
Citation: Barile, C.; Casavola, C.;

Pappalettera, G.; Kannan, V.P.

Damage Progress Classification in

AlSi10Mg SLM Specimens by

Convolutional Neural Network and

k-Fold Cross Validation. Materials

2022, 15, 4428. https://doi.org/

10.3390/ma15134428

Academic Editor: Thomas Niendorf

Received: 26 May 2022

Accepted: 21 June 2022

Published: 23 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Damage Progress Classification in AlSi10Mg SLM Specimens
by Convolutional Neural Network and k-Fold Cross Validation
Claudia Barile , Caterina Casavola , Giovanni Pappalettera * and Vimalathithan Paramsamy Kannan

Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via E. Orabona 4, 70125 Bari, Italy;
claudia.barile@poliba.it (C.B.); casavola@poliba.it (C.C.); pk.vimalathithan@poliba.it (V.P.K.)
* Correspondence: giovanni.pappalettera@poliba.it

Abstract: In this study, the damage evolution stages in testing AlSi10Mg specimens manufactured
using Selective Laser Melting (SLM) process are identified using Acoustic Emission (AE) technique
and Convolutional Neural Network (CNN). AE signals generated during the testing of AlSi10Mg
specimens are recorded and analysed to identify their time-frequency features in three different dam-
age evolution stages: elastic stage, plastic stage, and fracture stage. Continuous Wavelet Transform
(CWT) spectrograms are used for the processing of the AE signals. The AE signals from each of these
stages are then used for training a CNN based on SqueezeNet. Moreover, k-fold cross validation is
implemented while training the modified SqueezeNet to improve the classification efficiency of the
network. The trained network shows promising results in classifying the AE signals from different
damage evolution stages.

Keywords: AlSi10Mg; SLM; NDE; acoustic emission; deep learning; CNN; k-fold cross validation

1. Introduction

The evolution of Additive Manufacturing (AM) technique is a narrative of its own.
Its application began with complicated geometries and functional prototypes. In the last
decade, it has evolved into one of the key manufacturing systems for many industrial and
aeronautic components. The functionality of the AM components has made them enter
into the maritime applications [1–4]. Consequently, an intensive scrutinizing is required for
validating the safety of the AM components.

Selective Laser Melting (SLM) is a predominantly used AM technique, known for its
good quality, short lead times, limited restriction and high resolution for complex shapes
and structures [5]. A very fine-grained structure can be achieved through the SLM process,
which results in the improved mechanical properties of the fabricated components. A
wide range of materials including Ni, Al, Ti alloys can be manufactured using the SLM
process. The components manufactured from the SLM process have relatively improved
mechanical properties, corrosion resistance and fatigue life compared to the traditionally
manufactured components. The fine-grained structure of SLM manufactured components
is supposed to give better isotropic properties, but there has been a long-standing debate
on this. SLM components generally have isotropic strength; however, they have a higher
anisotropy in the elongation at break [6,7]. The isotropic behaviour of the SLM components
is generally related to their building direction. A homogenous microstructure provides
high mechanical strength to the components and can accommodate strain which can reduce
cracking. However, due to the high cooling rates in the SLM process, which is in the range
of 106–108 ◦C/s, achieving equiaxed grain is a challenge [5,8–11]. Thus, it is essential to
study the behaviour of SLM components built in different direction.

In this study, the mechanical characteristics of the SLM components built from AlSi10Mg
alloy at different orientations are studied. Acoustic Emission (AE) technique, a Non-
Destructive Evaluation (NDE) technique, is used for studying the damage behaviour of the
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SLM components. The AE technique is based on the acquisition of elastic waves generated
due to the rapid release of stored elastic energy [12]. Microscopic displacements within a
solid material due to microcracking, crack nucleation or crack growth generate elastic waves.
Each of these microscopic damages within a material generates acoustic waves that differ in
their time-frequency characteristics. Analysing these acoustic waves to identify the damage
source and predicting the failure is the basis of the AE technique [13–15]. This is one of the
few available passive techniques for investigating the damage characteristics of a material
throughout its loading history.

Time-frequency analysis of stress waves generated from Fibre Reinforced Polymer
(FRP) composites is relatively common [16]. However, it is seldom used for characterizing
the damage modes in metallic components. In the authors’ previous studies, time-frequency
analysis of acoustic waves has been successfully used in the identification of damage sources
in metallic components [17].

In the recent years, Deep Learning has been used contemporarily with the AE tech-
nique for damage characterization [18]. Convolutional Neural Networks (CNN) have
been used for identifying damage modes in SiC composites, CORTEN steel and civil
structures [19–25], while Artificial Neural Networks (ANN) have been used for corrosion
monitoring of steel. While both these networks can relate a large number of parameters and
building a model for classification and prediction in real-time, CNN is preferred generally
for image-based analysis. While there is an argument that ANN such as Long Short-Term
Memory (LSTM) have advantages over the feed-forward neural networks such as CNN,
many literatures have used CNN for image-based analysis [26,27]. LSTM is suitable for
handling temporal or sequential data, while CNN are used predominantly for image-based
analysis. Apart from these, there are several other image-based and wavelet-based neural
networks, which have been used successfully in the past [28].

Acoustic signals generated from different damage modes have their unique time-
frequency signatures. This can be observed and analysed in their time-frequency spectrum
using wavelet spectrograms. The spectrograms are images containing the spectral details
of the analysed waveforms. In that context, they can be used as inputs to train neural
networks. Previously, this technique has been used successfully in identifying the damage
modes in FRP composites, SiC composites, and civil structures [21,23,29]. The aim of
this research is to use the image-analysing capability of CNN for classifying the acoustic
emission signals from different damage modes. This is possible by training a CNN with
time-frequency spectrograms of AE signals generated from various damage sources of a
material/structure.

The objective of this research is to investigate the mechanical properties of SLM
manufactured AlSi10Mg components in different orientations. In addition to that, the AE
technique is used for identifying the damage sources and a Deep Learning neural network
is modelled and trained for real-time identification of damage stages.

2. Materials and Methods
2.1. Materials

The AlSi10Mg alloy used in this study for manufacturing has a density of 2.68 g/cm3

and a melting range of 570 ◦C to 590 ◦C. The chemical composition of the feed material is
presented in Table 1.

Table 1. Chemical composition of the feed material AlSi10Mg alloy.

Element Al Si Mg Fe N O Ti Zn Mn Ni Cu Pb Sn

Mass (%) Bal * 11 0.45 <0.25 <0.2 <0.2 <0.15 <0.1 <0.1 <0.05 <0.05 <0.02 <0.02

* Balance percentage.

The SLM manufacturing system is RenAM 500 M (Renishaw S.p.A., Torino, Italy), in
which an Nd:YAG laser (wavelength 1.064 µm) is used for melting the feed material. Dog-
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bone shaped tensile specimens are prepared on the heated bed inside the SLM chamber.
The recoater moved along the Y axis to coat the powder, then the laser moved along the
X axis to melt the powder. The laser source of power 400 W created a single-track energy
density of 20 J/mm2 melted the coated powder. The laser beam of spot diameter 200 µm
and the speed of the laser movement along the X axis is 100 mm/s. The powder is melted
for form a uniform layer of 20 µm thickness, before the recoater coats the powder again.
The process is repeated until the complete specimen is built.

Dog-bone shaped specimens as per ASTM E8M configurations are built along four
different orientations, which are displayed in Figure 1. The different orientations are
achieved by moving the powder bed, while keeping the laser axis the same throughout
the process. At the end of the process, the specimens are kept inside the environmental
chamber of the SLM system at 300 ◦C for 2 h and then they are air-cooled.
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Figure 1. Dog-bone shaped specimens built in four different configurations in SLM building platform
and their dimensions.

2.2. Test Methods

For testing the mechanical properties of the specimens, they are mounted on an
INSTRON servo-hydraulic testing machine (Norfolk County, MA, USA), with a maximum
loading capacity of 10 kN. The tensile tests are carried out at a speed of 1 mm/min as per
ASTM E8M standard.

For recording the acoustic waves/stress waves generated due the damage evolution dur-
ing the tensile test, a piezoelectric sensor is coupled to the surface of the specimen. A uniform
thin layer of silicone grease is applied between the surfaces of the sensor and the specimen.
The PICO sensor (Physical Acoustics Corporation, Princeton JCT, USA) is a wideband sensor
with the maximum sensitivity in the acquisition range of 200 kHz to 750 kHz and it has a
resonant frequency of 250 kHz. The signals recorded by the sensors are amplified by 40 dB
using a preamplifier and filtered through 1 kHz/1 MHz low/high-band pass filters. The
signals are recorded at a sampling rate of 1 MHz.
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2.3. Time-Frequency Analysis of AE Signals

The acoustic signals recorded over the entire loading history of the tensile test of
AlSi10Mg specimens are analysed in their time-frequency domain to understand their
damage sources. The time-frequency characteristics of the acoustic signals are analysed
using the signal processing technique, Continuous Wavelet Transform (CWT) [30,31]. First,
CWT is used for identifying the damage modes; second, the spectrograms are used for
training and testing the image-based classification neural network. Researchers commonly
use waveforms in their time-series representations or spectrograms of CWT, Short-time
Fourier Transform (STFT) or Mel Spectrograms [21–23]. The independence of selecting a
user-defined wavelet for decomposing the signal makes CWT a formidable signal process-
ing tool. It has been used successfully by several researchers for damage characterization
of FRP composites using AE technique.

In CWT, the original signal f (x) is decomposed into wavelet coefficients using a
mother wavelet. The wavelet coefficients give information about the time-frequency
localization of the spectral components of the original signal [31]. CWT can be explained
by Equation (1).

CWTf (a, b) =
∫ ∞

−∞
f (x)ζa,b(x)dx, a > 0, (1)

a in Equation (1) is the scaling factor with which the mother wavelet ζa,b(x) is dilated
or compressed and b is the translation factor, which gives the wavelet components in
different time domains. The mother wavelet used in this study is an analytical Morlet
Wavelet, which can be defined by Equation (2) [32].

ζ(x) = exp(− x2/2) cos(5x), (2)

Literatures are enriched with the basic principle and implementation of CWT tech-
nique for time-frequency analysis [30,31]. In this research, this process is carried out in
MATLAB® (2020b).

2.4. Convolutional Neural Network

Generally, CNN consists of an input layer, a classification layer and a set of hidden
layers. One of the most important hidden layers is a convolutional layer. Convolutional
layer features a set of weighted filters, which extract the feature map from its input. The
output of the convolutional layer is generally followed by a pooling layer and an activation
function. The pooling layer extracts the most representative features of the convolutional
output by padding and striding operations. Max pooling and average pooling are the
commonly used pooling operations in a CNN. The most used activation functions are
sigmoid, tanh and ReLu activations. Stochastic Gradient Descent (SGD) is typically used
for training the models. ReLu activation function is preferred for SGD training algorithms
because of its non-saturation of gradients and the efficient convergence in SGD [33].

Typically, the number of hidden layers is based on the depth of the features to be
extracted from the input image. However, if more layers are used, overfitting may occur,
and the classification accuracy is ultimately affected. To avoid the overfitting of the results,
a dropout layer can be used.

Branching and exploring multiple paths of the hidden layers are explored by many
researchers to obtain the highest classification accuracy. This also can extract different levels
of abstraction and enables the network to learn the information in the early stages, which
flows the information more easily into the classification layer.

More deep layers and branching makes the computation time longer and requires large
computation power. To overcome this problem, Iandola et al. introduced a fire module [34].
This contains a squeeze convolutional layer, which has a 1 × 1 filter, whose output is fed
to an expanding convolutional layer, which is a mix of two convolutional layers having
1 × 1 filter and 3 × 3 filter, respectively. The idea is to use 1 × 1 filters for most of the
convolutional layer and create a large activation data pool by delaying the downsampling
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of data. Most commonly the downsampling is done by setting the stride value in the CNN
architecture to be greater than 1. In SqueezeNet, however, the stride value is kept to 1. The
pooling layer always follows the convolutional and activation layer. More details about
this SqueezeNet architecture can be found in the source paper.

In this research, a similar CNN based on the SqueezeNet is used for classifying the
waveforms with high accuracy. To avoid the overfitting of data, some of the deeper
convolutional layers are removed from the original network, but the sizes of filters are
increased in the deeper convolutional layers. In the original network, there were 68 layers
and 75 connections. It had 8 fire modules for extracting the deeper features. In the modified
network, there are 39 layers with 42 connections and 4 fire modules. However, large
filter sizes are used in the deeper convolutional layers, similar to the original SqueezeNet.
Subsequently, a moderately large activation pool is obtained. The dropout layer is used for
avoiding the overfitting of data.

In this study, to improve the training efficiency of the SqueezeNet, k-fold cross vali-
dation is implemented. k-fold partitions the input data to the network into k number of
subsets. For each iteration of training the network, (k − 1) number of subsets are used as a
training data and the remaining subset is used as a test data [35,36]. This reduces the bias as
most of data are used for training the network for k iterations. Besides, the network weights
of the convolutional layers are updated constantly for each iteration, thereby improving
the efficiency of training. Typical k-fold configuration is presented in Figure 2. In this study,
the input data is split into k = 5 subsets and the network is trained for 5 iterations.
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The architectural details of the CNN built for this study are presented in Figure 3.
The configuration of a typical fire module consisting of squeezing and expansion of the
convolutional output is explained in Table 2.
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Table 2. Typical fire module consisting of squeeze and expand convolutional layers.

Fire Module n Layer Name Layer Description

Squeeze Firen-Squeeze

Number of Filters: X
Filter Size: 1 × 1

Stride: 2 × 2
ReLU activation

Expand

Firen-Expand 1 × 1

Number of Filters: X
Filter Size: 1 × 1

Stride: 2 × 2
ReLU activation

Firen-Expand 3 × 3

Number of Filters: X
Filter Size: 1 × 1

Stride: 2 × 2
ReLU activation

Concatenation Firen-Concat

In Table 2, the n represents the number of the fire module layer, which can be seen in
Figure 3. X is the number of filters in each layer. More details about the number of filters in
each layer and other features such as filter size and stride are presented in Table 3.

Table 3. Layer details and descriptions of the modified SqueezeNet.

Fire Module n Layer Name Layer Description

Input Layer Input 32 × 32 × 3 Spectrograms

Convolutional Layer Conv1

Number of Filters: 32
Filter Size: 3 × 3

Stride: 2 × 2
ReLU activation

Max Pooling Layer Pool1 Pool Size 3 × 3
Stride: 2 × 2

Fire Module Fire Module 1 Number of Filters in Squeeze: 16
Number of Filters in Expand: 32

Fire Module Fire Module 2 Number of Filters in Squeeze: 32
Number of Filters in Expand: 64

Max Pooling Layer Pool2
Filter Size: 3 × 3
Padding: 0,0,0,0

Stride: 2 × 2

Fire Module Fire Module 3 Number of Filters in Squeeze: 64
Number of Filters in Expand: 128

Fire Module Fire Module 4 Number of Filters in Squeeze: 128
Number of Filters in Expand: 256

Dropout Layer Drop Probability: 0.5

Convolutional Layer Conv-Class

Number of Filters: 6
Filter Size: 1 × 1

Stride: 2 × 2
ReLU activation

Global Average Pooling Layer Pool3 -

Softmax Layer - -

Classification Layer - -

The data used for training the CNN and for evaluating its efficiency are presented in
the Results and Discussions section.
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3. Results and Discussions
3.1. Tensile Test Results

Four different configurations of SLM specimens based on different build orientations
(named as Tx, Ty, Tz and T45) are tested. Six specimens from each group are tested. The
mechanical properties, ultimate tensile strength, yield strength, Young’s modulus, and
elongation at break of the specimens are reported in Table 4. These properties are calculated
according to the ASTM E8 standard.

Table 4. Tensile test results of AlSi10Mg specimens built in different orientations.

Specimen
Name

Ultimate
Tensile Strength Yield Strength Young’s

Modulus
Elongation at

Break

MPa MPa GPa %

Tx 217.2 ± 2.4 137.0 ± 1.5 70.7 ± 3.8 14.2 ± 0.5
Ty 213.6 ± 4.2 132.4 ± 2.4 65.2 ± 1.9 11.2 ± 4.9
Tz 214.4 ± 2.5 126.7 ± 2.8 65.8 ± 1.1 8.9 ± 1.1

T45 218.7 ± 2.4 132.0 ± 2.5 67.4 ± 3.2 7.4 ± 18

For all the four groups of specimens, the ultimate tensile strength, yield strength
and Young’s modulus are quite similar. However, the elongation at break of specimen
groups Tz and T45 specimens are quite low in comparison with Tx and Ty. It has been
reported by several researchers that the changing in build orientation can result in the
microstructural heterogeneity of the SLM components [10]. Dong et al. studied the thermal
transfer mechanisms of AlSi10Mg specimens and derived the microstructural variations
due to the build orientations of the components [8,9,11]. This probably could be the reason
for the large variation in elongation at break between the specimens.

More details about the mechanical results and their dependence on the build orien-
tations can be found in the authors’ previous research works [17,37,38]. In this work, the
different damage evolution stages in these specimens are analysed using the AE technique
and deep neural network model.

Representative load-displacement curves of the four different specimen groups are
presented in Figure 4. All the four specimens apparently show a similar load response
during the tensile tests. Until the yield point, these specimens show a linear elastic behaviour,
which is followed by a yield phase. As observed in Table 4, the duration of the yielding
phase varies between the specimens. Nonetheless, the duration between the commencement
of fracture and the final failure is quite similar. It can be assumed that these specimens have
three damage evolution stages: elastic stage, plastic stage, and fracture stage.

First, the yield point is selected from the stress–strain curve of the tensile test data as
per the instructions in ASTM E8 standard. The region until the yield point is considered
as the elastic stage, where there is a linear elastic stress response by the specimen to the
applied load. Second, the plastic stage is selected from the yield point until the region
where the slope of the load response starts to decrease. Finally, the region beyond the plastic
stage until the final fracture is considered as the fracture region. A schematic representation
of the different damage evolution stages is presented in Figure 5. AE signals recorded from
each of these stages are collected and are analysed in their time-frequency domain.
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3.2. Time-Frequency Characteristics of AE Signals from Different Damage Modes

AE signals from the elastic stage of all four groups of specimens Tx, Ty, Tz and T45
are collected and analysed in their time-frequency domain using CWT. Interestingly, all
the AE signals from the elastic stage can be grouped into two categories based on their
time-frequency characteristics. The CWT spectrograms of these two categories of signals
are presented in Figure 6.
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It can be observed that in both the categories, most part of the spectral components are
present in the same frequency (between 200 kHz and 250 kHz) [39] and are localized in a
similar time domain. The only difference between these two categories is their magnitude.
The maximum magnitude of AE signals in the first category is between 0.06 and 0.08,
while the second category is generally between 0.01 to 0.02. Nonetheless, these are the
typical characteristics of the AE signals from the elastic stage. There are very few literatures
available to compare the frequency components and the magnitudes of AE signals gener-
ated during the linear elastic response of metallic components [40]. However, it has been
reported by some researchers that during the elastic stage, the AE events are generated due
to the dislocation motions, and they have frequency components between 200 kHz and
250 kHz. The presence of similar AE signals in all the four specimen groups show that the
signals presented in Figure 6 are the general characteristics of the AE signals generated
during the elastic stage.

During the plastic stage, however, AE signals are generated due to various damage
evolutions in the specimens. Grain boundary movements, local yielding around the
inclusions, local plastic deformation around the pores and the plastic deformation are some
of the sources of AE signals during the plastic deformation stage [39–43]. While analysing
the AE signals in the plastic stage of all four groups of specimens, three different categories
of AE signals are observed. These signals can be categorized based on their time-frequency
characteristics. The CWT spectrograms of the signals from the plastic stage are presented
in Figure 7.

The three categories of AE signals in the plastic stage have obvious differences in their
frequency characteristics. The first category of the signals in the plastic stage has two frequency
components, one localized around 100 kHz and the other around 200 kHz. The second category
of AE signals has its spectral energy centred in the frequency band above 300 kHz and the
signals are localized in a very narrow time domain compared to the other categories. The third
category has its spectral energy centred between 200 kHz and 250 kHz. However, these signals
have lots of reverberations, which can be seen by the similar spectral components with lesser
magnitude appearing up to the signal length of 0.4 ms. In the literature, some of these signal
characteristics are observed in the plastic stage of loading. Abkari and Ahmed have observed
AE signals with frequencies above 300 kHz in the plastic region [42]. Nonetheless, it can be
said that the AE signals generated during the plastic stage have three specific characteristics.
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AE signals from the fracture stage show two distinct time-frequency characteristics.
The CWT spectrograms of these signals are presented in Figure 8. It can be observed
that the CWT spectrograms of the signals in Figure 8 have more reverberations than the
signals shown in Figures 6 and 7. This possibly could be due to the overlapping of several
signals generated in short intervals in the fracture stage. The final fracture occurs in a very
short duration under loading, and this possibly could have generated signals with lots of
reverberations. The first category of these signals has its spectral energy distributed in two
frequency bands: one at 200 kHz and another above 300 kHz. The second category of the
signals have lots of reverberations, but the spectral component is localized at 200 kHz. The
reverberations extend up to the length of 0.4 ms of the signal.
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3.3. Convolutioanl Neural Network Training and Test Results

In the previous section, AE signals from all the specimens are recorded and analysed in
their time-frequency domain. Based on their time-frequency characteristics, two categories
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of signals in the elastic stage, three categories in the plastic stage and two categories of
signals in the fracture stage are observed. AE signals having the similar time-frequency
characteristics as those displayed in Figures 6–8 are used for training the CNN. The objective
is to train the CNN to classify these groups of signals automatically and thereby classifying
the damage evolution stages of the AlSi10Mg specimens under loading.

The CNN can be trained more efficiently if the number of training data is high. The
number of AE signals recorded during the tensile tests of four groups of AlSi10Mg specimens
is less than 5000. When these signals are classified into three damage evolution stages,
the plastic stage contains around 3000 signals, while the elastic stage and fracture stage
has 1000 signals each. This is not sufficient to train the CNN. Therefore, these signals are
augmented by adding random noises. In all, 15,000 signals for each damage evolution stage,
a total of 45,000 signals, are generated. A random selection of 30,000 signals is used for
training and the remaining 15,000 signals are used for validating its classification efficiency.

As indicated in Section 2.3, the CWT spectrograms of these signals are used for training
and testing the CNN. The CNN is trained for a maximum of 10 epochs with a minibatch
size of 100.

During the initial analysis, the default SqueezeNet from the MATLAB Deep Network
Designer toolbox was used. The training efficiency reached 100% at the end of 10 epochs.
The total time for training the original SqueezeNet is 54 min. Although the training
efficiency reached 100%, the classification efficiency was merely 48.7% (Figure 9). This is
due to the overfitting of data. The original SqueezeNet is more efficient in extracting deeper
features in complex images of objects or beings. The input data used in this study are
spectrograms. Extracting deeper features in the spectrograms often results in overfitting of
data. Therefore, a modified SqueezeNet, as explained in Section 2.4, is trained in this study.
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After implementing k-fold cross validation into the training module, the classification
efficiency of the modified SqueezeNet increased to 100%. The data is partitioned into k = 5
and trained for 5 iterations. Since the training is continued for 5 iterations to improve the
classification efficiency, the total time for training this network is approximately 5 times the
time taken for training the original SqueezeNet. Nonetheless, considering the increase in
classification efficiency from 48.7% to 100%, the total time consumption of 4 h and 12 min
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is within the acceptable limit. Thus, the modified SqueezeNet with k-fold implementation
is considered a relative success. The confusion matrix of the modified SqueezeNet with
k-fold implementation is presented in Figure 10.
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The results show that the modified SqueezeNet can explicitly classify the AE signals
from the three different damage evolution stages when the k-fold cross validation is
implemented. Using this neural network model, the AE signals generated from different
damage evolution stages can be identified.

4. Conclusions

A modified SqueezeNet neural network with k-fold cross validation is proposed in this
research work for identification and classification of AE signals generated from different
damage evolution stages of AlSi10Mg test specimens. Four different configurations of
AlSi10Mg specimens prepared using SLM process are tested. AE signals generated during
the test are recorded and analysed. First, the damage evolution of the specimens is classified
into three stages: elastic stage, plastic stage, and fracture stage. AE signals from each stage
are extracted and analysed in their time-frequency domain using CWT. AE signals from
each of the damage stage showed differences in their time-frequency characteristics, which
are used for training the modified SqueezeNet neural network built for this study. The
classification efficiency of 48.7% is obtained for the original SqueezeNet without the k-fold
implementation and it increased to 100% when k-fold cross validation is implemented
for training. The proposed network can efficiently classify the AE signal generated from
different damage evolution stages of AlSi10Mg specimens.
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