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Abstract: Although lightweight particleboards have been commercially available for years, they still
have a number of disadvantages, including difficulty to process, brittleness, low impact strength,
and other mechanical resistance. The aim of the paper was to determine the possibility of producing
particleboards of reduced density (dedicated for furniture industry) as a result of using blowing
agents from the group of hydrazides, dicarboxamides, or tetrazoles, which were modifiers of the
adhesive resin used for bonding the particles of the core layer of three-layer particleboards. The
concept presents the possibility of producing low-density particleboards in a standard technological
process by modifying the adhesive resin, which has not been practiced by others until now. Analysis
of the results of testing the particleboards properties with various types of modifiers (blowing agents),
glue content (high 10%/12% and low 8%/10%), differing in glue dosing method, and different
particle sizes allowed concluding that the most satisfactory effect was found in particleboards made
of the variant modified with p-toluenesulfonyl hydrazide. This variant was characterised by the
highest mechanical properties (bending strength, modulus elasticity, and internal bond strength) with
high dimensional stability. The presented technology proposal can be applied in the industry.

Keywords: raw material; blowing agent; low density; lightweight particleboard; resin content;
particleboard; physical and mechanical properties

1. Introduction

In recent years, wood-based panel industries have been undergoing rapid growth.
Consequently, such an increasing demand puts strain on the wood supply, and density
reduction becomes one of the topical issues in the wood-based panels industry [1]. Inten-
sive work on reducing the density of wood-based panels has been going on since the 1990s.
Most of them focus on particleboard, the importance of which is growing in the market of
wood-based panels. Particleboard densities are usually in the range 600 to 750 kg/m3. Par-
ticleboards with densities below 600 kg/m3 are designated as lightweight [2] (other sources
define that lightweight particleboards have a density in the range of 250–400 kg/m3 [3]).
That makes their application in the furniture industry easier when low mass is required to
facilitate transportation and assembly of the finished product (especially ready-to-assemble
furniture (RTA)). So far, the production of lightweight particleboards is based on the use
of low-density wood species, sandwich panels with foam cores made of polyurethane or
polystyrene, or cardboard-based honeycomb cores as well as extruding tubular hollow
spaces in particleboards [4].

However, lowering the board density does not always go hand in hand with lowering
the costs of their production. Although it was possible to introduce many raw material
substitutes for natural wood (both plant waste and new species of trees and other plants),
the mechanical properties of such products are not satisfactory and differ from those of
conventional products [5–8]. In addition to new wood raw materials, new binders have
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been introduced, the resin content has been increased, and the density profile of the product
has been optimised [9–12]. The disadvantage of these solutions is often the deterioration
of mechanical parameters. Such limitations are usually not present in sandwich products,
for example with a honeycomb core, a foam core or made of light wood materials [13–15].
The factor limiting the commercialisation of new solutions is usually high production costs
due to the multi-stage nature of these solutions. In recent years, however, several one-step
processes have been proposed to popularise polymer foam materials, such as expanded
polystyrene (EPS) or expanded microspheres (MS) [16–21].

The process of foaming the polymer contained in the composite is an effective proce-
dure that significantly reduces the density and improves the processing of such products.
In the context of particleboard, polymer foaming can refer to both foaming the binder
joining wood particles and producing boards with a foam-type core [22]. In the first case,
there is a reduction in the glue content in the finish product. In the second case, there is a
partial replacement of both the binder and the lignocellulosic material by a polymeric foam.
Thanks to this solution, products are obtained that are closer to typical boards (with high
density), for example, that can be more easily joined with metal elements, such as screws.
Wood-based composites with foams are also characterised by better impact strength [23]
and a favourable price–quality ratio as well as strength-to-weight ratio [24]. They allow for
a better product surface and sharper edges and corners. Due to the plasticising effect of the
gas (as a result of its generation in the process of foaming the polymer), the production of
such products takes place at a lower temperature and faster than in the case of non-foamed
products, which lowers the process costs [25]. The raw material for the production of
polymer foams are high-molecular polymers and various additives (fillers, auxiliaries). The
forming process takes place after mixing the ingredients in the right proportions. The prop-
erties, processing, and application of the foams depend mainly on the chemical and physical
properties of the polymer used. The following polymers are used in the foaming process:
polystyrene (PS), polyethylene (PE), polypropylene (PP) [26–28], urea formaldehyde resins
(UF), polyvinyl chloride (PVC), polyurethanes (PU) [29–31], acrylonitrile-butadiene-styrene
copolymer (ABS), and phenol formaldehyde resins (PF) [27,32–35]. So far, those polymers
found to be useful in wood-based plastic composites (WPC) were a success. The usage
of thermoplastics for processing results from their compatibility with the wood particles
favours the formation of wood plastic composite, achieving a highly efficient encapsulation
of the wood particles by thermoplastic, which ensures low penetration of water into the
composite, providing increasing dimensional stability [36,37].

Foamed UF resins are generally prepared by adding low-boiling alkanes such as
hexane [38] or pentane [32,39] as blowing agents. As soon as their boiling point is exceeded,
these blowing agents evaporate, forming cellular structures inside the resin. Due to a
number of factors influencing this process, it is difficult to control the foaming effect of the
resin. Hu et al. [26] used thermally expandable microspheres (TEM) to expand the UF resin.
These are foaming materials in the form of capsules filled with blowing agents (low-boiling
alkanes) with coatings of thermoplastic polymers such as polyacrylonitrile (PAN), poly
(methyl methacrylate) (PMMA), and PU [40–42]. Hu et al. [26] found that the addition of
TEM reduces the strength of adhesive joints. Zhao et al. [43] presented the possibilities
of foaming PF resin in the production of particleboard of low density of 400 kg/m3),
indicating that the pressure generated during the foaming of the glue ensures better contact
between the wood particles and the glue, thus obtaining a better bond strength. Bi and
Huang [3] showed that the influence of the blowing agent such as azodicarbonamide (AC)
on the mechanical, physical, and chemical properties of particleboards of reduced density
(600 kg/m3) is significant. Particleboards made with the use of PF resin (the degree of glue
content was 12%) with 1% addition of AC to the PF resin were characterised by increased
mechanical properties (in relation to bending strength, and modulus of elasticity internal
bond strength), and a reduction of thickness swelling after soaking the boards in water.

Physical blowing agents do not change the composition of the system, but affect its
physical condition. Such agents release gas through a physical process such as evaporation



Materials 2022, 15, 4528 3 of 15

or desorption [44]. Chemical blowing agents are compounds that generate gas molecules
under the influence of heat released during the production process. The decomposition of
the blowing agent may be endothermic or exothermic. Exothermic releases heat during
the production process, which leads to the rapid and complete breakdown of the blowing
agent. A characteristic feature of exothermic blowing agents is the fact that during foaming,
nitrogen is most often released, and the inert gas released by endothermic blowing agents
is most often carbon dioxide. Uncommonly, only inorganic compounds are used due to
the heterogeneous distribution in the polymer, often violent release of carbon dioxide,
and too-high losses of the pore-forming agent [32]. In addition, the temperature range of
decomposition of such compounds is wide and difficult to control, but their low price is
a great advantage. In order to lower the decomposition temperature of blowing agents,
it is possible to use special activators, which include, e.g., organic acids and their salts
(e.g., stearic acid, zinc stearate), urea, diurea, borax, zinc oxide, hexanol, and cadmium
oxide. The foaming of the polymers can take place according to two schemes. The first
one involves the foaming of finished polymers, obtained in a separate stage, and relates
mainly to thermoplastics. In the second method, used in the case of thermosets such as UF
or epoxy resins, the foaming process takes place parallel to the polymerisation reaction [45].

Moreover, the use of foamed materials consumes quite a lot of binder. The use of in
situ expandable beds improves the supersaturation of the core material compared with
expanded beds. Shalbafan et al. [17] showed that the use of expandable fillers in particle-
boards instead of pre-expanded ones allows not only reducing the amount of binder, but
also improves its effectiveness. Good mechanical parameters of the boards were obtained
with a low content of the polystyrene bed (5%), but no significant improvement was ob-
served when the content of the bed was increased to 15%, which brings economic benefits.

Luedtke and Shalbafan et al. [14] used Expancel microspheres (AkzoNobel) for
the foam-molding process to lower the density of the particleboard and an expandable
polystyrene deposit. In this way, the products with different structures and mechanical
properties were obtained. Higher bending strength and joint strength were observed for
the polystyrene foam compared with the microspheres. The favourable price also speaks as
its advantage. Moreover, such boards showed an improvement in mechanical properties
compared with conventional products. The possibility of a 50% reduction in the weight
of the board was indicated. Shalbafan et al. [18,20] also showed a significant influence of
production parameters (pressing time and temperature, foaming time) on the structure and
properties of the board.

In order to reduce the environmental effects (substitution of petroleum raw materials),
Yoon et al. [46] proposed boards with polylactide foams, foamed with supercritical carbon
dioxide. In addition, studies by Ganne-Chédeville and Diederichs [47] showed the benefits
of replacing traditional particleboard materials with expanded polystyrene foam structures
or polymethyl methacrylate or polylactide blends. The authors focused on environmental
factors, including energy consumption during the production process. The use of waste
polymers, especially polylactide, has proven advantageous.

The analysis of the available literature on the topic related to light particleboards
indicates a fairly extensive interest in this topic by scientists, but with regard to the use of
the solution presented in this paper, only Zhao et al. [43] and Bi and Huang [3] presented
a convergent approach. The high level of innovativeness of the topic is confirmed by
scientific research scenarios (wood sector of industry foresight). Scientific issues dealing
with lightweight particleboard technology and alternative raw materials for the wood-
based panels industry (including the possibility of adapting wood from fast-growing tree
plantations) are currently the highest priority of science in the wood-based materials sector
of European industry (P7). These issues have high potential for implementation (estimated
at 4.7 points on a scale of 5.0 points) with an ever-increasing demand for results of current
research [48]. The concept of producing particleboards with reduced density presented
in this paper is a completely new approach to the subject. It presents the possibility of
producing low-density particleboards in a standard technological process by modifying the
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adhesive resin (adding a blowing agent), which has not been practiced by almost anyone
so far.

The objective of the presented paper was to determine the possibility of producing
particleboards of reduced density (dedicated for furniture industry) as a result of using
blowing agents from the group of hydrazides, dicarboxamides, or tetrazoles, which were a
modifiers of the adhesive resin used for bonding the particles of the core layer of the parti-
cleboard. The selection of blowing agents used in this study resulted from the conducted
preliminary research, the results of which are planned to be published in the next study.

2. Materials and Methods
2.1. Particleboards Manufacturing

As part of the experiment, three-layer particleboards with an assumed density of
520 kg/m3 and dimensions (width× length× thickness) of 320× 320× 15 mm3 were made.
The boards were produced in 16 variants of 10 repetitions. A detailed list of assumptions for
individual variants, within which three-layer particleboards were produced, is presented
in the Table 1. The boards were made of industrial Scots pine (Pinus sylvestris L.) particles
for which the average moisture contents were 4.9% (face layer) and 4.5% (core layer). The
particles of the core layer within the individual variants were characterised by thickness of
0.4 mm and various length (8 mm and 4 mm), while the particles of the face layers were
typical from the industrial production of particleboards.

The particles were bonded with commercial urea formaldehyde (UF) resin (AB Achema,
Jonavos, Lithuania) with a concentration of 65%, hardened with a 10% aqueous solution
of ammonium sulfate (Merck KGaA, Darmstadt, Germany). The share of hardener dry
weight calculated on the dry weight of the UF resin used for bonding the particles of the
face and the core layer at the applied glue contents was 0.2%. Glue was dosed in two
methods: pneumatic spraying and by flow dosing. In the case of boards variants from V to
XVI, the UF resin was modified with the addition of blowing agents in the amount of 5% in
relation to the weight of the resin at a concentration of 65%. The blowing agents used were:
p-toluenesulfonyl hydrazide (group of hydrazides) (Merck KGaA, Darmstadt, Germany),
azodicarbonamide (group of dicarboamides) (Merck KGaA, Darmstadt, Germany), and
5-phenyl-1H-tetrazole (group of tetrazoles) (Merck KGaA, Darmstadt, Germany). Paraffin
(Polwax S.A., Jasło, Poland) in the form of an emulsion (1% of dry wood mass) was used as
a hydrophobic agent.

Mats were hand-formed from the previously bonded particles and pre-cold pressed
under a pressure of 0.5 MPa for 30 s. Hot-pressing parameters were selected on the basis
of industrial conditions and literature [49]. The mat pressing process was carried out
using a computer-controlled laboratory press. The maximum unit pressing pressure in
the adopted cycle was 2.5 MPa and was maintained until the assumed board thickness
was achieved, successively reduced until the end of the assumed pressing time. The press
plates temperature was 180 ◦C, the pressing ratio was 18 s/mm, the closing speed of the
press was 2 mm/s, and the total pressing time was 270 s. Variable pressing parameters
were measured automatically; the temperature of the mat core had an accuracy of±0.01 ◦C,
pressure had an accuracy of ±0.01 MPa, and the thickness of the mat had an accuracy of
±0.01 mm. The temperature inside the mat was measured with a Fe-CuNi thermocouple
fixed in the mat core during its formation.
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Table 1. Characteristics of the assumptions of individual variants within which three-layer particle-
boards were produced.

Variant Type of Blowing
Agent

Glue Content of the
Core/Surface Layer (%) Glue Dosing Length of Core Layer

Particles (mm)

I - 10/12 pneumatic spraying 8
II - 10/12 flow dosing 4
III - 8/10 flow dosing 8
IV - 8/10 pneumatic spraying 4

V p-toluenesulfonyl
hydrazide 10/12 pneumatic spraying 8

VI p-toluenesulfonyl
hydrazide 10/12 flow dosing 4

VII p-toluenesulfonyl
hydrazide 8/10 flow dosing 8

VIII p-toluenesulfonyl
hydrazide 8/10 pneumatic spraying 4

IX azodicarbonamide 10/12 pneumatic spraying 4
X azodicarbonamide 10/12 flow dosing 8
XI azodicarbonamide 8/10 flow dosing 4
XII azodicarbonamide 8/10 pneumatic spraying 8
XIII 5-phenyl-1H-tetrazole 10/12 pneumatic spraying 4
XIV 5-phenyl-1H-tetrazole 10/12 flow dosing 8
XV 5-phenyl-1H-tetrazole 8/10 flow dosing 4
XVI 5-phenyl-1H-tetrazole 8/10 pneumatic spraying 8

The research plan (Table 1) was designed based on the Taguchi method, which involves
selection of response variables, identification of noise and constant factors, determination of
controllable factors, selection of experimental design and data analysis method, experimen-
tal determination of optimal factors setup, and defining of expected values for dependent
variables in optimised conditions. As part of the designed experiment, the boards produced
within individual variants were differentiated by four factors with varying degrees of vari-
ability, i.e., modifier type—4 degrees of variation, glue content—2 degrees of variation,
glue dosing—2 degrees of variation, and core particle size layer—2 levels of variation.
Experimental design based on the Taguchi method provides reliable results and elimination
of noise affecting final results.

2.2. Particleboard Properties

The property testing was preceded by particleboard surfaces calibration. In order to
remove irregularities and guarantee flat parallel surfaces, the boards were sanded. The
test samples were prepared in accordance with the relevant standards. Prior to testing,
all samples were conditioned (before surfaces calibration) in a climate chamber at 65%
(±5%) relative humidity and a temperature of 20 ◦C (±2 ◦C) until constant mass was
reached. Density measurements were performed according to EN 323 [50]. The samples
were square shaped, with side length of 50 mm. Density was calculated using the mass
and volume of specimen after drying. Density profile studies were performed using the
laboratory X-ray density analyser GreCon Da-X (Fagus-Grecon Greten GmbH & Co. KG,
Alfeld-Hannover, Germany). Density measurements on the board thickness were taken
with a step of 0.02 mm at a measurement speed of 0.05 mm/s.

The bending strength (MOR) and modulus of elasticity (MOE) were determined
according to the EN 310 [51] standard. Determination of internal bond strength (IB),
also known as tensile strength perpendicular to the plane of the board, was performed
according to EN 319 [52]. The force required to withdraw a screw (screw holding) from
tested particleboards perpendicular to the surfaces (SH ⊥) and parallel to the surface (SH
II) was determined according to EN 320 [53]. The surface hardness (HB) was determined
based on the recommendations of the EN 1534 [54] standard.
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Thickness swelling was determined according to the method described in EN 317 [55].
The increase in thickness was evaluated after complete immersion in water for 24 h.

The determination of each property was carried out for at least 10 replicates for a
given variant of the board. The mean values of tested parameters were compared in the
one-way analysis of variance (ANOVA)—Tukey’s post hoc test, in which homogeneous
groups of mean values for each parameter were identified for p = 0.05. The significance
of the influence considered variables was calculated using multi-factor ANOVA test by
determining the percentage of contributing analysed factors. The experimental data were
statistically analysed using STATISTICA 13.3 software (TIBCO Software Inc., Palo Alto,
CA, USA).

3. Results and Discussion
3.1. Density Profile

The highest density value for boards differing in the type of modifier used, the degree
of glue content, type of glue dosing, and the size of the particles used was recorded for
variant XIII—536 kg/m3, and the lowest for variant VI—504 kg/m3 (Figure 1). This range
is in line with the generally accepted definition of low-density boards [2]. However, the
differences in the average density of individual board variants did not exceed 10%, which
allows for their comparison in terms of the examined properties. Any changes in density
should not have a significant impact on the obtained relations. When analysing statistical
results of the board density tests, it should be noted that they do not present different
groups within individual variants—they are in one homogeneous group, which proves
statistically non-significant differences between them.
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Figure 1. Density of particleboards produced (means and standard deviation, a, b, c, . . . —
homogeneous groups determined by the Tukey test; different letters denote a significant difference;
means followed by the same letter do not statistically differ from each other).

Figure 2 presents a summary of the density profiles on the cross-section of all variants
of the manufactured boards. All of them were characterised by a similar, typical U-shaped
symmetrical course. There were no significant differences between the course of the density
profiles for individual board variants. U-shape profile was explained by decreasing pressure
in the core as the moisture left and by a densification process in the face region within
which the particles were softened by steam [56]. Wong et al. [57–59] and Treusch et al. [60]
reported that the density profile clearly correlates with the basic properties of particleboards
such as MOR, MOE, or IB. Hunt et al. [61] also showed that there is a correlation between
the vertical density profile and IB test and most failures occured in the low-density core
region during tests presented in this paper.



Materials 2022, 15, 4528 7 of 15

Materials 2022, 15, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 1. Density of particleboards produced (means and standard deviation, a, b, c, …—
homogeneous groups determined by the Tukey test; different letters denote a significant differ-
ence; means followed by the same letter do not statistically differ from each other). 

Figure 2 presents a summary of the density profiles on the cross-section of all vari-
ants of the manufactured boards. All of them were characterised by a similar, typical U-
shaped symmetrical course. There were no significant differences between the course of 
the density profiles for individual board variants. U-shape profile was explained by de-
creasing pressure in the core as the moisture left and by a densification process in the 
face region within which the particles were softened by steam [56]. Wong et al. [57–59] 
and Treusch et al. [60] reported that the density profile clearly correlates with the basic 
properties of particleboards such as MOR, MOE, or IB. Hunt et al. [61] also showed that 
there is a correlation between the vertical density profile and IB test and most failures 
occured in the low-density core region during tests presented in this paper. 

 
Figure 2. Density profiles of particleboards produced. 

3.2. Mechanical Properties 
The obtained averaged results of determination mechanical properties of tested variants 

produced particleboards are presented together with the values of standard deviations in 
Figures 3–8. Among the variants differing in the type of modifier used, the glue content, par-
ticle size, the type of glue dosing, and the highest value of static bending strength were char-
acterised by variant V—12.9 N/mm2, followed by variant XVI—10.7 N/mm2. The lowest val-
ues were recorded for variant XV—5.8 N/mm2, VII—5.9 N/mm2, XI—6.0 N/mm2, and XIV—
6.0 N/mm2. Similar relations were observed in the case of the value of the modulus of elastic-
ity determined during the static bending strength test. In addition, in this case, the highest 

Figure 2. Density profiles of particleboards produced.

3.2. Mechanical Properties

The obtained averaged results of determination mechanical properties of tested vari-
ants produced particleboards are presented together with the values of standard deviations
in Figures 3–8. Among the variants differing in the type of modifier used, the glue content,
particle size, the type of glue dosing, and the highest value of static bending strength were
characterised by variant V—12.9 N/mm2, followed by variant XVI—10.7 N/mm2. The low-
est values were recorded for variant XV—5.8 N/mm2, VII—5.9 N/mm2, XI—6.0 N/mm2,
and XIV—6.0 N/mm2. Similar relations were observed in the case of the value of the
modulus of elasticity determined during the static bending strength test. In addition, in
this case, the highest value of the modulus of elasticity in static bending was characteristic
for the V variant—2272 N/mm2, and the lowest one for the XV variant—1243 N/mm2.
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As a result of the comparison of the obtained averages values, it was found that the
highest value of internal bond strength was shown by the variant V—0.52 N/mm2 and
I—0.49 N/mm2. The lowest internal bond was characteristic for variant III and at the same
time XV—0.29 N/mm2 and variant—0.25 N/mm2. Variant V was also distinguished by
the highest ability to keep screws on a plane—1103 N/mm2. Variant IV—1035 N/mm2

turned out to be comparable. The least preferred variant turned out to be the variant
VII—624 N/mm2.

The lowest surface hardness (14.2 N/mm2) was found in variant XV, manufactured
with the use of the 5-phenyl-1H-tetrazole modifier, with glue content of 8%/10%. The
highest surface hardness (17.8 N/mm2) was achieved in the V variant of the particle-
board, manufactured with the modifier p-toluenesulfonyl hydrazide, with glue content of
10%/12%.

The observed mean values of mechanical properties in Tukey’s test were classified in
different homogenous groups. Only in the case of hardness there was one homogenous
group. The results of the statistical analysis provide the basis for selecting a compilation
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of the variables that provide the most favourable results. The highest mechanical charac-
teristics of the V variant were not repeated in any of the other variants, indicating in the
analysed comparisons that this variant stood out from the others (Figures 3–8).

Generally, the addition of blowing agents and the increase in the degree of glue
content as well as the glue dosing method contribute to the improvement of the strength
parameters of the manufactured boards. These relations were only not found in the case
of screw holding parallel to the surface (SH II). Among the blowing agents tested, the
best results were obtained for p-toluenesulfonyl hydrazide, with a higher degree of glue
content (10%/12%) and bonding particles using the pneumatic spray method (variant V).
In this case, both the higher degree of glue content and the bonding of particles using the
method of pneumatic spraying in combination with the use of a blowing agent resulted
in better coverage of the particles surface, which translated into an increase in strength
parameters. This coincides with Dunky’s indications [62], who found that the properties of
the boards are influenced by the content of glue, the quality of its distribution on the surface
of the particles, and the total surface of the particles covered with the glue. It is believed
that the addition of glue influences the increase of the tensile strength in the direction
perpendicular to the plane of the boards to a greater extent than the bending strength. The
optimal amounts of glue for boards bonded with UF resins are most often indicated for
core layers 4–8% and 8–14% for the face layers of the boards [63,64]. In the case of the tested
variants of boards with the addition of blowing agents (variants V–XVI), both the decrease
in the degree of glue content and the jet dosing of the glue to the wood particles resulted
in the deterioration of the strength parameters of the boards. No analogous relations
were found in the case of particleboards produced without the addition of blowing agents
(variants I–IV).

Bi and Huang [3] also used azodicarbonamide for foaming adhesive resin in the
production of poplar particleboards; however, they modified PF resin, which is much
less popular than UF resin in the production of particleboards. The authors of ref. [3]
produced particleboards of a density of 600 kg/m3, characterised by strength parameters
that meet the requirements of EN 312 [65]. In this study, using azodicarbonamide as a
modifier of adhesive resin, such satisfactory parameters of the boards were not achieved
(the requirements of the EN 312 [65] standard were met by the boards from variant V,
where the adhesive resin was modified with p-toluenesulfonyl hydrazide). This is most
likely caused by the lower level of the assumed density of the manufactured boards as
well as the fact that in the presented study the boards were made of pine particles, not
poplar. Pine wood is characterised by a higher density than poplar wood, which in turn is
decisive for thickening the mats during the pressing process [56]. Moreover, the additional
characterisation showed that the thermal degradation of the foaming agent effectively
generates the production of micro-foaming pores on the wood particles surface [3]. With
regard to the tested boards, it should be stated that, in general, no effect of the change in the
particle size of the internal layers on the strength parameters was observed. It is generally
accepted that the size of the particles affects their mutual “fit” and the quality of their
mutual bonding with glue joints. Dukarska et al. [66] showed that the particle geometry
influences the bulk density of the mats as well as the degree of their compression. Medved
and Resnik [67], examining the influence of the particle geometry of the face layers of
boards on the bending strength, showed that the increase in particle size and the resulting
decrease in the particle surface area causes a decrease in strength. Among the particles
dimensions, the most important are their thickness and length [67,68]. With reference to the
presented research, it is necessary to point out the multi-path influence of the particle length
on the properties of the boards. On the one hand, long particles (of the same thickness)
increase the bending strength as the contact surface between them increases. However,
short particles contribute to an increase in the homogeneity of the board structure, and thus
may increase its tensile strength [68].

When analysing the ANOVA results concerning the influence of individual tested
factors on the strength properties of the boards, it should be stated that they were diversified
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(Table 2). The blowing agent had the strongest effect on values of IB (Figure 5), SH II
(Figure 6), and SH ⊥ (Figure 7) (respectively P = 12.80%, 20.56%, and 26.32%). In the
case of MOR (Figure 3) and MOE (Figure 4), the greatest influence was shown by glue
dosing (respectively P = 38.62% and 40.63%) as well as type of blowing agent (respectively
P = 4.60% and 5.88%). As previously stated, among the examined factors, the least influence
was shown by particle size (P from 0.01% to 2.60%). This was generally a statistically
insignificant impact, except for MOE. The total effect of the examined factors on the
strength properties of the boards was generally (except for SH ⊥ and MOE) smaller than
the influence of factors not included in this study (error above 50.00%).

Table 2. ANOVA for selected factors affecting MOR, MOE, IB, SH, and HB of manufactured particle-
boards (p—probability of non-significant effects, P—percentage influence).

Source of Variation

MOR MOE IB SH II SH ⊥ HB

p P
(%) p P

(%) p P
(%) p P

(%) p P
(%) p P

(%)

Blowing agent 0.002 4.60 0.000 5.88 0.000 12.80 0.000 20.56 0.000 26.32 0.457 3.50
Glue content 0.000 3.75 0.012 1.80 0.002 4.78 0.000 12.38 0.000 12.80 0.008 9.86
Particle size 0.112 0.74 0.003 2.47 0.146 1.06 0.897 0.01 0.156 1.13 0.167 2.60
Glue dosing 0.000 38.62 0.000 40.63 0.000 23.26 0.009 2.98 0.000 19.75 0.014 8.54

Error 52.30 49.22 58.11 64.07 40.01 75.50

3.3. Thickness Swelling

Twenty-four h soaking of the tested particleboards samples in water caused their
swelling and allowed for the observation of differences in dimensional stability. The
results of the swelling test for individual variants of particleboards were averaged and
are presented in Figure 9. The highest dimensional stability, through the smallest range of
changes, was characteristic for the V variant (swelling value was 15.3%). Variants I and IX
showed an equally small scope of changes. The boards from variant XV were characterised
by the lowest dimensional stability, for which the greatest swelling was recorded—24.9%.
A high range of changes was also noted in the case of boards from variants II, III, VI, VII,
XI, and XIII.
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The thickness swelling of particleboards after soaking in water is strongly correlated
with the level of their compaction [2]. Thus, it can be expected that the reduced-density
particleboards will have a theoretically lower value of the swelling per thickness. However,
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the swelling rate of particleboards is not linearly correlated with the relative air humid-
ity [69]. In the aspect of the analysis of particleboard swelling after soaking in water, the
degree of glue content of the particles and the type of adhesive resin used for bonding the
wood particles should also be taken into account. Theoretically, the higher glue content in
the board, the lower swelling level [2]. On the other hand, Schulstad [70] reported that the
swelling of particleboards is also related to their three-layer structure and the fact that there
are free spaces in the core layer in which free water has the possibility of storage, which may
in turn increase the swelling of the boards. The reduction of voids between the particles of
the core layer can be achieved by using wood particles obtained from low-density species
(e.g., poplar wood) for the board production [32]. Bi and Huang [3] reported that the
blowing agent from the dicarboxamides group (azodicarbonamide) added to the PF resin in
particleboard production technology influenced on increasing the dimensional stability of
the boards and at the same time reducing the water absorption rate. It has been speculated
that this phenomenon may be caused by the surface tension in the pores formed during
the foaming of the resin by the blowing agent. A similar dependence was also noted in the
presented study—the boards from variants V and IX had the lowest level of swelling, in
which p-toluenesulfonyl hydrazide and azodicarbonamide were used to modify the UF
resin, respectively, as well as, among others, higher degree of glue content of the particle.

Analysing the influence of individual tested factors on the swelling on the boards
thickness after soaking in water for 24 h (Table 3), it was observed that, as in the case of
strength parameters, glue dosing had the greatest impact (P = 38.93%). The strength of
the blowing agent and glue content influence was P = 9.05% and 13.50%, respectively. In
contrast to the strength properties, the total effect of the tested factors on the swelling on
the thickness of the boards is greater than the influence of factors not included in this study
(error = 35.04%).

Table 3. ANOVA for selected factors affecting TS of manufactured particleboards (p—probability of
non-significant effects, P—percentage influence).

Source of Variation
TS

p P (%)

Blowing agent 0.000 9.05
Glue content 0.000 13.50
Particle size 0.001 3.48
Glue dosing 0.000 38.93

Error 35.04

4. Conclusions

Analysis of the results of testing the particleboards properties with various types of
modifiers (blowing agents), glue content (high 10%/12% and low 8%/10%), differing in
glue dosing method, and different particle sizes allows for the conclusion that there was no
relation between tested particleboards’ density profiles and the variables differentiating
the studied variants. The highest value of static bending strength was found in particle-
boards made of variant V (the UF resin was modified with p-toluenesulfonyl hydrazide).
Similar relations were observed for the value of the modulus of elasticity in static bending.
The highest value of the tensile strength perpendicular to the planes was found in the
particleboards of variant V (the UF resin was modified with p-toluenesulfonyl hydrazide).

It was observed that the hardness of particleboards depends on the glue content
and the method of applying the glue on the particles. The highest hardness values were
recorded for variants in which higher glue content and particles were bonded with the
use of pneumatic spraying. Among the particleboards differing in the type of blowing
agent used, the smallest range of dimensional changes after 24 h soaking in water was
characteristic for the V-variant particleboards, in the case of which the UF resin was
modified with p-toluenesulfonyl hydrazide.
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Based on the result, it can be stated that for the production of particleboards with
a reduced density (at the assumed level of 520 kg/m3), the UF resin modifier in the
form of p-toluenesulfonyl hydrazide should be used, which allows for the production
of particleboards with an assumed low density in laboratory conditions, meeting the
basic technical requirements of the EN 312: 2011 standard (it should be noted that the
standard EN 312: 2011 refers to the properties of typical particleboards with a density
above 600 kg/m3).
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48. Ratajczak, E.; Bidzińska, G.; Szostak, A.; Frąckowiak, I. Foresight in Wood Industry-2020. Wood Composites (In Polish), 1st ed.; Wood

Technology Institute Press: Poznan, Poland, 2011; pp. 96–105.
49. Moslemi, A.A. Particleboard, Vol. 2: Technology; Southern Illinois University Press: Carbondale, IL, USA, 1974.
50. EN 323; Wood-Based Panels-Determination of Density. European Committee for Standardization: Brussels, Belgium, 1993.
51. EN 310; Wood-Based Panels. Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee

for Standardization: Brussels, Belgium, 1994.
52. EN 319; Particleboards and Fibreboards. Determination of Tensile Strength Perpendicular to the Plane of the Board. European

Committee for Standardization: Brussels, Belgium, 1999.
53. EN 320; Particleboards and Fibreboards. Determination of Resistance to Axial Withdrawal of Screws. European Committee for

Standardization: Brussels, Belgium, 2011.
54. EN 1534; Wood Flooring and Parquet. Determination of Resistance to Indentation. Test Method. European Committee for

Standardization: Brussels, Belgium, 2020.
55. EN 317; Particleboards and Fibreboards. Determination of Swelling in Thickness after Immersion in Water. European Committee

for Standardization: Brussels, Belgium, 1999.
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