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Abstract: Bacterial-based self-healing concrete (BSHC) is a well-known healing technology which has
been investigated for a few decades for its excellent crack healing capacity. Nevertheless, considered
as costly and time-consuming, the healing performance (HP) of concrete with various types of bacteria
can be designed and evaluated only in laboratory environments. Employing machine learning (ML)
models for predicting the HP of BSHC is inspired by practical applications using concrete mechanical
properties. The HP of BSHC can be predicted to save the time and cost of laboratory tests, bacteria
selection and healing mechanisms adoption. In this paper, three types of BSHC, including ureolytic
bacterial healing concrete (UBHC), aerobic bacterial healing concrete (ABHC) and nitrifying bacterial
healing concrete (NBHC), and ML models with five kinds of algorithms consisting of the support
vector regression (SVR), decision tree regression (DTR), deep neural network (DNN), gradient
boosting regression (GBR) and random forest (RF) are established. Most importantly, 22 influencing
factors are first employed as variables in the ML models to predict the HP of BSHC. A total of
797 sets of BSHC tests available in the open literature between 2000 and 2021 are collected to verify
the ML models. The grid search algorithm (GSA) is also utilised for tuning parameters of the
algorithms. Moreover, the coefficient of determination (R2) and root mean square error (RMSE) are
applied to evaluate the prediction ability, including the prediction performance and accuracy of
the ML models. The results exhibit that the GBR model has better prediction ability (R2

GBR = 0.956,
RMSEGBR = 6.756%) than other ML models. Finally, the influence of the variables on the HP is
investigated by employing the sensitivity analysis in the GBR model.

Keywords: machine learning-aided prediction; self-healing concrete; bacterial-based self-healing
concrete; K-fold cross validation; autonomous healing concrete

1. Introduction

Considering that concrete has high compressive strength, excellent workability and a
low price, and that it can adapt to a vast range of environmental changes effectively, it has
been widely used in the construction industry. Crack formation is an ordinary phenomenon
in concrete, mainly caused by the ecological influences that lead to low concrete tensile
strength. In general, its tensile strength is only 10–15% of its compressive strength [1].
Additionally, temperature changes and extreme weather can also lead to changes in the
moisture content and internal drying shrinkage in the concrete. In common sense, small
cracks less than 0.2 mm are not considered as a severe case [2]. However, the durability of
concrete structures can be dramatically affected by cracks wider than 0.2 mm and, at the
same time, internal cracks are not always visible during inspection on a large proportion
of concrete structures [3]. Moreover, the manual method of repairing concrete cracks is
restricted due to such pessimistic conditions as the environmental impacts and the limited
space of operation [4]. The cost of repairing cracked concrete structures accounts for half of
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the construction budget because of the complex operations, which are considered as another
problem [5]. Therefore, to achieve a more effective repairing method and to decrease
maintenance funding, an ideal approach should be taken instead of repairing the structure
and filling the cracks manually to keep concrete working functionally. A technology named
self-healing concrete, which can automatically repair cracks to reduce the maintenance cost
and save the environment, was proposed. Self-healing concrete is classified into autogenous
healing concrete and agent-based healing concrete [6]. Autogenous healing concrete can
be achieved owing to two main important mechanisms: the continuing hydration of un-
hydrated cement particles and the carbonation of calcium hydroxide [7]. However, the
autogenous healing method has its limits, as it is only useful for tiny cracks less than 300 µm.
Concerning the trending agent-based healing, it can help concrete heal itself with various
healing agents and is therefore considered as the next-generation technology for concrete.
Cracks with widths of up to 970 µm can be repaired employing agent-based healing [8]. The
healing agents consist of carriers and core materials with different potentials to heal cracks
in concrete. With regard to core materials, bacteria, polymer and expanded materials are
employed based on the fact that different healing agents have different healing mechanisms.
Thus, BSHC is researched in this paper.

Machine learning is a kind of artificial intelligence. The aim of ML is to obtain the
independent prediction ability by learning from input data sets. In this paper, the HP of
BSHC is predicted by employing various ML algorithms. Two researchers have studied
the HP prediction of BSHC. In their research, the crack closure percentage of non-ureolytic
bacterial healing concrete was predicted by employing ML models. Dosages of bacteria, the
initial cracking width and the healing time were considered as the inputs of ML models [9].
Moreover, the HP of agent-based healing concrete with a lightweight aggregate (LWA)
was predicted by utilising an algorithm combining genetic and ANN algorithms. The
initial cracking width, the healing time, the weight of the LWA and the LWA with bacteria
were selected as the inputs [10]. It is essential to consider more factors influencing the
HP of BSHC due to the complexity of the healing mechanisms. Main influencing factors
consisting of the bacteria, the healing environment and the cementitious materials are
comprehensively discussed in Section 1.3 of this paper.

In this paper, complete variables (22 influencing factors) are firstly proposed for
predicting the HP of BSHC by employing ML models with five types of algorithms. A
total of 797 sets of BSHC are collected, and the 22 influencing factors are set as the inputs
while the HP is recognised as the unique output. Then, a hyperparameter optimisation
method named GSA is utilised to tune the parameters of the five types of ML models.
Subsequently, the R2 and RMSE, which can indicate the prediction ability of the ML models,
are obtained by training the ML models with five algorithms. Then, the optimal ML model
for predicting the HP of BSHC is defined according to the R2 and RMSE. Moreover, the
10-fold cross validation method is applied to validate the prediction ability of the optimal
ML model. Finally, a sensitivity analysis is also conducted on the optimal ML model to
investigate the primary influencing variables.

1.1. Types of BSHC

Three types of BSHC studied over the past few decades are considered in this paper:
UBHC, ABHC and NBHC. Their common healing mechanism is to form calcium carbonate
using calcium and carbonate ions generated by various types of bacteria and carbon sources,
accordingly. The detailed healing mechanism of each type of BSHC is explained in the
following sections.

1.1.1. Ureolytic Bacterial Healing Concrete (UBHC)

UBHC has been studied for a long time because of its fast calcium carbonate production
(10 g calcium carbonate production per day) [8]. The healing mechanism of UBHC contains
six main steps explained in Equations (1)–(6). The advantage of UBHC is that concrete
cracks can be rapidly healed by employing UBHC. However, ammonia and nitrogen oxides
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generated by UBHC may cause severe damage to the respiration system of creatures.
Moreover, unsolidified calcium carbonate coming from too-fast reactions can result in poor
performance on strength regain or permeability tests of UBHC [11].

CO(NH2)2 + H2O Urease−−−→ NH2COOH + NH3 (1)

NH2COOH + H2O→ NH3 + H2CO3 (2)

2OH− + H2CO3 → CO2−
3 + 2H2O (3)

2NH3 + 2H2O→ 2NH+
4 + 2OH− (4)

CO(NH2)2 + 2H2O→ 2NH+
4 + CO2−

3 (5)

CO2−
3 + Ca2+ → CaCO3 ↓ (6)

1.1.2. Aerobic Bacterial Healing Concrete (ABHC)

The healing mechanism of ABHC is to heal cracks using calcium carbonate produced
by the aerobic metabolism conversion of organic acids employing alkali-resistant bacteria
such as Bacillus cohnii. Organic acids, such as calcium lactate and calcium formate, are
recognised as carbon sources to provide carbonate ions, which can react with existing
calcium ions to produce calcium carbonate [12]. This healing method is exhibited in
Equations (7) and (8) [13].

CaC6H10O6 + 6O2 → CaCO3 + 5CO2 + 5H2O (7)

5CO2 + 5Ca(OH)2 → 5CaCO3 + 5H2O (8)

1.1.3. Nitrifying Bacterial Healing Concrete (NBHC)

The healing mechanism of NBHC is different from that of UBHC and ABHC. Oxygen
is essential to UBHC and ABHC. However, cracks can be healed under the oxygen-limited
condition by employing NBHC [14]. The healing mechanism of NBHC involves nitrate ions
being reduced to nitrite ions by the reaction with organic carbon such as formate [15,16].
The healing mechanism of NBHC can be explained as follows in Equations (9)–(11). The
main drawback of NBHC is that it is costly to cultivate bacteria in the oxygen-free and
axenic environment [16].

2NO−3 + 2HCOO− + 2H+ → 2CO2 + 2NO−2 + 2H2O (9)

Ca2+ + CO2 + H2O→ 2H+ + CaCO3 ↓ (10)

2NO−2 + 3HCOO− + 5H+ → 3O2 + N2 + 4H2O (11)

According to the detailed healing mechanism explanation, it can be observed that
different types of BSHC require different kinds of bacteria, nutrients, healing environments,
etc. Moreover, different HPs can be achieved when different types of BSHC are employed.

1.2. Types of Bacteria

Published articles related to BSHC between 2000 and 2021 are collected and analysed in this
paper. According to the record, 15 types of bacteria have been employed for BSHC experiments
as shown in Figure 1. Thereinto, Cyanobacteria, Synechococcus, Prochlorococcus Bacillus alkalin-
itrilicus, Bacillus subtilis, Bacillus cohnii, Pseudomonas aeruginosa and Bacillus mucilaginous belong to
ABHC. Bacillus pasteurii, Bacillus sphaericus, Bacillus megaterium and
Diaphorobacter nitroreducens can be classified into NBHC. Bacillus cereus, Desulfovibrio brasiliensis
and Desulfovibrio vulgaris can be concluded as UBHC and sulphate reduction biological min-
eralisation, respectively. It can be observed from Figure 1 that seven types of bacteria, i.e.,
Bacillus pasteurii, Bacillus sphaericus, Bacillus megaterium, Bacillus subtilis, Bacillus cereus,
Bacillus alkalinitrilicus and Bacillus cohnii, have been employed more commonly. The rest of the



Materials 2022, 15, 4436 4 of 16

bacteria, such as Cyanobacteria and Pseudomonas aeruginosa, have been utilised less than twice.
Therefore, only the experimental data containing these seven types of bacteria are collected in
this paper. Then, the experimental data consisting of all the 22 variables are utilised and input
into the ML models in this paper.
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Figure 1. Numbers of publications of bacteria related to BSHC.

1.3. Influencing Factors of HP

The HP of BSHC is dependent on complicated processes, including physical and chem-
ical reactions. Three main aspects of influencing factors are considered in this paper. Firstly,
influencing factors related to bacteria, such as types of bacteria, dosages of bacteria, types
of nutrients and types of carriers, are investigated [12,17,18]. Secondly, types of cement and
water binder ratios are considered as the influencing factors related to cementitious materi-
als and water contents. Thirdly, healing conditions, the initial cracking width and the initial
cracking date are influencing factors associated with the healing environment [7,18–22].
Therefore, 22 influencing factors regarding the three aspects are considered as variables of
the ML models in this paper. The detailed description of the 22 influencing factors can be
found in Section 2.1.

1.4. Healing Performance Determination

In order to investigate the healing efficiency of BSHC, the HP is introduced. HP represents
the percentages of cracks that can be repaired, and it can be calculated by Equation (12) based
on the initial cracking condition and the final cracking condition measurement [18]. The crack-
ing conditions are evaluated by five types of measurement methods, i.e., the cracking width
measurement, the cracking area measurement, the ultrasound pulse velocity measurement,
the regained strength measurement and the anti-seepage repairing measurement.

HP =
cwi − cwt

cwi

× 100. (12)

where cwi is the initial cracking condition, cwt is the final cracking condition measured in
specific curing time and HP is the healing performance.
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2. Materials and Methods
2.1. Data Preparation

A total of 797 data sets employed for predicting the HP of BSHC were collected
from 14 articles published between 2000 and 2021 [18,23–35]. As mentioned in Section 1.3,
22 variables influencing the HP of BSHC are employed in this paper to train ML models
with the five algorithms. Six variables are used to describe the influencing factors of
cementitious materials and water contents: the amount of fine aggregate (FA), the amount
of coarse aggregate (CA), types of cement (TC), the amount of cement (CM), the water
binder ratio (W/B) and the amount of superplasticiser (S). Furthermore, the eleven variables
corelated with bacteria are the types of carriers (C), types of bacteria (B), dosages of bacteria
(DB), types of BSHC (TBSHC), types of calcium ions sources (TCIS), dosages of calcium
ions (DCI), types of carbon sources (TCS), dosages of carbon (DC), types of nutrients (TN),
dosages of nutrients (DN) and dosages of urea (DU). All variables are represented by the
mass ratio of concrete. Moreover, the initial cracking date (CD), the initial cracking width
(CW), the healing time (HT), the healing condition (HC) and the healing test methods
(HTM) are the variables with reference to the healing environment. Finally, the self-healing
efficiency is represented by the healing performance (HP) as the unique output. Table 1
exhibits the ranges of the 22 variables. Variables such as the types of bacteria and carriers
are replaced by numeric values, explained in Tables A1–A9 in Appendix A. After the
data preparation, the collected data sets utilise between zero and one by the following
calculation in Equation (13) [36].

Normalised value =
x− xmin

xmax − xmin
(13)

where x is the data value and xmin and xmax are the minimum and maximum values, re-
spectively.

Table 1. The ranges of the variables (inputs) and the output.

Types of Variables Symbol Unit Minimum Maximum

Inputs C - 0 8
TC - 1 3
B - 0 6

DB cells/g 0 2.6 × 109

TBSHC - 0 2
TCIS - 1 3
DCI g/g 0 0.034
TCS - 0 2
DC g/g 0 0.034
TN - 1 3
DN g/L 0 4
DU g/L 0 0.024
FA g/g 0.204 0.666
CA g/g 0 0.522
CM g/g 0.156 0.222

W/B - 0.4 0.599
S g/g 0 1.564

CD days 3 56
CW mm 0.027 1.152
HC - 1 3
HT days 3 100

HTM - 1 5
Output HP % 0 100.76
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2.2. Machine Learning Algorithms

Five types of ML algorithms, GBR, RF, DNN, DTR and SVR, have been extensively de-
veloped for predicting the mechanical properties of concrete utilising empirical data [37,38].
For instance, ANN and MLR models were employed to predict the 28-day compressive
strength of concrete. The ANN model obtained an R2 value of 0.9226, which was dramati-
cally higher than that of the MLR model (R2

MLR = 0.7456). Furthermore, R2 values of 0.951
and 0.929 for predicting the compressive and splitting tensile strength were demonstrated
by employing GBR models [24,39–51]. In this paper, the prediction ability of the five types
of ML models for predicting the HP of BSHC is studied. To achieve the best prediction abil-
ity, here a hyper-parameter tuning method named GSA is utilised to determine the optimal
parameters of the ML models [52]. The reason why GSA is a reliable hyper-parameter tun-
ing method can be attributed to its ability to find the optimal hyper-parameters combination
according to an exhaustive analysis [53–56].

2.3. Prediction Ability Evaluation

The prediction ability of the ML models with five algorithms for predicting the HP
of BSHC is evaluated by the coefficient of determination (R2) and the root mean square
error (RMSE). The RMSE is the arithmetic root of mean square error (MSE) and is also
called the standard error. The RMSE is sensitive to the extreme errors of prediction values.
Therefore, the prediction accuracy can be precisely reflected by the RMSE. RMSE values
are calculated according to Equation (14). A lower RMSE exhibits a higher accuracy of
ML models [37]. Moreover, the R2 is a significant statistical magnitude to evaluate the
prediction performance of ML models ranging from zero to one. A higher value of R2

means a better performance of ML models [57]. Equation (15) explains the R2.

RMSE =

√
∑n

i=1
(
y′i − yi

)2

n
(14)

R2 = 1− ∑n
i=1(y

′
i − yi)

2

∑n
i=1

(
yi −

¯
y
)2 (15)

where (y′i − yi) indicates the difference between real and predicted values and n stands for
the number of measurements.

2.4. Data Splitting

The data sets employed in this paper are randomly split into the training and testing
sets with a ratio of 8:2, respectively. The data in the training set (80%) are applied to tune
the ML models. Moreover, the data in the testing set (20%) are employed to inspect the
generalisation capacity of the ML models, i.e., the testing data set is recognised as a new
data set to fit the ML models after conducting the training process.

3. Results
Prediction Ability of ML Models

The prediction ability (R2 and RMSE values) of the training and testing data sets
by the five types of ML models demonstrating the relationship between the predicted
and experimental HP of BSHC is exhibited in Figure 2. R2 and RMSE values are applied
to inspect the prediction performance and accuracy of the ML models. The horizontal
and vertical axes indicate the experimental and predicted HP, respectively. Furthermore,
the results of the ML models are demonstrated in Table 2 to show the differences in the
prediction ability. Moreover, the optimal parameters of the ML models defined by GSA are
listed in Table 3.
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Figure 2. Experimental vs. predicted HP for the models: (a) GBR-training; (b) GBR-testing; (c) DTR-
training; (d) DTR-testing; (e) DNN-training; (f) DNN-testing; (g) SVR-training; (h) SVR-testing;
(i) RF-training; and (j) RF-testing, with the corresponding R2 and RMSE.
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As is demonstrated in Figure 2a,b, the GBR model shows a significantly higher R2 than
the other four ML models. The R2 and RMSE of GBR are 0.956 and 6.756%, respectively.
Furthermore, the R2 and RMSE values of DNN, DTR, RF and SVR are (0.870, 14.145%),
(0.882, 12.766%), (0.899, 11.760%) and (0.871, 13.352%), respectively, which are lower than
that of the GBR model (Figure 2c,j). According to the results, the following can be concluded.
Firstly, the GBR model is the optimal model for predicting the HP of BSHC due to the
highest R2 (0.956) and lowest RMSE (6.756%). Secondly, the GBR model is reliable because
of the similar R2 results of the training and testing sets, indicating no underfitting or
overfitting problem. Thirdly, the RMSE (6.756%) of the GBR model demonstrates that the
prediction deviation is low and robust.

Table 2. R2 and RMSE values of the ML models.

Algorithm Dataset
HP Prediction Ability

R2 RMSE (%)

GBR
Training 0.978 4.371
Testing 0.956 6.756

DTR
Training 0.935 10.038
Testing 0.882 12.766

DNN
Training 0.898 13.583
Testing 0.870 14.145

SVR
Training 0.928 10.683
Testing 0.871 13.352

RF
Training 0.941 9.797
Testing 0.899 11.760

Table 3. Tuned parameters of the ML models employing GSA.

Algorithms Parameters Setting

DNN
Hidden layers 4

Hidden neurons 30-30-30-30
Learning rate 0.0010

Activation function Maxout

GBR

Depthmax 21
Splitmin 0.001

Learning rate 0.9001
Number of trees 21

DTR

Depthmax 10
Splitmin 1.000
Leafmin 1
Gainmin 0.0010

SVR

Cpenalty 1
Epsilon 0.001
Gamma 5000

Kernel type Radial

RF

Depthmax 60
Splitmin 100.000
Leafmin 60
Gainmin 0.3007

Number of trees 11

4. Discussion

The optimal ML model for predicting the relationship between the 22 variables and
the HP of BSHC, GBR, is defined by the best prediction ability results and slight differences
between the experimental and predicted HP shown in Figure 2. The reason why the GBR
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model has a better prediction ability than the other models can be concluded as follows.
ML models with the GBR algorithm, named as ensemble ML models, have an excellent
regression capacity and an extraordinary generalisation ability due to the applied boosting
strategy. Different weights are distributed to weak learners generated by the boosting
strategy in accordance with the prediction ability of weak learners. Namely, weak learners
with a better prediction ability can obtain higher weights. The promising prediction ability
of GBR models can be investigated when a strong learner is composed of all weak learners,
while the other ML models have a lower prediction ability because they are individual
algorithms [58].

4.1. K-Fold Cross Validation

K-fold cross validation is a method to validate the prediction ability of the optimal
ML model, GBR. In this paper, the prediction ability of GBR is validated by employing
10-fold cross validation. The 10-fold cross validation method can be described as follows.
Firstly, 797 data sets are divided into 10 sections. Then, some data sets are employed to
train GBR models, while the rest of the data sets are utilised to validate the trained GBR
models. Subsequently, the first step is conducted ten times with different training and
testing data set groups. Finally, the prediction ability of the GBR model validated by 10-fold
cross validation can be generated by means of averaging the R2 and RMSE values of all
GBR models [59].

The prediction ability (R2 and RMSE values) of the GBR models validated by different
folds of the data sets is shown in Figure 3. Slight differences in R2 and RMSE values of the
GBR models can be noticed in Figure 3a,b. For instance, 0.947 is the maximum R2 value of
the GBR model at Fold 8, while 0.937 is the minimum R2 value of the GBR model at Fold 1.
The rest of the R2 values are maintained at approximately 0.944. Furthermore, the RMSE
value dramatically decreases from 6.864% to 6.039% between Fold 1 and Fold 2, followed
by a slight growth to 6.210% at Fold 3. Subsequently, it keeps constant at 6.218% until
Fold 6. It then fluctuates between 6.067% and 6.218% from Fold 7 to Fold 10. Moreover,
the average R2 and RMSE values and the standard deviations (SDs) of the GBR models
are listed in Table 4. The average R2 and RMSE values of the GBR models with different
folds of the data sets are 0.9438 and 6.2342%, respectively. Additionally, the SDs of the
R2 and RMSE values are 0.0029 and 0.2208, respectively, which can be concluded that the
coefficient of variations (COVs) of the values are relatively low, only 0.31% and 3.54%,
respectively. Regarding the R2, RMSE and the statistical results of the GBR models, it can
be concluded that the promising prediction ability of the GBR model for predicting the HP
of BSHC is reliable.
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Figure 3. (a) R2 results and (b) RMSE results of GBR models with the 10-fold cross validation for
predicting HP of BSHC.
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Table 4. R2 and RMSE results of GBR models with the 10-fold cross validation.

Folds
HP Prediction Ability

R2 RMSE (%)

Fold 1 0.937 6.864
Fold 2 0.945 6.039
Fold 3 0.940 6.210
Fold 4 0.944 6.218
Fold 5 0.945 6.218
Fold 6 0.946 6.218
Fold 7 0.944 6.067
Fold 8 0.947 6.206
Fold 9 0.946 6.084

Fold 10 0.944 6.218
Average 0.9438 6.2342

SD 0.0029 0.2208

4.2. Sensitivity Analysis

Sensitivity analysis (SA) is a type of machine learning interpretation. Moreover, it
is an uncertainty analysis method to study the influence of variables on the output from
quantitative analysis. In this paper, the optimal ML model for predicting the HP of BSHC,
GBR, is employed for SA. The main processes of SA can be defined as follows. Firstly, the
values of one variable are kept consistent with the collected experimental data at a time,
while the rest of the variables are kept constant at the mean values. Subsequently, the new
data sets are applied to train the optimal ML model, GBR. Finally, Equation (16) is employed
to investigate the corresponding sensitivity analysis parameter (SAP) of each variable.

SAPi =
HPmax(Vi)− HPmin(Vi)

∑i[HPmax(Vi)− HPmin(Vi)]
× 100 (16)

where SAPi indicates the SAP of the variable i and HPmax(Vi) and HPmin(Vi) are the
maximum and minimum HP of the variable i.

The SAPs of the variables related to cementitious materials and water, the healing
environment and bacteria are shown in Figure 4. The maximum SAP is 8.50% of CW, while
the minimum SAP is 0.06% of DU. It can be interpreted that CW has a pronounced influence
on the HP of BSHC. However, little effect of urea on the HP of BSHC is observed. The SAPs
of FA, CM, W/B, HT and DB are 8.44%, 8.21%, 7.92%, 7.45% and 7.04%, respectively, which
are slightly lower than that of CW. Subsequently, the SAP dramatically decreases from
7.04% to 5.46% between DB and C. Then, the SAP experiences a gradual drop from 5.10%
to 3.99% between B and S. The SAPs of C, TC, DN, TN, TBSHC, TCIS and TCS are 5.10%,
4.86%, 4.30%, 4.11%, 4.05%, 4.05% and 4.05%, respectively. Additionally, the rest of the
variables demonstrate a relatively lower influence on HP, i.e., 3.06%, 2.83%, 2.75%, 2.12%,
1.52% and 0.13% for CA, CD, DCI, HTM, HC and DC, respectively. With regard to the SAP
results, the following aspects can be concluded. Firstly, most of the variables related to
cementitious materials and water, such as FA, CM and W/B, show a stronger influence on
the HP of BHSC than that of the variables related to bacteria. This is because less water
contained in the concrete results in more unreacted cement particles being retained for
healing cracks. Furthermore, more FA can lead to the increased demand of water; thus, the
HP of concrete with high FA is lower than that of concrete with low FA. It can be concluded
that the influence of the variables on the HP of BSHC is CW ≥ water contents > HT > the
variables related to bacteria. Secondly, the variables related to the healing environment,
such as CW, HT and CD, were recognised as the significant influencing factors of HP [9,10].
However, there was no report to show the influencing degrees of the factors. In this paper,
it can be observed from Figure 4 that the SAP of HT is 7.45%, 12.35% lower than that of
CW. Moreover, the SAP of CW is more than three times that of CD. Thirdly, regarding the
variables related to bacteria, DB has a higher effect than other variables on the HP of BSHC.
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The SAPs of the rest of the variables related to bacteria are close, excluding DC and DU,
indicating a similar influence on the HP of BSHC. It can be observed from Figure 4 that DC
and DU show little influence on the HP of BSHC.
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5. Conclusions

In this paper, five types of ML models for predicting the HP of BSHC were proposed to
aid in self-healing concrete design. The ML models were used for the non-linear relationship
modelling between HP and its 22 variables, and GSA as the optimal method was applied
for the hyper-parameter tuning. A total of 797 data sets were collected through extensive
experiments with different combinations of variables for training the ML models.

On the basis of the results, the following conclusions can be drawn:

• The R2 and RMSE values of the GBR model were 0.956 and 6.756%, respectively,
which means that the prediction performance is excellent, and the prediction deviation
is relatively low and reasonable. The GBR model was also compared to other ML
algorithms, such as DTR, SVR, DNN and RF, and it showed an outstanding superiority
to these ML models. Thus, it can be concluded that GBR is the optimal ML model that
can accurately predict the HP of BSHC with the 22 variables.

• Concerning the results of the 10-fold cross validation, the average R2 and RMSE values
were 0.9438 and 6.2342%, respectively. Thus, it can be concluded that the robust
prediction ability of the GBR model is convincing.

• All variables in the GBR model were studied to inspect the influence on the HP of
BSHC. It was observed that CW, FA, CM, W/B, HT and DB are key variables and
have relatively higher effects on the HP of BHSC, which means that they cannot be
neglected during the ML-aided self-healing concrete design.

The HP of BSHC consisting of various variables can be effectively predicted by em-
ploying the GBR model in this paper. As a consequence, the GBR model can be utilised to
validate the BSHC design and whether its expected HP can be achieved according to the
following steps. Firstly, a GBR model should be developed according to the parameters
given in Table 3. Secondly, nine types of parameters, such as C, should be replaced by
numeric values according to Tables A1–A9 in Appendix A. Subsequently, the rest of the
parameters, such as DB, need to be defined according to the BSHC design. Finally, the



Materials 2022, 15, 4436 12 of 16

GBR model is able to predict the HP of the designed BSHC. Moreover, the BSHC design
optimisation can be realised using the GBR model.

Author Contributions: Conceptualisation, S.K. and X.H.; methodology, S.K. and X.H.; software, X.H.,
J.S., X.Q. and Y.F.H.; validation, X.H.; formal analysis, X.H.; data curation, X.H.; writing—review
and editing, S.K., X.H., J.S., X.Q. and Y.F.H.; supervision, S.K.; project administration, S.K.; funding
acquisition, S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Commission, grant number: H2020-MSCA-RISE
No. 691135 and Shift2Rail H2020-S2R Project No. 730849. The APC was funded by the University of
Birmingham Library’s Open Access Fund.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data can be made available upon reasonable request.

Acknowledgments: The authors are sincerely grateful to the European Commission for the financial
sponsorship of the H2020-RISE Project No. 691135 “RISEN: Rail Infrastructure Systems Engineering
Network,” which enables a global research network that tackles the grand challenge in railway
infrastructure resilience and advanced sensing in extreme environments (www.risen2rail.eu (accessed
on 9 September 2021)) [60]. In addition, this project is partially supported by the European Com-
mission’s Shift2Rail, H2020-S2R Project No. 730849 “S-Code: Switch and Crossing Optimal Design
and Evaluation”. The APC has been sponsored by the University of Birmingham Library’s Open
Access Fund.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Types of carriers.

Number Representation

0 No carrier
1 Expanded clay
2 Expanded perlite
3 Graphene nanoplatelets
4 Coir
5 Flax
6 Jute
7 Low alkali calcium sulphoaluminate
8 Recycled brick aggregate

Table A2. Types of bacteria.

Number Representation

0 No bacteria
1 Bacillus subtilis
2 Bacillus cohnii
3 Bacillus alkalinitrilicus
4 Bacillus pasteurii
5 Bacillus sphaericus
6 Bacillus megaterium

Table A3. Types of healing conditions.

Number Representation

1 Ambient water condition
2 Ambient air condition
3 Wet–dry cycles

www.risen2rail.eu
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Table A4. Types of BSHC.

Number Representation

0 Autogenous healing
1 ABHC
2 UBHC

Table A5. Types of nutrients.

Number Representation

1 Peptone
2 Yeast
3 Beef extract

Table A6. Types of carbon sources.

Number Representation

0 Water
1 Air
2 Calcium lactate

Table A7. Types of cement.

Number Representation

1 CEM I 42.5N
2 CEM II 42.5N
3 CEM I 52.5N

Table A8. Types of calcium ion sources.

Number Representation

1 Calcium nitrate
2 Calcium lactate
3 Ca(OH)2

Table A9. Types of healing test methods.

Number Representation

1 Cracking width measurement
2 Cracking area measurement
3 Ultrasound pulse velocity measurement
4 Regained strength measurement
5 Anti-seepage repairing measurement
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16. Erşan, Y.Ç.; Da Silva, F.B.; Boon, N.; Verstraete, W.; De Belie, N. Screening of bacteria and concrete compatible protection materials.
Constr. Build. Mater. 2015, 88, 196–203. [CrossRef]

17. Andrew, T.C.S.; Syahrizal, I.I.; Jamaluddin, M.Y. Effective Microorganisms for Concrete (EMC) Admixture—Its Effects to the
Mechanical Properties of Concrete. Casp. J. Appl. Sci. Res. 2012, 419–426.

18. Wiktor, V.; Jonkers, H.M. Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem. Concr. Compos. 2011,
33, 763–770. [CrossRef]

19. Ferrara, L.; Krelani, V.; Carsana, M. A “fracture testing” based approach to assess crack healing of concrete with and without
crystalline admixtures. Constr. Build. Mater. 2014, 68, 535–551. [CrossRef]

20. Reinhardt, H.W.; Jooss, M. Permeability and self-healing of cracked concrete as a function of temperature and crack width. Cem.
Concr. Res. 2003, 33, 981–985. [CrossRef]

21. Maes, M.; Snoeck, D.; De Belie, N. Chloride penetration in cracked mortar and the influence of autogenous crack healing. Constr.
Build. Mater. 2016, 115, 114–124. [CrossRef]

22. Muhammad, N.Z.; Shafaghat, A.; Keyvanfar, A.; Majid, M.Z.A.; Ghoshal, S.K.; Mohammadyan Yasouj, S.E.; Ganiyu, A.A.; Samadi
Kouchaksaraei, M.; Kamyab, H.; Taheri, M.M.; et al. Tests and methods of evaluating the self-healing efficiency of concrete: A
review. Constr. Build. Mater. 2016, 112, 1123–1132. [CrossRef]

23. Luo, M.; Qian, C.X.; Li, R.Y. Factors affecting crack repairing capacity of bacteria-based self-healing concrete. Constr. Build. Mater.
2015, 87, 1–7. [CrossRef]

24. Zhang, J.; Zhao, C.; Zhou, A.; Yang, C.; Zhao, L.; Li, Z. Aragonite formation induced by open cultures of microbial consortia
to heal cracks in concrete: Insights into healing mechanisms and crystal polymorphs. Constr. Build. Mater. 2019, 224, 815–822.
[CrossRef]

25. Khaliq, W.; Ehsan, M.B. Crack healing in concrete using various bio influenced self-healing techniques. Constr. Build. Mater. 2016,
102, 349–357. [CrossRef]

26. Zhang, J.; Liu, Y.; Feng, T.; Zhou, M.; Zhao, L.; Zhou, A.; Li, Z. Immobilising bacteria in expanded perlite for the crack self-healing
in concrete. Constr. Build. Mater. 2017, 148, 610–617. [CrossRef]

27. Jiang, L.; Jia, G.; Jiang, C.; Li, Z. Sugar-coated expanded perlite as a bacterial carrier for crack-healing concrete applications.
Constr. Build. Mater. 2020, 232, 117222. [CrossRef]

28. Jiang, L.; Jia, G.; Wang, Y.; Li, Z. Optimization of Sporulation and Germination Conditions of Functional Bacteria for Concrete
Crack-Healing and Evaluation of their Repair Capacity. ACS Appl. Mater. Interfaces 2020, 12, 10938–10948. [CrossRef]

http://doi.org/10.31031/RDMS.2019.10.000732
http://doi.org/10.4203/ccp.100.17
http://doi.org/10.1002/csr.59
http://doi.org/10.3390/ma13020298
http://doi.org/10.3390/ma6062182
http://doi.org/10.1002/admi.201800074
http://doi.org/10.32604/cmc.2019.04589
http://doi.org/10.3390/ma10020135
http://doi.org/10.1002/adma.201705679
http://doi.org/10.3389/fmats.2017.00015
http://doi.org/10.1016/j.ecoleng.2008.12.036
http://doi.org/10.1016/j.jhazmat.2017.07.042
http://www.ncbi.nlm.nih.gov/pubmed/28768219
http://doi.org/10.1016/j.cemconres.2016.01.009
http://doi.org/10.1016/j.conbuildmat.2015.04.027
http://doi.org/10.1016/j.cemconcomp.2011.03.012
http://doi.org/10.1016/j.conbuildmat.2014.07.008
http://doi.org/10.1016/S0008-8846(02)01099-2
http://doi.org/10.1016/j.conbuildmat.2016.03.180
http://doi.org/10.1016/j.conbuildmat.2016.03.017
http://doi.org/10.1016/j.conbuildmat.2015.03.117
http://doi.org/10.1016/j.conbuildmat.2019.07.129
http://doi.org/10.1016/j.conbuildmat.2015.11.006
http://doi.org/10.1016/j.conbuildmat.2017.05.021
http://doi.org/10.1016/j.conbuildmat.2019.117222
http://doi.org/10.1021/acsami.9b21465


Materials 2022, 15, 4436 15 of 16

29. Liu, C.; Xu, X.; Lv, Z.; Xing, L. Self-healing of concrete cracks by immobilising microorganisms in recycled aggregate. J. Adv. Concr.
Technol. 2020, 18, 168–178. [CrossRef]

30. Saleem, B.; Hussain, A.; Khattak, A.; Khan, A. Performance evaluation of bacterial self-healing rigid pavement by incorporating
recycled brick aggregate. Cem. Concr. Compos. 2021, 117, 103914. [CrossRef]

31. Metwally, G.A.M.; Mahdy, M.; El-Raheem, A.H.A. Performance of bio concrete by using bacillus pasteurii bacteria. Civ. Eng. J.
2020, 6, 1443–1456. [CrossRef]

32. Su, Y.; Zheng, T.; Qian, C. Application potential of Bacillus megaterium encapsulated by low alkaline sulphoaluminate cement in
self-healing concrete. Constr. Build. Mater. 2021, 273, 121740. [CrossRef]

33. Rauf, M.; Khaliq, W.; Khushnood, R.A.; Ahmed, I. Comparative performance of different bacteria immobilised in natural fibers
for self-healing in concrete. Constr. Build. Mater. 2020, 258, 119578. [CrossRef]

34. Mondal, S.; Ghosh, A.D. Investigation into the optimal bacterial concentration for compressive strength enhancement of microbial
concrete. Constr. Build. Mater. 2018, 183, 202–214. [CrossRef]

35. Grabiec, A.M.; Klama, J.; Zawal, D.; Krupa, D. Modification of recycled concrete aggregate by calcium carbonate biodepo sition.
Constr. Build. Mater. 2012, 34, 145–150. [CrossRef]

36. Naderpour, H.; Hossein, A.; Fakharian, P. Compressive strength prediction of environmentally friendly concrete using arti fi cial
neural networks. J. Build. Eng. 2018, 16, 213–219. [CrossRef]

37. Atici, U. Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural
network. Expert Syst. Appl. 2011, 38, 9609–9618. [CrossRef]

38. Duan, Z.H.; Kou, S.C.; Poon, C.S. Using artificial neural networks for predicting the elastic modulus of recycled aggregate
concrete. Constr. Build. Mater. 2013, 44, 524–532. [CrossRef]

39. Kaloop, M.R.; Kumar, D.; Samui, P.; Hu, J.W.; Kim, D. Compressive strength prediction of high-performance concrete using
gradient tree boosting machine. Constr. Build. Mater. 2020, 264, 120198. [CrossRef]

40. Yoon, J.Y.; Kim, H.; Lee, Y.J.; Sim, S.H. Prediction model for mechanical properties of lightweight aggregate concrete using
artificial neural network. Materials 2019, 12, 2678. [CrossRef]

41. Safavian, S.R.; Landgrebe, D. A Survey of Decision Tree Classifier Methodology. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674.
[CrossRef]

42. Topçu, I.B.; Saridemir, M. Prediction of mechanical properties of recycled aggregate concretes containing silica fume using
artificial neural networks and fuzzy logic. Comput. Mater. Sci. 2008, 42, 74–82. [CrossRef]

43. Raghavendra, S.; Deka, P.C. Support vector machine applications in the field of hydrology: A review. Appl. Soft Comput. J. 2014,
19, 372–386. [CrossRef]

44. DeRousseau, M.A.; Kasprzyk, J.R.; Srubar, W.V. Computational design optimisation of concrete mixtures: A review. Cem. Concr.
Res. 2018, 109, 42–53. [CrossRef]

45. Zheng, Y. Trajectory data mining: An overview. ACM Trans. Intell. Syst. Technol. 2015, 6, 1–41. [CrossRef]
46. Kisi, O. Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5

model tree. J. Hydrol. 2015, 528, 312–320. [CrossRef]
47. Kam, T.H. Random Decision Forests Tin Kam Ho Perceptron training. Proc. 3rd Int. Conf. Doc. Anal. Recognit. 1995, 1, 278–282.
48. Zhang, M.L.; Zhou, Z.H. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognit. 2007, 40, 2038–2048.

[CrossRef]
49. Tamura, S.; Tateishi, M. Capabilities of a four-layered feedforward neural network: Four layers versus three. IEEE Trans. Neural

Netw. 1997, 8, 251–255. [CrossRef]
50. Li, J.Y.; Chow, T.W.S.; Yu, Y.L. Estimation theory and optimisation algorithm for the number of hidden units in the higher-order

feedforward neural network. IEEE Int. Conf. Neural Netw. Conf. Proc. 1995, 3, 1229–1233. [CrossRef]
51. Sheela, K.G.; Deepa, S.N. Selection of number of hidden neurons in neural networks in renewable energy systems. J. Sci. Ind. Res.

2014, 73, 686–688.
52. Syarif, I.; Prugel-Bennett, A.; Wills, G. SVM parameter optimisation using grid search and genetic algorithm to improve

classification performance. Telkomnika Telecommun. Comput. Electron. Control. 2016, 14, 1502–1509. [CrossRef]
53. Xiao, T.; Ren, D.; Lei, S.; Zhang, J.; Liu, X. Based on grid-search and PSO parameter optimisation for Support Vector Machine. In

Proceeding of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2014; Volume
2015, pp. 1529–1533. [CrossRef]

54. Huang, C.L.; Dun, J.F. A distributed PSO-SVM hybrid system with feature selection and parameter optimisation. Appl. Soft
Comput. J. 2008, 8, 1381–1391. [CrossRef]

55. Gholami, R.; Shahraki, A.R.; Jamali Paghaleh, M. Prediction of hydrocarbon reservoirs permeability using support vector machine.
Math. Probl. Eng. 2012, 2012, 670723. [CrossRef]

56. Li, X.Z.; Kong, J.M. Application of GA-SVM method with parameter optimisation for landslide development prediction. Nat.
Hazards Earth Syst. Sci. 2014, 14, 525–533. [CrossRef]
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