i.e., E ∼

∫ T
0 U(t)2dt), we have

E ∼
∫ T

0
T2(γ−1)uo

2
(

t
T

)
dt = T2γ−1

∫ 1

0
uo

2
(

t
T

)
d
(

t
T

)
= T2γ−1FE ∼ T2γ−1. (7)

Note that (5)–(7) are the usual exponent relations between the corresponding quanti-
ties [1–3,6,10,16,23].

Now, from (5)–(7), we have
S ∼ Uav

γ
γ−1 , (8)

E ∼ U
2γ−1
γ−1

av . (9)

Interestingly, from (8) and (9) we obtain

E
S
∼ Uav (10)

and the exponent 1 of Uav is independent of γ.
Since in experiments, instead of Uav, the maximal value of the voltage (the peak value),

Um, is commonly determined, so the relation between them should be considered. It was
argued in [6] that the peak amplitude is a good measure of Uav, but the relation between
these two parameters was not checked experimentally. We will show in the next section
that they are indeed interrelated, but instead a linear relation

Uav ∼ Uz
m (11)

can hold, with z < 1, for finite thresholds. For a demonstration of this, we use the same
averaged source function at a fixed area in MF approximation, which was also investigated
in [25] (see also, e.g., [7–9]):

U(t) = ate−(
t
τ )

2
, (12)

where a and τ are non-universal (material-dependent) constants. τ is the characteristic time
of the avalanche decay [8] (in [25], b = 1

τ2 was used instead of τ). The maximum of (12)
is at

tm =
τ
√2

=
1√
2b

(13)

and
Um = atme−

1
2 = Btm, (14)

i.e., Um and tm are linearly related to each other if a (B) is constant. This is in accordance
with the result of [25], where this relation was analysed by simulations for the fixed value
of a (~B), and Um ∼ tξ

m, with ξ = 0.95, was obtained. We will show below that the value
of B has a definite dependence on Um, a ∼ B ∼ Uϕ

m. Dividing both sides of (12) by Um,
and using (14), we obtain the dimensionless (reduced) form of U with the two scaling
parameters (recommended also in [25], since they are not distorted by transfer effects) Um
and tm (U∗ = U

Um
and t∗ = t

tm
, respectively) as

U∗(t∗) = e
1
2 t∗e−(

t∗
τ∗ )

2

= 1.65t∗e−(
t∗
τ∗ )

2

, (15)

where t∗
τ∗ =

t
τ and τ∗ = τ

tm
=
√2 .

The reduced area of the avalanche is given by

S∗ =
S

Umtm
=
∫ T∗

o
U∗(t∗)dt∗ = 1.65

τ∗2

2

(
1− e−(

T
τ )

2
)
= 1.65

(
1− e−

T∗2
2

)
, (16)
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from which we obtain the average U as

Uav =
S
T

=
Umtm

T
1.65

(
1− e−(

T
τ )

2
)
=

Um

T∗
1.65

(
1− e−(

T
τ )

2
)

(17)

Thus,
Uav

Um
=

1.65
T∗

(
1− e−(

T
τ )

2
)
=

1.65
T∗

(
1− e−

T∗2
2

)
. (18)

This indicates that Uav and Um are proportional to each other (as predicted by [6]),
only if T∗ is constant. Now, we can calculate the reduced duration time as the difference
of the start and finish times (t∗s and t∗f , respectively) given by a fixed threshold value, C,
from (15)

ln
C

Um
= ln1.65t∗ − t∗2

2
. (19)

It is clear that there are two solutions, belonging to the start and finish times:

t∗s ∼=
C

1.65Um
=

C
1.65Btm

(20)

as well as

t∗f ∼=

√
−2ln

C
Um

=

√
2ln

Um

C
=

√
2ln

Btm

C
, (21)

where (14) was also used. Thus, we have

T∗ ∼= t∗f − t∗s =

√
2ln

Um

C
− C

1.65Um
∼=
√

2ln
Um

C
=

√
2ln

Btm

C
, (22a)

For C
Um

= 10−4; 10−3; 10−2; 10−1, the first term is 4.3; 3,7; 3.0; and 2.1, respectively,
i.e., neglecting the C

1.65Um
is reasonable. It is worth noting that the duration time or its

reduced value goes to an asymptotic limit as C goes to zero. We use the following notations:
ln corresponds to loge, and log corresponds to log10, respectively. Thus, (22a) can also be
written as

T∗ =

√
2

log10e
log10

Um

C
=

√
2

0.434
log

Um

C
=

√
4.6log

Um

C
, (22b)

where e = 2.718, and log102.718 = 0.434.
Since a (and τ or b) in (12) are non-universal constants (expressing also that the

normalized shapes of avalanches do not fully collapse on the same reduced curve for
different size or duration bins), their dependence on the scaling parameters cannot be
excluded. We describe this by allowing that the B = Um

tm
parameter can be dependent on

Um as:
B = αUϕ

m, (23)

where α is a proportionality constant. This means that, instead of a linear relation between
Um and tm, we have

U1−ϕ
m = αtm, (24)

which leads to
∂lnUm

∂lntm
=

1
1− ϕ

. (25)

(see also the next chapter for experimental determination of the value of ϕ).
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We can also derive an expression for the exponent of the scaling relation between Um

and T, using (22a) and (24) in the form T = tmT∗ = Um
B T∗ = U1−ϕ

m
α

√
2ln Um

C as;

∂lnUm

∂lnT
=

∂lnUm

∂Um

∂Um

∂T
∂T

∂lnT
=

T
Um

(
∂T

∂Um

)−1
=

1
1− ϕ + 1

2ln Um
C

. (26)

Using the above expressions, the slope of the lnUav versus lnUm can also be estimated
from (18) as

lnUav ∼ lnUm − lnT∗ + ln
(

1− e−
T∗2

2

)
= lnUm − lnT∗ + ln

(
1− C

Um

)
∼= lnUm − lnT∗

(27)

and, thus,

∂lnUav

∂lnUm
∼= 1 +

∂ln
(

1− C
Um

)
∂lnUm

− ∂lnT∗

∂lnUm
= 1 +

1
Um
C − 1

− 1
2ln Um

C

∼= 1− 1
2ln Um

C

= z′, (28)

where (22b) was also used. Neglecting the 1
Um
C −1

term means a correction of less than 5% if
Um
C > 20. It can be seen that the slope, i.e., the value of z′, is close to unity only for very

large values of Um
C , and it is always less than 1: e.g., for Um

C = 100 or 10, z′ = 0.9 or z′ = 0.89,
respectively. Note, the above result is independent of the fact that whether B(~a) is constant
or depends on Um.

Furthermore, regarding the detected values of the AE parameters (denoted below by
EAE, SAE, Am, Aav, and D, instead of E, S, Um, Uav, and T), we have to take into account
that the transfer effects can distort the values of Aav and D. Thus, taking that Aav = SAE

D ,
instead of (28), we have (using that Aav = SAE

D = S
T

T
D = Uav

T
D and that Um ~ Am, i.e.,

Um = δAm with δ ∼= 1 for τa
T � 1 [19])

∂lnAav

∂lnAm
=

∂lnUav

∂lnUm
+

∂ln T
D

∂lnAm
= 1− 1

2ln Am
C

+
∂ln T

D
∂lnAm

= z (29a)

Furthermore,
∂lnAav

∂lnT
=

∂lnAav

∂lnAm

∂lnAm

∂lnT
=

z
1− ϕ + 1

2ln Am
C

. (29b)

Since the third term in (29a), in accordance with [18,19], is a function of τa
T (T ∼= D if

τa
T ln Am

C � 1) too, and T can be expressed as a function of Am (see Equation (6)), we can
take that this term is the function of Am only in a given experiment, where τa and C are
constant. Thus, we can write that

∂ln T
D

∂lnAm
=

∂lnT
∂lnAm

− ∂lnD
∂lnAm

= 1− ϕ +
1

2ln Am
C

− θ, (30)

and, thus,
z = 2− ϕ− θ, (31)

where (29a) and (30) were used. It can be seen that the reciprocal value of the slope of the
lnAm versus lnD experimental plot (θ = ∂lnD

∂lnAm
) can be used as a parameter characterizing

the transfer effects; for θ = 1, these are neglected.
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Furthermore, from (16), using again that
(

1− e−
T∗2

2

)
= 1− C

Um

∂lnSAE
∂lnAm

=
∂lnS

∂lnUm
= 1 +

(
∂lnUm

∂lntm

)−1
+

∂ln
(

1− C
Um

)
∂lnUm

= 2− ϕ +
1

Am
C − 1

∼= 2− ϕ, (32)

or
∂lnSAE
∂lnAav

=
∂lnS

∂lnUav
=

∂lnS
∂lnUm

∂lnAm

∂lnAav
∼=

2− ϕ

z
, (33)

and
∂lnSAE
∂lnD

=
∂lnS

∂lnAm

∂lnAm

∂lnD
=

2− ϕ

θ
. (34)

For scaling relations containing the energy, we can start from (7) and (15), i.e.,

E ∼ U2
mtm

∫ T∗

o
t∗2exp

(
−t∗2

)
dt∗ = U2

mtm I. (35a)

The I integral has the form:

∫ T∗

0
t∗2exp

(
−t∗2

)
dt∗ =

[
−1

2
t∗exp

(
−t∗2

)
+

√
π

4
er f t∗

]T∗

0
,

i.e.,

I = −1
2

T∗ exp
[
−(T∗)2

]
+

√
π

4
er f (T∗) = −1

2

(√
2ln

Um

C

)(
C

Um

)2
+

√
π

4
er f

√
2ln

Um

C
. (35b)

It can be seen that the value of I is always positive (T > tm, i.e., T∗ > 0). Indeed,
for T* > 2 we can take into account that erf 2 ∼= 1, so the first term can be neglected
as compared to

√
π

4 (T* exp(−T*2) = 0.037 for T* = 2). Thus, T∗ > 2 also means that in√
π

4

(
1− 2√

π
T∗exp

(
−T∗2

))
the second term is less than 0.05, and we obtain I ∼= const =

√
π

4 .

The T∗ > 2 requirement leads also to the condition that UM
C > 8 (see also (22)). Thus,

we have

E ∼ Um
2tm I =

U3
m I
B

= B2t3
m I ∼= B2T3 I

(
2ln

Um

C

)− 3
2
, (36)

and, thus,
∂lnE

∂lnUm
=

∂lnEAE
∂lnAm

∼ 3− ϕ (37)

as well as
∂lnEAE
∂lnAav

=
∂lnE

∂lnUav
=

∂lnE
∂lnUm

∂lnUm

∂lnUav
∼ (3− ϕ)

1
z

. (38)

Furthermore, the relations between the E
S , E

D , and S
D ratios and the amplitude can be

given as follows.

∂ln EAE
SAE

∂lnAm
=

∂ln E
S

∂lnUm
∼ 1−

∂ln
(

1− C
Um

)
∂lnUm

= 1− 1
Am
C − 1

∼= 1 (39)

or
∂ln EAE

SAE

∂lnAav
=

∂ln E
S

∂lnUav
=

∂ln E
S

∂lnUm

∂lnUm

∂lnUav
∼ 1

z

(
1− 1

Am
C − 1

)
∼=

1
z

(40)

and
∂ln EAE

D
∂lnAm

=
∂lnEAE
∂lnAm

− ∂lnD
∂lnAm

= 3− ϕ− θ, (41)
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or
∂ln EAE

D
∂lnAav

=
∂ln EAE

D
∂lnAm

∂lnAm

∂lnAav
=

1
z
(3− ϕ− θ). (42)

The above results can be summarized as follows. The threshold effects lead to the rela-
tion between Aav and Am, as given by Equation (29a). Since the duration time approaches
its true value (and 1

2ln Am
C

goes to zero), only asymptotically for very large values of Am
C ,

1
2ln Am

C
can also appear in all relations where the duration time is present. The deviation is

less than 5% only if Am
C
∼= 106, and in most of the experiments Am

C can be much less than
this limiting value. In addition, since the definition of Aav contains the duration time, there
is a transfer correction term, θ, in (29a), (30), and (31), which depends on Am (and, of course,
goes to zero for increasing Am, i.e., by decreasing the τa

T ratio). This term can be calculated
from the slope of the experimental logAm versus the logD experimental plot. Relation (24),
which expresses the Um(~Am)-dependence of the a (in Equation (12)) or B (in (14) and (23))
proportionality factors, with the exponent ϕ, leads to (25), (32), and (37), which can offer a
denouement of the enigmas if ϕ is close unity. Equation (39) shows that the slope of the
ln EAE

SAE
versus lnAm indeed should be close to unity (i.e., independent of the parameters

1
2ln Am

C
, ϕ, and θ) in accordance with the prediction (10), while the slope of the ln EAE

SAE
versus

the lnAav plot should be 1
z times larger (see Equation (40)). On the contrary, the slope of

the lnEAE versus the lnAav plot has a larger slope than that of the lnEAE versus the lnAm
plot, providing a smaller deviation than the expected value of 3. It will be shown in the
next chapter that when choosing properly the centre of the window of fit on the Am axis
and keeping it fixed for the different scaling plots, the value of θ, and, thus, z, can be kept
constant. Thus, we will obtain that the conclusions drawn from different experimentally
determined scaling exponents are in good agreement with each other and are consistent
with a γ = 2 MF value.

3. Analysis and Discussion of Experimental Data on Scaling Exponents

Two sets of AE experimental data, obtained on two ferromagnetic shape-memory
single crystals, of Ni45Co5Mn36.6In13.4 as well as Ni49 Fe18 Ga27 Co6 compositions (denoted
by alloy A and B, respectively, in the following), during martensitic transformations, will
be analysed. The details of the AE measurements on Ni45Co5Mn36.6In13.4 are described
in [26]. A very similar setup and data acquisition were applied for the AE measurements
on the Ni49 Fe18 Ga27 Co6 single crystal (the results of which have not been published
yet [27]). In both cases, the AE measurements were carried out with Sensophone AED 404
Acoustic Emission Diagnostic Equipment (Geréb and Co., Ltd., Budapest, Hungary) with a
piezoelectric sensor (MICRO-100s from Physical Acoustics Corporation, Princeton Junction,
NJ, USA). The sampling rate was 16 MHz, and the setup had a band-pass from 30 KHz to
1 MHz. A 30 dB preamplifier and a main amplifier (logarithmic gain) with a 90 dB dynamic
range were used. The threshold level was 38 dB, and logarithmic data binning was used.
We will just reuse the data obtained in [26,27] for the analysis of the relations predicted in
the previous chapter.

3.1. Relations between Am and Aav, Am and tm, and Am and D

Let us first consider the relation between Am and tm, since it provides the experimental
check of the Am(Um)-dependence of the B parameter in (14). Since the Am and tm parameters
are free of threshold and transfer effects, in this case the fitting can be made from the
beginning, up to the upper bound of the fitting window. Figure 1 shows the logAm versus
logtm for cooling in alloy A (a) at small, constant, external magnetic field (B = 250 mT) and
for heating in alloy B (b) (at B = 0). The slope of this plot is different from unity and is
given by Equation (25). It can be seen that, indeed, straight lines are obtained up to certain
upper bounds, Aub = 40 mV and Aub = 20 mV for alloys A and B, respectively. These values
will be used on the Am axes in the following fits as well. The upper bound, and the scatter
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of points above it, is most probably caused by the possible overlap of avalanches and by
the small numbers of hits at large amplitudes. The rise time, as compared to the duration
time, is very short due to the long exponentially decaying tail of the expression (12) and the
overlapping of avalanches can result in a reduced effective Am and increased tm. From the
slopes of the straight lines (2.4 ± 0.1 and 2.2 ± 0.2, for A and B, respectively) ϕ = 0.6∓ 0.1
and ϕ = 0.6± 0.1 are obtained.
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Figure 1. logAm versus logtm plots for cooling in alloy A (a) at small, constant, external magnetic
field (B = 250 mT) and for heating in alloy B (b) (at B = 0).

Let us now turn to the relation between the maximum and average amplitude, since
the power exponent of this scaling relation gives the value of z. Figure 2a,b show these
functions for alloy A and B, respectively. It can be seen that, in accordance with the
presence of θ in Equations (29a) and (31), there is a slight curvature (the slope increases)
with increasing Am

C values, and the slopes given in the figure caption belong to the centres
of the fitting windows Am

C = 30 and Am
C = 40, for the A and B alloys, respectively. These

values will be used on the Am axes in the following fits as well.
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Figure 2. Relation between Aav and Am for cooling (austenite to martensite) transformation in alloy
A (a) at small, constant, external magnetic field (B = 250 mT) and for heating in alloy B (b) (at B = 0).
The slopes and the values of the centre of the fits are z = 0.74∓ 0.07 and Am

C = 30 (C = 3.5 mV), as
well as z = 0.62∓ 0.07 and Am

C = 40 (C = 0.4 mV), for A and B, respectively.

Figure 3 shows the relation between the maximum amplitude and the duration time
for alloys A and B, respectively. For alloy B, the curved first part reflects the transfer effects.
It is possible to estimate the acoustic-wave-attenuation time (see, e.g., Equation (6) and
Figure 8 in [28]) from this part, and τa ∼= 20 µS was obtained. Thus, points below about
200 µS can be left out from the fit, since for these τa

D > 0.01. These curves also show an
upward curvature, reflecting the Am-dependence of parameter θ (see Equation (30)). It
is worth noting that the above three plots in Figures 1–3 already provide the values for
all the three fitting parameters (z, ϕ, and θ) used in the previous chapter, for both alloys:
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z = 0.74± 0.07, ϕ = 0.6± 0.1, and θ = 0.77 ± 0.08 as well as z = 0.62± 0.07, ϕ = 0.6± 0.1,
and θ = 0.6± 0.1, for alloys A and B, respectively. It can be seen that they, taking also into
account the error bars of the original exponents, fulfil nicely the predicted relation (31). In
the following, from the exponents of other scaling relations, we can collect more data on
the above parameters and can obtain their average values too.
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Figure 3. logAm versus logD plots for cooling in alloy A (a) at small, constant, external magnetic
field (B = 250 mT) and for heating in alloy B (b) (at B = 0). The slopes (1.3 ± 0.1 and 1.9 ± 0.1,
respectively), using again the same fitting windows with the same mid values of Am as in Figure 2,
provide θ = 1

1.3 = 0.77∓ 0.08 and θ = 0.6± 0.1 for alloys A and B, respectively.

3.2. Scaling Relations between EAE, SAE, EAE
SAE

, and the Amplitude, Am

For these relations, the transfer corrections are negligible, and θ is not present in the
expressions of the exponents.

Figure 4 shows the log EAE
SAE

versus logAm plots for cooling in alloy A (a) at small,
constant, external magnetic field (B = 250 mT) and for heating in alloy B (b) (at B = 0). It
can be seen that good straight lines (with slope 0.9 ± 0.1 for A as well as 0.9 ± 0.1 for B,
respectively) are obtained. Figure 5 shows for comparison, the log EAE

SAE
versus logAav plot

for alloy B, which has a slope 1.6 ± 0.1. The slopes of the two straight lines obtained in
Figures 4 and 5 for alloy B are in accordance with Equations (39) and (40). The slope of
the log EAE

SAE
versus logAav plot should be 1

z times the one belonging to the log EAE
SAE

versus
logAm plot: this gives z = 0.6∓ 0.1, which is in a good agreement with z = 0.62∓ 0.07,
obtained from Figure 2b. It can be added that the slope of the log EAE

SAE
versus logAm plots

should be unity seems to be quite a general rule: the slope is indent of γ, ϕ, and θ (at least
for large enough values of Am) and, thus, can used as a check of the reliability of the AE
measurements.
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Figure 4. log EAE
SAE

versus logAm plots for cooling in alloy A (a) at small, constant, external magnetic
field (B = 250 mT) and for heating in alloy B (b) (at B = 0).
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Figure 5. log EAE
SAE

versus logAav plot for heating in alloy B (at B = 0).

Figure 6 shows the logSAE versus logAm plots for cooling in alloy A (a) at small,
constant, external magnetic field (B = 250 mT) and for heating in alloy B (b) (at B = 0). In the
intermediate regions, a straight line can be fitted. The slopes are 1.2∓ 0.1 and 1.11∓ 0.05,
respectively, and from Equation (32) ϕ = 0.8∓ 0.1 as well as ϕ = 0.90∓ 0.08 are obtained.
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Figure 6. logSAE versus logAm plots for cooling in alloy A (a) at small, constant, external magnetic
field (B = 250 mT) and for heating in alloy B (b) (at B = 0).

Figure 7 shows the logEAE versus logAm plots for cooling in alloy A (a) at small,
constant, external magnetic field (B = 250 mT) and for heating in alloy B (b) (at B = 0). The
slopes are 2.1∓ 0.2 and 2.00 ± 0.08, respectively. According to Equation (37), these result in
ϕ = 0.9∓ 0.1 and ϕ = 1.0± 0.1, respectively. For comparison, Figure 8 shows the logEAE
versus logAav plot for heating in alloy B (b) (at B = 0). The slope of this straight line is
3.7∓ 0.1, which is in a reasonable accordance with the relation (38): since ∂lnEAE

∂lnAm
= 2.0∓ 0.1

and z = 0.62∓ 0.07 (see Figure 2) as well as ∂lnEAE
∂lnAav

= ∂lnEAE
∂lnAm

1
z = 3.2∓ 0.3.

The results shown in Figures 7 and 8 also illustrate that these results are in very good
agreement with the MF value, γ = 2.
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Figure 8. logEAE versus logAav plot for heating in alloy B (at B = 0).

3.3. Scaling Relation between EAE
D and the Amplitude as Well as between SAE and the Duration

Time, D

As it can be seen from Equations (34) and (41), in these cases the transfer correction is
not negligible (θ is present in the expressions).

Figure 9 shows the log EAE
D versus logAm plots for alloys A and B, with slopes 1.6

± 0.1 and 1.50 ± 0.15, respectively. For comparison, Figure 10 shows the log EAE
D versus

logAav plot for alloy B, and the slope is 2.6 ± 0.1. Comparing the two slopes obtained in
alloy B, we obtain z = 0.6 ± 0.1, which is in good agreement with the value obtained from
Figures 7 and 8. Furthermore, using the average value of ϕ obtained above (ϕ = 0.8, see
also Table 1), θ = 0.70 is obtained from Equation (41) for alloy B.

Materials 2022, 15, x FOR PEER REVIEW 13 of 18 
 

 

The most frequently considered scaling relation is ���~��, from which the value of 

� was usually calculated and, most frequently, a value less than the MF value, 2, was 

obtained. Thus, Figure 11 shows the ������ versus ���� plot in alloy B for heating (at B 

= 0). The slope is sensitive to the window of fit: its value, fitting between 0.2 mS and 3 mS, 

is � = 2.14 ± 0.17. However, including points belonging to smaller and smaller values of 

D, the value of γ gradually decreases. The � =  2.14 value (which corresponds to the 

same window of fit used in the previous figures), with the average value of φ, where � =

0.8, gives from Equation (34) that θ = 0.6, which is in a good agreement with the value 

obtained above. 

We can conclude that all the obtained experimental slopes are in accordance with the 

relations derived in the previous chapter. The most important parameter is φ: this de-

scribes the Am-dependence of the proportionality factor between the two scaling parame-

ters Am and tm (see Equations (14) and (23)), and the average values of these for the inves-

tigated two alloys are summarized in Table 1. It can be seen that they are the same in both 

alloys. It is important to emphasize that φ = 0.8 can also give account for the observed 

enigma for the energy-amplitude- and size-amplitude-scaling relations. Furthermore, the 

obtained results are in very good agreement with the � = 2 MF value: in Equations (32) 

and (37), the values of 2 and 3 belong to this.  

  

Figure 9. ���
���

�
 versus ����� plots for cooling in alloy A (a) at small, constant, external magnetic 

field (B = 250 mT) and for heating in alloy B (b) (at B = 0). The slopes are 1.6 ± 0.1 and 1.65 ± 0.05, 

respectively. 

 

Figure 10. ���
���

�
 versus ������ plot for heating in alloy B (at B = 0). The slope is 2.30 ± 0.05. 

Figure 9. log EAE
D versus logAm plots for cooling in alloy A (a) at small, constant, external magnetic

field (B = 250 mT) and for heating in alloy B (b) (at B = 0). The slopes are 1.6 ± 0.1 and 1.65 ± 0.05,
respectively.
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Table 1. Values of ϕ calculated from different relations for alloy A and B, respectively. It can be seen
that they are very similar, and the average value for the two alloys is ϕav ∼= 0.8 ± 0.1.

Equation
Value of ϕ

Alloy A Alloy B

(25) 0.6 ± 0.1 0.6 ± 0.1

(32) 0.8 ± 0.1 0.90 ± 0.08

(37) 0.9 ± 0.1 1.0 ± 0.1

Average 0.77 ± 0.11 0.83 ± 0.13

The most frequently considered scaling relation is SAE ∼ Dγ, from which the value
of γ was usually calculated and, most frequently, a value less than the MF value, 2, was
obtained. Thus, Figure 11 shows the logSAE versus logD plot in alloy B for heating (at
B = 0). The slope is sensitive to the window of fit: its value, fitting between 0.2 mS and
3 mS, is γ = 2.14± 0.17. However, including points belonging to smaller and smaller
values of D, the value of γ gradually decreases. The γ = 2.14 value (which corresponds to
the same window of fit used in the previous figures), with the average value of ϕ, where
ϕ = 0.8, gives from Equation (34) that θ = 0.6, which is in a good agreement with the value
obtained above.
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We can conclude that all the obtained experimental slopes are in accordance with the
relations derived in the previous chapter. The most important parameter is ϕ: this describes
the Am-dependence of the proportionality factor between the two scaling parameters Am
and tm (see Equations (14) and (23)), and the average values of these for the investigated
two alloys are summarized in Table 1. It can be seen that they are the same in both alloys.
It is important to emphasize that ϕ = 0.8 can also give account for the observed enigma for
the energy-amplitude- and size-amplitude-scaling relations. Furthermore, the obtained
results are in very good agreement with the γ = 2 MF value: in Equations (32) and (37), the
values of 2 and 3 belong to this.

4. Temporal Shape of Avalanches

Following the proposal of the authors of [25], let us investigate the reduced form
of the temporal shape of avalanches at a fixed area, using Am and tm as the two scaling
parameters, which are not distorted by the transfer properties. Furthermore, as one can
expect from Equation (14), these are not independent from each other. Thus, we investigate
and compare two cases:

(i) assume that B is constant in (14), and both the voltage and time scales will be normal-
ized by Am;

(ii) assume that the scaling parameters are not proportional to each other, but the Am
tm
∼

Aϕ
m relation holds (see Equations (14), (23) and (24)), i.e., the voltage scale will be

reduced by Am and the time scale by A1−ϕ
m .

Figures 12 and 13 show the reduced U∗(t∗) functions, as an illustration for alloy B,
using scaling according to cases (i) and (ii), respectively. It can be seen that in Figure 12,
the curves do not fall on a common curve even if only the three curves corresponding to
the central part of the fitting window of area, as used in Figure 6, are considered (see the
insert). On the other hand, in Figure 13, the curves are scaled much better together (see the
insert too), especially in the first, fast-decaying part of the curves. It can be seen that curves
belonging to the two first bins (at small values of the fixed area) as well as to the last two
bins show some deviation/scatter from the common curve shown in the insert. This can be
due to the distortions caused by the transfer and threshold effects (at small values of S) as
well as to some overlaps of the large avalanches (for large, fixed values of S).
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5. Relation between the Energy and Amplitude for Analysis of
Multi-Avalanche Processes

Finally, it is worth to compare our results to the recent results of [21,22,29]. It was
summarized in [29], that in the relation between the energy and amplitude in the form,

E = si A2
i , (43)

the scaling prefactor, si, depends explicitly on the duration of the avalanche, and this
can be different for different mechanisms/different avalanche profiles (the index i serves
to distinguish between groups of signals belonging to different avalanche profiles). It
was also emphasized in [28] that, in general, the universality of avalanches contradicts
expectations for identifying different underlying physical processes, so it is difficult to
specify experimentally measurable parameters that are characteristic for different avalanche
profiles. In fact, our formalism would provide a solution for this problem in the following
way. If the parameter ϕ depends on the mechanism of the elementary processes generating
avalanches, then this parameter will be such a variable. In the present analysis, we acquired
the same values for ϕ, but we investigated similar martensitic transformations in two
ferromagnetic shape-memory alloys. For the comparison of our result with Equation (43),
we should consider our expression (35a), which can be rewritten as

E ∼ U2
mtm I = sU2

m (44)

It can be seen that the prefactor in (44) is proportional to the tm I product, but instead
of using the duration time (which is the most distorted experimental parameter [25]) we
use the peak amplitude for the description of the change of this product. Taking, as we
have shown above, that the I integral is approximately constant, the

s ∼ U1−ϕ
m (45)

relation can be obtained. Indeed, if ϕ is different for different avalanche profiles, then
Figure 14 shows the log EAE

A2
m

versus logAm function for alloy A (a) as well as for alloy B (b),
under similar conditions as in the previous figures. It can be seen that the slope, (1 − ϕ), is
0.21± 0.05 for alloy A, which is in good agreement with the ϕ = 0.77± 0.11 value (Table 1).
It is worth mentioning that here the fit is more uncertain, although we used a similar fitting
window as in the above figures. This can be related to (i) that the value of the slope is
small, (ii) that the first part can be distorted due to threshold effects, and (iii) that there
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is a large scatter at large values of Am related to overlap of the avalanches and/or to the
small number of events per box. Thus, for alloy B, the dashed line is not the line fitted to
the points, as it just shows a line with slope 0.17, as expected from ϕ = 0.83 (see Table 1).
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6. Conclusions

It is shown, using the theoretically predicted temporal-avalanche shape at a fixed
area (Equation (12)), that if the voltage scale and the time scale is normalized by the
maximum amplitude, Am, and maximum time (raising time), tm, then the two scaling
parameters are interrelated by Um(∼ Am) = Btm (Equation (14)). Here, the parameter B is
not constant but can be dependent on Am. From the analysis of AE measurements on the
martensitic transformations in two different single-crystalline shape memory alloys, it was
obtained that

(i) from the relation between measured maximum amplitude (Am ~ Um) and tm, the value
of ϕ could be determined, and ϕ = 0.73 was obtained (the same values in both alloys);

(ii) the ϕ parameter appears in the expression of the power exponents for the relation
between the energy and Am as well as between the area and Am; these are 3− ϕ and
2− ϕ, respectively, which provide a denouement of the enigma;

(iii) experimental values of exponents of different scaling relations between the measured
AE parameters (energy, area, amplitudes, duration time) are consistent with the above
relations;

(iv) using Am and A1−ϕ
m parameters for reducing the voltage and time scales, respectively,

nice, common temporal-avalanche shapes were obtained for different bins of area.

Author Contributions: Conceptualization: D.L.B.; data acquisition: L.Z.T.; formal analysis: L.Z.T.
and D.L.B.; investigation: S.M.K., N.M.S. and L.D.; methodology: S.M.K., N.M.S. and L.D.; project
administration: D.L.B. and L.Z.T.; supervision: D.L.B.; visualization: S.M.K., N.M.S. and L.Z.T.;
writing—original draft: D.L.B.; writing—review and editing: D.L.B. and L.Z.T. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research, Development, and Innovation Office:
NKFIH PD131784 project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.



Materials 2022, 15, 4556 17 of 18

Acknowledgments: The authors are indebted to I. Karaman (Texas A&M University, College Station,
TX, USA) and Y. I. Chumljakov and E. Pancehnko (Tomsk State University, Russia) for providing the
ferromagnetic-shape memory single crystals and taking part in their experimental investigations by
acoustic emission.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kuntz, M.C.; Setna, J.P. Noise in disordered systems: The power spectrum and dynamic exponents in avalanche models. Phys.

Rev. B 2000, 62, 11699. [CrossRef]
2. Setna, J.P.; Dahmen, K.A.; Myers, C.R. Crackling noise. Nature 2001, 410, 242–250. [CrossRef] [PubMed]
3. Salje, E.K.; Dahmen, K. Crackling noise in disordered materials. Annu. Rev. Condens. Matter Phys. 2014, 5, 233–254. [CrossRef]
4. Papanikolaou, S.; Bohn, F.; Sommer, R.L.; Durin, G.; Zapperi, S.S.; Setna, J.P. Universality beyond power laws and the average

avalanche shape. Nat. Phys. 2011, 7, 316–320. [CrossRef]
5. Laurson, L.; Illa, X.; Santucci, S.; Tallakstad, K.T.; Maloy, K.J.; Alava, M.J. Evolution of the average avalanche shape with the

universality class. Nat. Commun. 2013, 4, 2927. [CrossRef]
6. LeBlanc, M.; Angheluta, L.; Dahmen, K.; Goldenfeld, N. Universal fluctuations and extreme statistics of avalanches near the

depinning transition. Phys. Rev. E 2013, 87, 022126. [CrossRef]
7. Dobrinevski, A.; Le Doussal, P.; Weise, K.J. Avalanche shape and exponents beyond mean-field theory. EPL 2015, 108, 66002.

[CrossRef]
8. Chi-Cong, V.; Weiss, J. Asymmetric Damage Avalanche Shape in Quasibrittle Materials and Subavalanche (Aftershock) Clusters.

Phys. Rev. Lett. 2020, 125, 105502. [CrossRef]
9. Spark, G.; Maas, R. Shapes and velocity relaxation of dislocation avalanches in Au and Nb microcrystals. Acta Mater. 2018, 152,

86–95. [CrossRef]
10. Bohn, F.; Correa, M.A.; Carara, M.; Papanikolau, S.; Durin, G.; Sommer, R.L. Statistical properties of Barkhausen noise in

amorphous ferromagnetic films. Phys. Rev. E 2014, 90, 032821. [CrossRef]
11. Durin, G.; Zapperi, S. Scaling Exponents for Barkhausen Avalanches in Polycrystalline and Amorphous Ferromagnets. Phys. Rev.

Lett. 2000, 84, 4705. [CrossRef] [PubMed]
12. Rafols, I.; Vives, E. Statistics of avalanches in martensitic transformations. II. Modeling. Phys. Rev. B 1995, 52, 12651. [CrossRef]
13. Carrillo, L.; Mañosa, L.; Ortin, J.; Planes, A.; Vives, E. Experimental Evidence for Universality of Acoustic Emission Avalanche

Distributions during Structural Transitions. Phys. Rev. B 1998, 81, 1889. [CrossRef]
14. Planes, A.; Mañosa, L.; Vives, E. Acoustic emission in martensitic transformations. J. Alloys Compd. 2013, 577, S699–S704.

[CrossRef]
15. Durin, G.; Bohn, F.; Correa, A.; Sommer, R.L.; Le Doussal, P.; Wiesse, K.J. Quantitative Scaling of Magnetic Avalanches. Phys. Rev.

Lett. 2016, 117, 087201. [CrossRef]
16. Rosinberg, M.L.; Vives, E. Metastability, Hysteresis, Avalanches, and Acoustic Emission: Martensitic Transitions in Functional

Materials. In Disorder and Strain Induced Complexity in Functional Materials; Kakeshita, T., Fukuda, T., Saxena, A., Planes, A.,
Eds.; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 148, pp. 249–272, ISBN
978-3-642-20943-7.

17. Vives, E.; Baro, J.; Planes, A. From labquakes in porous materials to earthquakes. In Avalanches in Functional Materials and
Geophysics; Salje, E.K.H., Setna, A., Planes, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 31–58.

18. Baro, J.; Dahmen, K.A.; Davidsen, J.; Planes, A.; Castillo, P.O.; Nataf, G.F.; Salje, E.K.H.; Vives, E. Experimental Evidence of
Accelerated Seismic Release without Critical Failure in Acoustic Emissions of Compressed Nanoporous Materials. Phys. Rev. Lett.
2018, 120, 245501. [CrossRef]

19. Baro, J. Avalanches in Out of Equilibrium Systems: Statistical Analysis of Experiments and Simulations. Ph.D. Thesis, University
of Barcelona, Barcelona, Spain, 2018.

20. Beke, D.L.; Daróczi, L.; Tóth, L.Z.; Bolgár, M.K.; Samy, N.M.; Hudák, A. Acoustic Emissions during Structural Changes in Shape
Memory Alloys. Metals 2019, 9, 58. [CrossRef]

21. Chen, Y.; Go, B.; Ding, X.; Sun, J.; Salje, E.K.H. Real-time monitoring dislocations, martensitic transformations and detwinning in
stainless steel: Statistical analysis and machine learning. J. Mater. Sci. Technol. 2021, 92, 31. [CrossRef]

22. Chen, Y.; Gou, B.; Chen, C.; Ding, X.; Sun, J.; Salje, E.K.H. Fine structures of acoustic emission spectra: How to separate dislocation
movements and entanglements in 316L stainless steel. Appl. Phys. Let. 2020, 117, 262901. [CrossRef]

23. Antonaglia, J.; Wright, W.J.; Gu, X.; Byer, R.R.; Hufnagel, T.C.; LeBlanc, M.; Uhl, J.T.; Dahmen, K.A. Bulk metallic glasses deform
via avalanches. Phys. Rev. Lett. 2014, 112, 1555501. [CrossRef]

24. Makinen, T.; Karppinen, P.; Ovaska, M.; Laurson, L.; Alava, M.J. Propagating bands of plastic deformation in a metal alloy as
critical avalanches. Sci. Adv. 2020, 6, eabc7350. [CrossRef] [PubMed]

25. Casals, B.; Dahmen, K.A.; Gou, B.; Rooke, S.; Salje, E.K.H. The duration-energy-size enigma for acoustic emission. Sci. Rep. 2021,
11, 5590. [CrossRef] [PubMed]

http://doi.org/10.1103/PhysRevB.62.11699
http://doi.org/10.1038/35065675
http://www.ncbi.nlm.nih.gov/pubmed/11258379
http://doi.org/10.1146/annurev-conmatphys-031113-133838
http://doi.org/10.1038/nphys1884
http://doi.org/10.1038/ncomms3927
http://doi.org/10.1103/PhysRevE.87.022126
http://doi.org/10.1209/0295-5075/108/66002
http://doi.org/10.1103/PhysRevLett.125.105502
http://doi.org/10.1016/j.actamat.2018.04.007
http://doi.org/10.1103/PhysRevE.90.032821
http://doi.org/10.1103/PhysRevLett.84.4705
http://www.ncbi.nlm.nih.gov/pubmed/10990776
http://doi.org/10.1103/PhysRevB.52.12651
http://doi.org/10.1103/PhysRevLett.81.1889
http://doi.org/10.1016/j.jallcom.2011.10.082
http://doi.org/10.1103/PhysRevLett.117.087201
http://doi.org/10.1103/PhysRevLett.120.245501
http://doi.org/10.3390/met9010058
http://doi.org/10.1016/j.jmst.2021.04.003
http://doi.org/10.1063/5.0030508
http://doi.org/10.1103/PhysRevLett.112.155501
http://doi.org/10.1126/sciadv.abc7350
http://www.ncbi.nlm.nih.gov/pubmed/33028532
http://doi.org/10.1038/s41598-021-84688-7
http://www.ncbi.nlm.nih.gov/pubmed/33692380


Materials 2022, 15, 4556 18 of 18

26. Samy, N.M.; Bolgár, N.M.; Barta, N.; Daróczi, L.; Tóth, L.Z.; Chumlyakov, Y.I.; Karaman, I.; Beke, D.L. Thermal, acoustic
and magnetic noises emitted during martensitic transformation in single crystalline Ni45Co5Mn36.6In13.4 meta-magnetic shape
memory alloy. J. Alloys Compd. 2019, 778, 669–680. [CrossRef]

27. Kamel, S.M.; Daróczi, L.; Tóth, L.Z.; Samy, N.M.; Panchenko, E.; Chumlyakov, Y.I.; Beke, D.L. Acoustic and DSC investigations of
burst like shape recovery of Ni49Fe18Ga27Co6 shape memory single crystal. 2022; to be published.

28. Daróczi, L.; Elrasasi, T.Y.; Arjmandbasi, T.; Tóth, L.Z.; Veres, B.; Beke, D.L. Change of Acoustic Emission Characteristics during
Temperature Induced Transition fromTwinning to Dislocation Slip under Compression in Polycrystalline Sn. Materials 2021,
15, 224. [CrossRef]

29. Chen, Y.; Gou, B.; Yuan, B.; Ding, X.; Sun, J.; Salje, E.K.H. Multiple Avalanche Processes in Acoustic Emission Spectroscopy:
Multibranching of the Energy-Amplitude Scaling. Phys. Status Solidi B 2021, 259, 2100465. [CrossRef]

http://doi.org/10.1016/j.jallcom.2018.11.149
http://doi.org/10.3390/ma15010224
http://doi.org/10.1002/pssb.202100465

	Introduction 
	Expressions for the Exponents of Scaling Relations 
	Analysis and Discussion of Experimental Data on Scaling Exponents 
	Relations between Am and Aav, Am and tm, and Am and D 
	Scaling Relations between EAE, SAE, EAESAE , and the Amplitude, Am 
	Scaling Relation between EAED  and the Amplitude as Well as between SAE  and the Duration Time, D 

	Temporal Shape of Avalanches 
	Relation between the Energy and Amplitude for Analysis of Multi-Avalanche Processes 
	Conclusions 
	References

