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Abstract: The phase structure and microstructure of Sm12Co88−xCux (x = 0, 2, 4, 6, 8, 10; at.%) as-cast
alloys and melt-spun ribbons prepared via the arc-melting method and melt-spun technology were
studied experimentally by X-ray diffraction (XRD) and scanning electron microscope (SEM) with
energy dispersive spectroscopy (EDS). The results reveal that the Sm12Co88−xCux (x = 0) as-cast alloy
contains Sm2Co17 and Sm5Co19 phases, while the Sm12Co88−xCux (x = 2) as-cast alloy is composed
of Sm2Co17, Sm2Co7 and Sm(Co, Cu)5 phases. Sm2Co17 and Sm(Co, Cu)5 phases are detected in
Sm12Co88−xCux (x = 4, 6, 8, 10) as-cast alloys. Meanwhile, Sm12Co88−xCux ribbons show a single
SmCo7 phase, which is still formed in the ribbons annealed at 1023 K for one hour. After annealed
at 1123 K for two hours, cooled slowly down to 673 K at 0.5 K/min and then kept for four hours,
the ribbons are composed of Sm2Co17 and Sm(Co, Cu)5 phases. The magnetic measurements of
Sm12Co88−xCux ribbons were performed by vibrating sample magnetometer (VSM). The results
exhibit that the maximum magnetic energy product ((BH)max), the coercivity (Hcj) and the remanence
(Br) of the Sm12Co88−xCux ribbons increase generally with the increase in Cu substitution. In
particular, the magnetic properties of the ribbons annealed at 1123 K and 673 K increase significantly
with the increase in Cu substitution, resulting from the increase in the volume fraction of the formed
Sm(Co, Cu)5 phase after heat treatment.

Keywords: Sm-Co-Cu; melt-spun ribbons; phase structure; magnetic properties

1. Introduction

Sm-Co-based permanent magnets have been used in aerospace, electric vehicle motors,
wind turbines, sensors and actuators because of high Curie temperatures, excellent tempera-
ture stability and good corrosion resistance [1–3]. Extensive investigations were conducted
to investigate the magnetic properties of Sm-Co alloys with alloying elements Fe, Cu and Zr,
which results in a new class of Sm(Co, Fe, Cu, Zr)z (5 ≤ Z ≤ 8.5) permanent magnets [4–11].
It was reported that the addition of Cu into Sm-Co-based permanent magnets would
improve their coercivity (Hcj) [12–18]. Tellez-Blanco et al. [14] found that the coercivity of
SmCo5-xCux annealed alloys increases and then decreases with the increase in Cu substi-
tution. Horiuchi et al. [15] reported the (BH)max of Sm(CobalFe0.35Cu0.06Zr0.018)7.8 magnet
is 32 MGOe. Subsequently, Horiuchi et al. [16] further improved the Hcj and (BH)max of
Sm(CobalFe0.35Cu0.06Zr0.018)7.8 magnet by means of process optimization. Wang et al. [17]
found that the Hcj of Sm(Co0.665Fe0.25Cu0.06Zr0.025)7 magnet increases significantly from
12 kOe to 21 kOe. Xu et al. [18] investigated the effect of heat treatment on the formation of
1:5H cell wall phase in 2:17 type melt-spun ribbons with high Fe content. It was detected
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that the Cu content is the key to the formation of the 1:5H cell wall phase, which would
improve the magnetic properties of the 2:17 type melt-spun ribbons with high Fe content.

Therefore, in order to further understand the effect of Cu substitution and heat treat-
ment on the magnetic properties of Sm-Co alloys, the phase formation, microstructure
and magnetic properties of Sm12Co88−xCux alloys were investigated in this work by X-ray
diffraction (XRD), scanning electron microscope (SEM) with energy dispersive spectroscopy
(EDS) and vibrating sample magnetometer (VSM).

2. Experimental Procedure

Sm12Co88−xCux (x = 0, 2, 4, 6, 8, 10; at.%) alloys were fabricated through arc-melting
method using bulk Sm, Co and Cu metals (99.99% purity) as the raw materials. The as-
cast alloys were melted four times during the arc-melting process to ensure composition
homogeneity. The ribbons were acquired by induction melting as-cast alloys and then
spraying the melts through the orifice (orifice diameter approximately 0.8–1.0 mm) onto
the copper wheel surface at the wheel speed of 40 m/s. The thickness and the width of
the melt-spun ribbons are about 10–15 mm and 2–3 mm, respectively. The ribbons were
sealed in quartz tubes filled with high pure argon gas. After heat treatment, the quartz
tubes with the ribbons were quenched in ice water. In this work, the first heat-treatment
was that the ribbons were annealed at 1023 K for 1 h, while the second heat-treatment was
that the ribbons were annealed at 1123 K for 2 h, and then were slowly cooled down to
673 K at 0.5 K/min and kept at 673 K for 4 h.

The phase structure, phase composition and microstructure of as-cast alloys and
melt-spun ribbons were analyzed by X-ray powder diffraction (XRD, PLXcel 3D, Cu Kα

radiation) and scanning electron microscope with energy dispersive spectroscopy (SEM-
EDS, FEI 450G). The lattice parameters and volume fractions of the formed phases in as-cast
alloys and the ribbons were determined by the Rietveld refinements with the Fullprof
program. The magnetic properties of the ribbons are measured at room temperature via
vibrating sample magnetometer (VSM, Lakeshore Model 7400 740H). In this work, the
demagnetization correction of the ribbons is neglected because the applied external field is
parallel to the plane of the ribbons in the magnetic measurements.

3. Results and Discussion
3.1. Phase Formation

Figure 1a is the Rietveld refinements of XRD powder patterns of Sm12Co88−xCux
(x = 0, 2, 4, 6, 8, 10) as-cast alloys. As can be seen in Figure 1a, the red points and solid
lines show the experimental and calculated XRD patterns of the as-cast alloys, respectively.
The vertical bars indicate Bragg reflection positions. The green lines show the differences
between the experimental and computed intensities. Based on the agreement factor (Rwp),
the calculated patterns are consistent with the experimental patterns. On the basis of
the Rietveld refinements in Figure 1a, the Sm12Co88−xCux (x = 0) as-cast alloy shows
Sm2Co17 and Sm5Co19 phases, while the Sm12Co88−xCux (x = 2) as-cast alloy is composed
of Sm2Co17, Sm2Co7 and Sm(Co, Cu)5 phases, and the Sm12Co88−xCux (x = 4, 6, 8, 10) as-
cast alloys consist of Sm2Co17 and Sm(Co, Cu)5 phases. Table 1 shows the lattice parameters
and the cell volume of the Sm2Co17 phase in Sm12Co88−xCux as-cast alloys obtained finally
by the Rietveld refinements. As can be seen from Figure 1b, except for the Sm12Co88−xCux
(x = 2) as-cast alloy, the lattice parameters and cell volume of the Sm2Co17 phase in the
Sm12Co88−xCux as-cast alloy increase linearly with the increase in Cu substitution. It means
that Cu atoms with the larger radii enter into the structure lattice of the Sm2Co17 phase for
replacing Co atoms in the Sm12Co88−xCux as-cast alloys. However, the lattice parameters
and the cell volumes of the Sm2Co17 phases in the Sm12Co88−xCux (x = 2) as-cast alloy are
abnormally larger than those in the samples with more Cu substitution. Guo et al. [19] and
Chang et al. [20] showed that Cu atoms tend to occupy the 3g crystal site in RE/(Co, M)
structures, and there are much more Sm atoms on the 3g crystal site. Thus, the abnormal
increase in the lattice parameters of the Sm2Co17 phase in the Sm12Co88−xCux (x = 2) as-cast
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alloy may be caused by the substitution of Sm by Cu at the 3g crystal site. The peak of the
Sm(Cu,Co)5 phase in the Sm12Co88−xCux (x = 2) as-cast alloy (near 36◦) migrates a little
compared with other samples. This may be because Co-Co atom pairs replace part of the
Sm atoms. Since the atomic radii of the Co-Co atom pairs are larger than those of the Sm
atoms, the diffraction peaks of the Sm(Cu,Co)5 phase in the Sm12Co88−xCux (x = 2) as-cast
alloy shift slightly to lower 2θ values. This phenomenon was introduced by Yuan et al. [21].
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Figure 1. (a) Rietveld refinements of XRD patterns of Sm12Co88−xCux (x = 0, 2, 4, 6, 8, 10) as-cast al-
loys and (b) the lattice parameters and cell volume of Sm2Co17 phase in Sm12Co88−xCux (x = 0, 2, 4, 6, 
8, 10) as-cast alloys. 

Table 1. Lattice parameters, cell volume and volume fraction of the formed phases in Sm12Co88−xCux 
alloys by Rietveld refinements. 

Sm12Co88−xCux 
Alloys x 

Lattice Parameters Volume Fractions 
Sm2Co17 SmCo7 Sm2Co17 Sm(Co, Cu)5 Sm2Co7 SmCo7 

a (Å) c (Å) Volume 
(Å3) a (Å) c (Å) Volume 

(Å3) (Å3) (%) (%) (%) (%) 

As cast alloys 

0 8.400 (8) 12.196 (2) 745.417 (2) — — — 100 — — — 
2 8.406 (4) 12.211 (2) 747.321 (6) — — — 88.7 2.3 9.0 — 
4 8.408 (3) 12.199 (4) 746.931 (9) — — — 85.2 14.8 — — 
6 8.426 (5) 12.223 (0) 751.626 (2) — — — 81.5 18.5 — — 
8 8.443 (1) 12.234 (2) 755.958 (6) — — — 79.3 21.7 — — 

10 8.445 (9) 12.239 (3) 756.100 (0) — — — 78.2 22.8 — — 

Melt-spun 
ribbons  

0 — — — 4.857 (8)4.069 (9) 83.173 (8) — — — 100 
2 — — — 4.905 (6)4.047 (6) 84.355 (0) — — — 100 
4 — — — 4.847 (7)4.080 (6) 83.048 (5) — — — 100 
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Figure 1. (a) Rietveld refinements of XRD patterns of Sm12Co88−xCux (x = 0, 2, 4, 6, 8, 10) as-cast
alloys and (b) the lattice parameters and cell volume of Sm2Co17 phase in Sm12Co88−xCux (x = 0, 2, 4,
6, 8, 10) as-cast alloys.

Table 1. Lattice parameters, cell volume and volume fraction of the formed phases in Sm12Co88−xCux

alloys by Rietveld refinements.

Sm12Co88−xCux
Alloys x

Lattice Parameters Volume Fractions

Sm2Co17 SmCo7 Sm2Co17 Sm(Co, Cu)5 Sm2Co7 SmCo7

a (Å) c (Å)
Volume

(Å3) a (Å) c (Å)
Volume
(Å3) (Å3) (%) (%) (%) (%)

As cast alloys

0 8.400 (8) 12.196 (2) 745.417 (2) — — — 100 — — —

2 8.406 (4) 12.211 (2) 747.321 (6) — — — 88.7 2.3 9.0 —

4 8.408 (3) 12.199 (4) 746.931 (9) — — — 85.2 14.8 — —

6 8.426 (5) 12.223 (0) 751.626 (2) — — — 81.5 18.5 — —

8 8.443 (1) 12.234 (2) 755.958 (6) — — — 79.3 21.7 — —

10 8.445 (9) 12.239 (3) 756.100 (0) — — — 78.2 22.8 — —

Melt-spun
ribbons

0 — — — 4.857 (8) 4.069 (9) 83.173 (8) — — — 100

2 — — — 4.905 (6) 4.047 (6) 84.355 (0) — — — 100

4 — — — 4.847 (7) 4.080 (6) 83.048 (5) — — — 100

6 — — — 4.880 (1) 4.067 (6) 83.895 (4) — — — 100

8 — — — 4.871 (7) 4.076 (5) 83.789 (3) — — — 100

10 — — — 4.872 (9) 4.070 (7) 83.711 (4) — — — 100

Melt-spun
ribbons

annealed at
1023 K

0 — — — 4.867 (2) 4.067 (6) 83.450 (2) — — — 100

2 — — — 4.905 (4) 4.047 (9) 84.353 (3) — — — 100

4 — — — 4.870 (0) 4.068 (5) 83.565 (4) — — — 100

6 — — — 4.868 (7) 4.068 (3) 83.515 (7) — — — 100

8 — — — 4.912 (8) 4.066 (2) 84.991 (1) — — — 100

10 — — — 4.873 (6) 4.070 (5) 83.729 (6) — — — 100
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Table 1. Cont.

Sm12Co88−xCux
Alloys x

Lattice Parameters Volume Fractions

Sm2Co17 SmCo7 Sm2Co17 Sm(Co, Cu)5 Sm2Co7 SmCo7

a (Å) c (Å)
Volume

(Å3) a (Å) c (Å)
Volume
(Å3) (Å3) (%) (%) (%) (%)

Melt-spun
ribbons

annealed at
1123 K and

673 K

0 8.408 (2) 12.200 (7) 746.992 (6) — — — 100 — — —

2 8.416 (4) 12.208 (3) 748.920 (2) — — — 100 — — —

4 8.401 (6) 12.217 (6) 746.866 (6) — — — 95.1 4.9 — —

6 8.410 (2) 12.210 (4) 747.948 (4) — — — 93.4 6.6 — —

8 8.428 (4) 12.222 (8) 751.961 (7) — — — 88.6 11.4 — —

10 8.435 (4) 12.223 (9) 752.855 (4) — — — 84.2 15.8 — —

Figure 2 displays the backscattered electron (BSE) images of Sm12Co88−xCux (x = 0, 2,
4, 6, 8, 10) as-cast alloys. The phase compositions of the formed phases in Sm12Co88−xCux
as-cast alloys were measured by EDS as shown in Table 2. In Figure 2a, there are two phases
in the microstructure of the Sm12Co88−xCux (x = 0) as-cast alloy. The white phase is the
Sm5Co19 phase, and the gray phase is the Sm2Co17 phase based on the EDS measurements
in Table 2. It was stated clearly that the SEM-EDS results of Sm12Co88−xCux as-cast alloys
are consistent with the XRD results, except for the Sm5Co19 phase in the Sm12Co88−xCux
(x = 0) as-cast alloy, which was not detected by the XRD analysis due to low volume fraction.
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Table 2. Phase formation and phase composition of Sm12Co88−xCux as-cast alloys determined by
EDS and XRD.

Sm12Co88−xCux As-Cast Alloys
(at.%)

Composition Measured by EDS (at.%)
Phase Identified by XRD

Sm Co Cu Phase

x = 0
20.13 78.87 0 Sm5Co19 Sm5Co19
11.23 88.77 0 Sm2Co17 Sm2Co17

x = 2
21.58 77.19 1.23 Sm2Co7 Sm2Co7
14.16 84.19 1.65 Sm(Co, Cu)5 Sm(Co, Cu)5
10.69 88.18 1.12 Sm2Co17 Sm2Co17

x = 4
15.78 80.40 3.82 Sm(Co, Cu)5 Sm(Co, Cu)5
11.62 85.65 2.73 Sm2Co17 Sm2Co17

x = 6
15.78 79.27 4.98 Sm(Co, Cu)5 Sm(Co, Cu)5
11.05 83.63 5.32 Sm2Co17 Sm2Co17

x = 8
16.23 76.65 7.12 Sm(Co, Cu)5 Sm(Co, Cu)5
11.39 82.34 6.27 Sm2Co17 Sm2Co17

x = 10
16.32 75.22 8.46 Sm(Co, Cu)5 Sm(Co, Cu)5
11.22 81.65 7.13 Sm2Co17 Sm2Co17

Figure 3 shows the calculated vertical section of 12 at.% Sm and volume fractions
of the formed phases as a function of Cu concentration in the Sm12Co88−xCux as-cast
alloys at 673 K, which were calculated with the thermo-Calc® software package using
thermodynamic parameters of the Sm-Co-Cu ternary system developed by Dai et al. [22]. As
can be seen in Figure 3a, during the solidification process, the Sm2Co17 phase is precipitated
firstly from the liquid phase of the Sm12Co88−xCux alloys with low Cu content (<24 at.%)
and then the Sm(Co, Cu)5 phase is formed. In contrast, the α-Co phase is precipitated
firstly from the liquid phase of the Sm12Co88−xCux alloys with high Cu content (>24 at.%)
and then the Sm2Co17 and Sm(Co, Cu)5 phases are formed. In Figure 3b, it was found that
the calculated volume fractions of the formed phases as a function of Cu substitution are
consistent with the experimental results determined by the Rietveld refinements as shown
in Table 1. The Sm5Co19 phase formed in the Sm12Co88−xCux as-cast alloys would change
to the Sm2Co7 phase with the increase in Cu substitution, while the stable Sm(Co, Cu)5
phase is formed and the Sm2Co7 phase disappears. Meanwhile, the volume fraction of the
Sm2Co17 phase decreases, while that of the Sm(Co, Cu)5 phase decreases. The formation
of Sm5Co19 and Sm2Co7 phases in the Sm12Co88−xCux as-cast alloys is inhibited with the
increase in Cu substitution, which is effective for the formation of the Sm(Co, Cu)5 phase
in as-cast alloys.



Materials 2022, 15, 4494 6 of 12Materials 2022, 15, 4494 6 of 13 
 

 

  
Figure 3. (a) Calculated vertical section of 12 at.% Sm in the Sm-Co-Cu ternary system and (b) 
calculated phase fractions as a function of Cu content in Sm12Co88−xCux as-cast alloys at 673 K. 

Figure 4 is the Rietveld refinements of the XRD powder patterns of Sm12Co88−xCux (x 
= 0, 2, 4, 6, 8, 10) melt-spun ribbons. The lattice parameters, cell volumes and volume 
fractions of the formed phases in the Sm12Co88−xCux melt-spun ribbons obtained by the 
Rietveld refinements are given in Table 1. In Figure 4a, the ribbons show a single SmCo7 
phase, and the ribbons annealed at 1023 K for 1 h are still a single SmCo7 phase in Figure 
4b. For melt-spun ribbons and the melt-spun annealed at 1023 K, it can be seen from Ta-
ble 1 that the lattice parameters and cell volumes of the ribbons with x = 2, 4, 6, 8, 10 are 
greater than the ribbon with x = 0. It means that Cu atoms with larger radius enter into 
the structure lattice of the SmCo7 phase for replacing Co atoms in the Sm12Co88−xCux 
melt-spun ribbons and the Sm12Co88−xCux melt-spun ribbons annealed at 1023 K. Figure 4c 
exhibits that the ribbons annealed at 1123 K and 673 K show the formation of the Sm2Co17 
and Sm(Co, Cu)5 phases, and the disappearance of the SmCo7 phase. It was found that 
Sm12Co88−xCux (x = 0, 2) melt-spun ribbons are a single Sm2Co17 phase, while Sm12Co88−xCux 
(4, 6, 8, 10) melt-spun ribbons are composed of Sm2Co17 and Sm(Co, Cu)5 phases. Fur-
thermore, the volume fraction of the Sm(Co, Cu)5 phase in the ribbons annealed at 1123 K 
and 673 K increases with the increase in Cu substitution, while that of the Sm2Co17 phase 
decreases. Furthermore, the lattice parameters and cell volumes of Sm2Co17 phases 
formed in Sm12Co88−xCux ribbons annealed at 1123 K and 673 K increase generally with 
the increase in Cu substitution, indicating that Cu atoms with larger radii enter the 
structure lattice of the Sm2Co17 phase for replacing Co atoms. 
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Figure 4 is the Rietveld refinements of the XRD powder patterns of Sm12Co88−xCux
(x = 0, 2, 4, 6, 8, 10) melt-spun ribbons. The lattice parameters, cell volumes and volume
fractions of the formed phases in the Sm12Co88−xCux melt-spun ribbons obtained by the
Rietveld refinements are given in Table 1. In Figure 4a, the ribbons show a single SmCo7
phase, and the ribbons annealed at 1023 K for 1 h are still a single SmCo7 phase in Figure 4b.
For melt-spun ribbons and the melt-spun annealed at 1023 K, it can be seen from Table 1
that the lattice parameters and cell volumes of the ribbons with x = 2, 4, 6, 8, 10 are greater
than the ribbon with x = 0. It means that Cu atoms with larger radius enter into the structure
lattice of the SmCo7 phase for replacing Co atoms in the Sm12Co88−xCux melt-spun ribbons
and the Sm12Co88−xCux melt-spun ribbons annealed at 1023 K. Figure 4c exhibits that the
ribbons annealed at 1123 K and 673 K show the formation of the Sm2Co17 and Sm(Co, Cu)5
phases, and the disappearance of the SmCo7 phase. It was found that Sm12Co88−xCux
(x = 0, 2) melt-spun ribbons are a single Sm2Co17 phase, while Sm12Co88−xCux (4, 6, 8,
10) melt-spun ribbons are composed of Sm2Co17 and Sm(Co, Cu)5 phases. Furthermore,
the volume fraction of the Sm(Co, Cu)5 phase in the ribbons annealed at 1123 K and
673 K increases with the increase in Cu substitution, while that of the Sm2Co17 phase
decreases. Furthermore, the lattice parameters and cell volumes of Sm2Co17 phases formed
in Sm12Co88−xCux ribbons annealed at 1123 K and 673 K increase generally with the
increase in Cu substitution, indicating that Cu atoms with larger radii enter the structure
lattice of the Sm2Co17 phase for replacing Co atoms.

3.2. Magnetic Properties

Figure 5 shows the hysteresis loops of the Sm12Co88−xCux (x = 0, 2, 4, 6, 8, 10) melt-
spun ribbons. Based on the hysteresis loops (M-H curves) as shown in Figure 5, the
remanence (Br) and coercivity (Hcj) of the ribbons were obtained, and the maximal magnetic
energy product ((BH)max) was determined as the area of the biggest rectangle that is
inscribed in the second quadrant of B-H curves transformed from M-H curves. The
magnetic properties (Br, Hcj and (BH)max) of the Sm12Co88−xCux ribbons determined in
this work are summarized in Table 3 as shown in Figure 6. Figure 6a shows the Br of the
ribbons; the ribbons annealed at 1123 K and 673 K increase normally with the increase in Cu
substitution, while that of the ribbons annealed at 1023 K increases and then decreases. In
Figure 6b,c, the Hcj and (BH)max of the ribbons show similar tendencies with the increase in
Cu substitution. The reason for it could be that the formation of the SmCo5 phase in Sm-Co
alloys can enhance the pinning effect of domain walls, and improve the magnetic properties
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of the alloys, which was reported by Xu et al. [18], Cao et al. [23] and Xia et al. [24]. The
XRD results in Figure 4c show that the Sm(Co, Cu)5 phase is formed in the Sm12Co88−xCux
(x = 4, 6, 8, 10) ribbons annealed at 1123 K and 673 K. Furthermore, the volume fraction
of the Sm(Co, Cu)5 phase in the ribbons annealed at 1123 K and 673 K increases with the
increase in Cu substitution. The increase in the volume fraction of the Sm(Co, Cu)5 phase
is an important factor for the significant increase in the Hcj and (BH)max of the ribbons
annealed at 1123 K and 673 K.
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Figure 4. Rietveld refinements of XRD patterns of Sm12Co88−xCux (x = 0, 2, 4, 6, 8, 10) melt-spun 
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Figure 4. Rietveld refinements of XRD patterns of Sm12Co88−xCux (x = 0, 2, 4, 6, 8, 10) melt-spun
ribbons. (a) Melt-spun ribbons, (b) Melt-spun ribbons annealed at 1023 K, (c) Melt-spun ribbons
annealed at 1123 K and 673 K.



Materials 2022, 15, 4494 8 of 12

Materials 2022, 15, 4494 8 of 13 
 

 

properties of the alloys, which was reported by Xu et al. [18], Cao et al. [23] and Xia et al. 
[24]. The XRD results in Figure 4c show that the Sm(Co, Cu)5 phase is formed in the 
Sm12Co88−xCux (x = 4, 6, 8, 10) ribbons annealed at 1123 K and 673 K. Furthermore, the 
volume fraction of the Sm(Co, Cu)5 phase in the ribbons annealed at 1123 K and 673 K 
increases with the increase in Cu substitution. The increase in the volume fraction of the 
Sm(Co, Cu)5 phase is an important factor for the significant increase in the Hcj and (BH)max 
of the ribbons annealed at 1123 K and 673 K. 

-20 -10 0 10 20
-90

-60

-30

0

30

60

90

M
ag

ne
tiz

at
io

n(
em

u/
g)

H(kOe)

 x=0
 x=2
 x=4
 x=6
 x=8
 x=10

(a) 

-20 -10 0 10 20
-90

-60

-30

0

30

60

90
(b) 

M
ag

ne
tiz

at
io

n(
em

u/
g)

H(kOe)

 x=0
 x=2
 x=4
 x=6
 x=8
 x=10

 

-20 -10 0 10 20
-90

-60

-30

0

30

60

90
 (c) 

M
ag

ne
tiz

at
io

n(
em

u/
g)

H(kOe)

 x=0
 x=2
 x=4
 x=6
 x=8
 x=10

 
Figure 5. Hysteresis loops (M-H curves) of Sm12Co88−xCux (x = 0, 2, 4, 6, 8, 10) melt-spun ribbons 
with different heat treatments. (a) Melt-spun ribbons, (b) Melt-spun ribbons annealed at 1023 K, (c) 
Melt-spun ribbons annealed at 1123 K and 673 K. 

Table 3. Magnetic properties of Sm12Co88−xCux melt-spun ribbons. 

Sm12Co88−xCux Ribbons x Br (kGs) Hcj (kOe) (BH)max (MGOe) 

Melt-spun ribbons 

0 4.06 0.57 0.43 
2 3.58 0.68 0.46 
4 4.41 0.62 0.58 
6 4.58 1.81 1.34 
8 4.67 1.37 1.14 

10 5.58 2.70 2.81 

Figure 5. Hysteresis loops (M-H curves) of Sm12Co88−xCux (x = 0, 2, 4, 6, 8, 10) melt-spun ribbons
with different heat treatments. (a) Melt-spun ribbons, (b) Melt-spun ribbons annealed at 1023 K,
(c) Melt-spun ribbons annealed at 1123 K and 673 K.

Compared with the magnetic properties of the ribbons under different heat treatments
in Figure 6, it was found that the Br, Hcj and (BH)max of the Sm12Co88−xCux (x = 0, 2)
ribbons annealed at 1023 K are better than those of the unannealed ribbons. This could
be due to the fact that the alloy composition and microstructure are much more uniform
after heat treatment. However, after annealing at 1023 K, the magnetic properties of the
Sm12Co88−xCux (x = 6, 8, 10) decreased. This could be due to the excessively large grain
size and microstructure deterioration resulting in the reduction in remanence and coercivity
during excessive heat treatment at a high temperature, which is similar to the results of
Feng et al. [25]. In particular, after being annealed at 1123 K and 673 K, the Br, Hcj and
(BH)max of Sm12Co88−xCux (x = 6, 8, 10) ribbons with high Cu content are much better, and
increase generally with the increase in Cu substitution. The Sm12Co88−xCux (x = 2) ribbon
annealed at 1023 K presents optimal magnetic properties (Br = 6.91 kGs, Hcj = 2.28 kOe,
(BH)max = 3.86 MGOe), while the best magnetic properties (Br = 6.76 kGs, Hcj = 5.20 kOe
and (BH)max = 6.85 MGOe) of the Sm12Co88−xCux (x = 8) ribbons annealed at 1123 K and
673 K were obtained in this work. Therefore, the magnetic properties of Sm12Co88−xCux
ribbons determined in this work as a function of Cu substitution indicate that the heat
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treatment is a promising and effective way to enhance the magnetic properties of Sm-Co-Cu
melt-spun ribbons.

Table 3. Magnetic properties of Sm12Co88−xCux melt-spun ribbons.

Sm12Co88−xCux Ribbons x Br (kGs) Hcj (kOe) (BH)max (MGOe)

Melt-spun ribbons

0 4.06 0.57 0.43

2 3.58 0.68 0.46

4 4.41 0.62 0.58

6 4.58 1.81 1.34

8 4.67 1.37 1.14

10 5.58 2.70 2.81

Melt-spun ribbons annealed at
1023 K

0 5.50 0.99 1.05

2 6.91 2.28 3.86

4 6.33 1.27 1.68

6 5.63 1.21 1.52

8 5.59 1.67 2.19

10 5.34 2.03 2.44

Melt-spun ribbons annealed at
1123 K and 673 K

0 4.06 0.54 0.47

2 4.12 0.60 0.53

4 5.61 0.93 0.94

6 6.82 2.98 5.88

8 6.76 5.20 6.85

10 6.70 4.77 6.72

In order to understand further the magnetization behavior of the ribbons, the ini-
tial magnetization curves and the first derivatives of the initial magnetization curve of
Sm12Co88−xCux ribbons was measured at room temperature as shown in Figure 7. In
Figure 7a, the initial magnetization of Sm12Co88−xCux ribbons increases rapidly with the in-
crease in the external magnetic field, implying that the magnetization process of the ribbons
is controlled by nucleation. It can be seen from Figure 7b that only one magnetization inver-
sion exists in all the ribbons. Combined with the results of Figure 4a, the ribbons consist of
SmCo7 single phase, indicating that the magnetization process of Sm12Co88−xCux ribbons
is controlled by a pure nucleation mechanism. In Figure 7c,d, the magnetization process of
the Sm12Co88−xCux ribbons annealed at 1023 K is still controlled through pure nucleation.
Figure 7e exhibits that the magnetization process of the Sm12Co88−xCux (x = 0, 2, 4) ribbons
annealed at 1123 K and 673 K increases rapidly with the increase in the external magnetic
field. Figure 7f shows that only one magnetization inversion exists in Sm12Co88−xCux
(x = 0, 2, 4) ribbons annealed at 1123 K and 673 K, indicating that the magnetization process
of the ribbons with low Cu content is controlled by pure nucleation. Nevertheless, there
are two types of collective magnetization reversal in the initial magnetization curves of
Sm12Co88−xCux (x = 6, 8, 10) ribbons annealed at 1123 K and 673 K in Figure 7e, indicating
that the initial magnetization process of these ribbons with high Cu substitution is con-
trolled by both pinning mechanism and nucleation. As can be seen in Figure 7f, when the
external magnetic field is low, the local nucleation in Sm12Co88−xCux (x = 6, 8, 10) ribbons
may be caused by direct contact of the Sm2Co17 phase. With the increase in the Sm(Co, Cu)5
phase, the domain wall pinning provided by the Sm(Co, Cu)5 phase ultimately determines
the magnetization inversion of the Sm12Co88−xCux (x = 6, 8, 10) ribbons. It means that
the coercivity mechanism of the ribbons annealed at 1123 K and 673 K changes from the
nucleation mechanism to the pinning mechanism with the increase in Cu substitution.
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Figure 6. Magnetic properties as a function of Cu content in Sm12Co88−xCux (x = 0, 2, 4, 6, 8, 10)
melt-spun ribbons. (a) Melt-spun ribbons, (b) Melt-spun ribbons annealed at 1023 K, (c) Melt-spun
ribbons annealed at 1123 K and 673 K.
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Figure 7. (a,c,e) The initial magnetization curves and (b,d,f) the first derivatives of the initial 
magnetization curve of Sm12Co88−xCux (x = 0, 2, 4, 6, 8, 10) melt-spun ribbons with different heat 
treatments. (a,b) Melt-spun ribbons, (c,d) Melt-spun ribbons annealed at 1023 K, (e,f) Melt-spun 
ribbons annealed at 1123 K and 673 K. 

4. Conclusions 
The effects of Cu substitution and heat treatment on the phase formation and mag-

netic properties of Sm12Co88−xCux melt-spun ribbons were investigated in this work using 
XRD, SEM-EDS and VSM. The following conclusions could be drawn: 
(1) The XRD and SEM-EDS results indicate that the Sm12Co88−xCux (x = 0) as-cast alloy 

contains Sm2Co17 and Sm5Co19 phases, and the Sm12Co88−xCux (x = 2) as-cast alloy is 
composed of Sm2Co17, Sm2Co7 and Sm(Co, Cu)5 phases. Both the Sm2Co17 and 
Sm(Co, Cu)5 phases are detected in the Sm12Co88−xCux (x = 4, 6, 8, 10) as-cast alloys. 
Meanwhile, Sm12Co88−xCux ribbons show a single SmCo7 phase, which is still formed 
in the ribbons annealed at 1023 K. After being annealed at 1123 K and 673 K, 
Sm12Co88−xCux (x = 0, 2) ribbons consist of a Sm2Co17 single phase, while 
Sm12Co88−xCux (x = 4, 6, 8, 10) ribbons contain Sm2Co17 and Sm(Co, Cu)5 phases. 

(2) Magnetic measurements show that the magnetic properties of Sm12Co88−xCux ribbons 
(x = 4, 6, 8, 10) with high Cu substitution annealed at 1123 K and 673 K are improved 
significantly, and the coercivity mechanism of these ribbons is controlled by both a 
pinning mechanism and a nucleation mechanism. The volume fraction of the Sm(Co, 
Cu)5 phase in the ribbons increases after heat treatment, which is an important fac-
tor for the enhancement of the coercivity and maximal magnetic energy product. 
The best magnetic properties with Br = 6.76 kGs, Hcj = 5.20 kOe and (BH)max = 6.85 
MGOe were achieved in Sm12Co88−xCux (x = 8) ribbons annealed at 1123 K and 673 K. 
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Figure 7. (a,c,e) The initial magnetization curves and (b,d,f) the first derivatives of the initial 
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ribbons annealed at 1123 K and 673 K. 

4. Conclusions 
The effects of Cu substitution and heat treatment on the phase formation and mag-

netic properties of Sm12Co88−xCux melt-spun ribbons were investigated in this work using 
XRD, SEM-EDS and VSM. The following conclusions could be drawn: 
(1) The XRD and SEM-EDS results indicate that the Sm12Co88−xCux (x = 0) as-cast alloy 

contains Sm2Co17 and Sm5Co19 phases, and the Sm12Co88−xCux (x = 2) as-cast alloy is 
composed of Sm2Co17, Sm2Co7 and Sm(Co, Cu)5 phases. Both the Sm2Co17 and 
Sm(Co, Cu)5 phases are detected in the Sm12Co88−xCux (x = 4, 6, 8, 10) as-cast alloys. 
Meanwhile, Sm12Co88−xCux ribbons show a single SmCo7 phase, which is still formed 
in the ribbons annealed at 1023 K. After being annealed at 1123 K and 673 K, 
Sm12Co88−xCux (x = 0, 2) ribbons consist of a Sm2Co17 single phase, while 
Sm12Co88−xCux (x = 4, 6, 8, 10) ribbons contain Sm2Co17 and Sm(Co, Cu)5 phases. 

(2) Magnetic measurements show that the magnetic properties of Sm12Co88−xCux ribbons 
(x = 4, 6, 8, 10) with high Cu substitution annealed at 1123 K and 673 K are improved 
significantly, and the coercivity mechanism of these ribbons is controlled by both a 
pinning mechanism and a nucleation mechanism. The volume fraction of the Sm(Co, 
Cu)5 phase in the ribbons increases after heat treatment, which is an important fac-
tor for the enhancement of the coercivity and maximal magnetic energy product. 
The best magnetic properties with Br = 6.76 kGs, Hcj = 5.20 kOe and (BH)max = 6.85 
MGOe were achieved in Sm12Co88−xCux (x = 8) ribbons annealed at 1123 K and 673 K. 

Author Contributions: Data curation, F.D., P.L., L.L. and D.C.; Formal analysis, P.L., L.L. and D.C.; 
Funding acquisition, J.W.; Investigation, F.D.; Methodology, L.L.; Project administration, J.W.; Re-

Figure 7. (a,c,e) The initial magnetization curves and (b,d,f) the first derivatives of the initial magneti-
zation curve of Sm12Co88−xCux (x = 0, 2, 4, 6, 8, 10) melt-spun ribbons with different heat treatments.
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at 1123 K and 673 K.

4. Conclusions

The effects of Cu substitution and heat treatment on the phase formation and magnetic
properties of Sm12Co88−xCux melt-spun ribbons were investigated in this work using XRD,
SEM-EDS and VSM. The following conclusions could be drawn:

(1) The XRD and SEM-EDS results indicate that the Sm12Co88−xCux (x = 0) as-cast al-
loy contains Sm2Co17 and Sm5Co19 phases, and the Sm12Co88−xCux (x = 2) as-cast
alloy is composed of Sm2Co17, Sm2Co7 and Sm(Co, Cu)5 phases. Both the Sm2Co17
and Sm(Co, Cu)5 phases are detected in the Sm12Co88−xCux (x = 4, 6, 8, 10) as-cast
alloys. Meanwhile, Sm12Co88−xCux ribbons show a single SmCo7 phase, which is
still formed in the ribbons annealed at 1023 K. After being annealed at 1123 K and
673 K, Sm12Co88−xCux (x = 0, 2) ribbons consist of a Sm2Co17 single phase, while
Sm12Co88−xCux (x = 4, 6, 8, 10) ribbons contain Sm2Co17 and Sm(Co, Cu)5 phases.

(2) Magnetic measurements show that the magnetic properties of Sm12Co88−xCux ribbons
(x = 4, 6, 8, 10) with high Cu substitution annealed at 1123 K and 673 K are improved
significantly, and the coercivity mechanism of these ribbons is controlled by both a
pinning mechanism and a nucleation mechanism. The volume fraction of the Sm(Co,
Cu)5 phase in the ribbons increases after heat treatment, which is an important factor
for the enhancement of the coercivity and maximal magnetic energy product. The
best magnetic properties with Br = 6.76 kGs, Hcj = 5.20 kOe and (BH)max = 6.85 MGOe
were achieved in Sm12Co88−xCux (x = 8) ribbons annealed at 1123 K and 673 K.
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