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Abstract: Ternesite–ye’elimite (TCSA) cement is a new type of environmentally advantageous binder
prepared by introducing ternesite, a reactive phase, into belite calcium sulfoaluminate cement clinker.
This paper reports the laboratory production of TCSA cement by the addition of minor elements to
achieve the coexistence of ternesite and ye’elimite. The influence of dopants on the mineralogical
composition of clinkers and the clinkering conditions for the preparation of TCSA cement clinkers
were investigated by X-ray powder diffraction and scanning electron microscopy. The mechanical
properties and hydration products of the cement pastes were also studied. The results indicated that
the addition of CaF2, P2O5 and Na2O can promote the coexistence of ternesite and ye’elimite, and
that Na2O is the most effective candidate. TCSA cement clinkers could be successfully prepared at
1150 ◦C for 30 min by doping 0.3% Na2O. The TCSA cement clinkers exhibited shorter setting times
than the BCSA cement clinkers. The later strength of TCSA cement showed a significant increase
compared with BCSA cement. The effect of Na2O was different on the strength development for
TCSA and BCSA cement. The dissolution of ternesite could promote the formation of ettringite. The
reactivity of belite was higher in TCSA cement due to the formation of strätlingite.

Keywords: ternesite–ye’elimite cement; doping; clinkering; hydration; compressive strength

1. Introduction

Portland cement (PC) is extensively used in construction engineering all over the
world. However, the cement industry has the disadvantage of consuming a large amount
of energy, and it generates 5~10% of anthropogenic CO2 emissions [1–3]. Therefore, the
development of new types of environmentally advantageous cements is highly expected to
reduce the environmental load. Calcium sulfoaluminate (CSA) cement was proposed as a
sustainable alternative to PC owing to reductions in CO2 emission and energy consump-
tion [4,5]. CSA cement clinker is produced by calcining limestone, bauxite and gypsum
at 1250–1350 ◦C, which is lower than the temperature for PC production. Therefore, CSA
cement has significant environmental benefits. Typically, CSA cement clinkers consist of
more than 50 wt.% of ye’elimite (C4A3S), belite (C2S) and other compounds, including
gehlenite (C2AS), anhydrite (CS), ferrite (C4AF), periclase (M), mayenite (C12A7) and per-
ovskite (CT) [6,7]. CSA cements have exhibited rapid setting, high early-age strength, low
permeability and shrinkage compensation [8]. The applications of CSA cements are mainly
in pre-cast concrete, small-scale repair products, and glass-fiber-reinforced composites in
China. However, the scarcity of aluminum material, its high cost, and strength deterioration
limit the application of this kind of cement on a large scale.

Recently, a subclass of belite-rich CSA cement, known as belite calcium sulfoaluminate
(BCSA) cement, has received increasing attention [9,10]. This kind of cement contains the
dominant mineral belite and the secondary phase ye’elimite. Hence, the production of
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BCSA cement allows low-grade bauxite and aluminum bearing solid wastes to be used
to decrease the demand for bauxite, resulting in lower production costs. Due to the high
reactivity of C4A3S, BCSA cement has high early strength. However, the compressive
strength of BCSA cement increases slowly at later ages because of the slow hydration
reactivity of belite [11]. During the clinkering process of CSA-based cements, belite can
react with anhydrite to form a transitory phase, ternesite C5S2S, at temperatures higher
than 900 ◦C [12]. Ternesite was previously identified as a slowly hydrating phase [13–16].
Recently, ternesite has gained increasing interest because of its hydraulic reactivity when
present in CSA cements [17]. Moreover, ternesite even showed higher reactivity than
belite [17]. Therefore, the creation of a new type of cement clinker based on ternesite and
ye’elimite is proposed by introducing ternesite into BCSA cement clinker in this paper.

The formation of ternesite was mainly dependent on the clinkering temperature. Hou
et al. showed that ternesite was stable within a temperature range of 1100 to 1200 ◦C [6].
A temperature higher than 1200 ◦C was able to decompose ternesite to belite and anhy-
drite. However, the CSA cement clinkers were manufactured in the temperature range
of 1250 to 1350 ◦C in order to ensure the full formation of ye’elimite. Therefore, the for-
mation/decomposition temperature of ternesite and ye’elimite was incompatible. Some
approaches have been reported to realize the coexistence of ternesite and ye’elimite. Buller-
jahn et al. used a two-stage clinkering process, firstly clinkering at 1250 ◦C for 1 h and then
clinkering at 1100 ◦C for 1 h, in order to enhance the formation of ternesite [17]. Similarly,
Shen et al. studied the laboratory production of belite-sulfoaluminate-ternesite cements by
adopting two successive sintering steps [18]. A first clinkering for 30 min at 1270 ◦C and a
second clinkering for 1 h at 1100–1200 ◦C were carried out to stabilize ternesite as a clinker
component. The formation of ternesite was reported to improve the mechanical strength at
later ages. Hanein et al. produced ternesite-rich calcium sulfoaluminate clinkers in a single
burning process at a temperature above 1200 ◦C by controlling the partial pressures of SO2
and O2 as well as the temperature [19]. Ji et al. determined the best sintering temperature
and sintering time of belite-ye’elimite-ternesite cement clinker by setting a temperature
point every 30 ◦C (1150–1300 ◦C) and setting every hour (1–6 h) [20]. This clinker could be
obtained by sintering at 1210 ◦C for 2 h. Li et al. prepared ternesite–ye’elimite clinker from
steel slag at 1200 ◦C [21]. The iron phase from steel slag can promote the formation of the
liquid phase, and can thereby result in the coexistence of ternesite and ye’elimite. Miner-
alizers, such as phosphates or fluorides, were usually used during the clinkering process
to promote mineral formation. When ternesite was stabilised at temperatures higher than
1200 ◦C, the use of mineralizers was necessary [22]. Skalamprinos et al. investigated the
influence of dopants on the synthesis and hydration of ternesite [23]. It was found that the
most effective promotion of ternesite formation was obtained by the addition of MgO in
the precedence of 0.2% K2O and 0.1% Na2O. Shen et al. found that among the five dopants
(CaF2, Na2O, Fe2O3, MgO, P2O5), CaF2 was most effective in the promotion of ternesite
formation [24]. Therefore, adding minor elements is expected to promote the coexistence of
ternesite and ye’elimite.

The objective of this study is to produce ternesite–ye’elimite (TCSA) cement clinkers
in a single stage process. Considering the discrepancy of the formation/decomposition
temperature of ternesite and ye’elimite, this paper employs minor elements to expand
the coexisting temperature range of the two clinker phases. The influence of dopants
on the formation of ternesite and ye’elimite was investigated for the synthesis of TCSA
cement clinkers in a one-step process. Moreover, the parameters affecting the formation of
ternesite—such as the gypsum content in raw mixes, sintering temperature and time—were
also studied. This study is intended to further aid the understanding of the mechanical
properties and the hydration process. The final TCSA cements are expected to develop
better performance than the BCSA cements. This study will provide a new thought for the
synthesis of TCSA clinkers.



Materials 2022, 15, 4369 3 of 17

2. Experiment
2.1. Raw Materials

For the production of the TCSA cement clinkers, the raw materials used were limestone,
bauxite, fly ash and natural gypsum. These materials were obtained from the market
in Jiangsu, China. The chemical compositions of the materials, as measured by X-ray
fluorescence spectrometry (XRF), are listed in Table 1. The dopants used were analytical
grade: CaF2, Ca3(PO4)2, Fe2O3, MgO and Na2CO3. All of the materials were dried and
ground in a laboratory mill until the 100% passing of the 75-µm sieve.

Table 1. Chemical composition of the raw materials determined by XRF (wt.%).

Materials Limestone Bauxite Gypsum Fly Ash

Oxide
CaO 44.34 0.38 32.28 4.73
SiO2 9.83 12.38 2.02 53.56

Al2O3 3.25 65.75 0.97 24.01
Fe2O3 1.83 1.50 0.49 5.91
MgO 3.44 0.30 2.71 0.85
SO3 1.06 0.16 39.50 0.51
K2O 0.16 1.23 0.12 1.64

Na2O 0.13 0.25 - 0.57
TiO2 0.28 4.14 0.08 1.38
LOI 35.50 13.45 21.50 4.50

2.2. Synthesis of the TCSA Cement Clinkers

Three TCSA cement clinkers were synthesized in this study. The targeted compositions
of the TCSA cement clinkers are demonstrated in Table 2. The total amount of ternesite,
belite and anhydrite was kept constant (50%) in clinkers A, B and C, while the content
of ye’elimite was 40%. Based on the reaction degree of the anhydrite with belite during
clinkering process, the contents of anhydrite in clinkers A, B and C were insufficient,
moderate (2%) and excessive (8%), respectively. The mix proportions of limestone, bauxite,
gypsum and fly ash are given in Table 3. For clinkers B and C, additional analytical-grade
Al2O3 was added to the raw mixes because the provision of aluminum from bauxite was
not sufficient. The dopant additions, with the proportions of the total amount of raw
materials, are shown in Table 4. All of the materials were homogenized using a mixer for
1 h, and then the mixtures were made into disk models (ϕ 50 mm × 8 mm). After being
dried in an oven (50 ◦C for 24 h), the samples were placed into corundum crucibles and
heated in a furnace to temperatures between 1100 and 1250 ◦C for 15–60 min (Figure 1).
Finally, the clinkers were quenched with forced air. The clinkers were ground using a ball
mill to 100% pass the 75-µm sieve.

Table 2. Theoretical mineralogical compositions of the TCSA clinkers (wt.%).

Phase A B C

C5S2S 35 48 42
C4A3S 40 40 40

C2S 15 0 0
C4AF 10 10 10

CS 0 2 8

Table 3. Proportions of the raw materials (wt.%).

Clinker Limestone Bauxite Fly Ash Gypsum Al2O3

A 59.1 21.5 1.1 18.3 -
B 53.8 20.6 - 24.5 1.1
C 50.3 16.9 - 29.0 3.8
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Table 4. Weight percentage of the dopant additions (wt.%).

CaF2 P2O5 Fe2O3 MgO Na2O

0 0 0 0 0
0.5 0.3 0.2 0.2 0.3
1 0.5 0.5 0.5 0.6

1 1 1 0.9
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Figure 1. Sintering profiles for the preparation of the TCSA cement clinkers.

2.3. Testing Methods

Pastes were produced using a water/cement ratio of 0.5. The setting time was de-
termined using a standard Vicat apparatus in accordance with Chinese standard GB/T
1346–2001. The compressive strengths were tested on 20-mm cubic samples. The cement
pastes were cured at a temperature of 20 ◦C and a humidity of 95%. After 1 day of curing,
they were demoulded and continuously cured in water at 20 ◦C. The compressive strength
tests were conducted at the hydration ages of 1, 3, 7 and 28 days on six samples. The
strength value was the average of six samples.

The hydrated samples were crushed and subsequently submerged in ethanol for
24 h to prevent further hydration. Finally, the samples were dried at 40 ◦C and milled
to pass a 75-µm sieve. XRD (Bruker D8 Advance diffractometer with Cu Kα radiation,
Bilerica, MA, USA) was used to analyse the mineralogy of the synthesized clinkers and
hydrated pastes. The instrument was operated at 40 kV and 40 mA with a step size of
0.02◦. The quantitative information of the clinkers was obtained through the Rietveld
method with TOPAS 4.2 software (Version 3, Bilerica, MA, USA). The crystal structures for
the Rietveld analysis were reported as cubic-C4A3S(PDF# 071-0969), ortho-C4A3S (PDF#
085-2210), β-C2S (PDF# 086-0398), C2F (PDF# 038-0408), C4AF (PDF# 071-0667), CS (PDF#
074-1639) and C5S2S (PDF# 070-1847). The morphological features of the specimens were
characterizes by means of a GeminiSEM 300 Scanning Electron Microscope (SEM, Hitachi,
Tokyo, Japan). The polished cross sections were coated with gold in order to obtain a
conductive surface for observations. Thermogravimetic analysis (TG-DSC) was carried out
using a TG/DSC1/1600LF thermal analyzer (Mettler Toledo, Zurich, Switzerland). The
samples were heated from 30 ◦C to 1000 ◦C with a heating rate of 10 ◦C/min under a
nitrogen atmosphere (flow rate 50 mL/min).

3. Results and Discussion
3.1. Synthesis of the TCSA Cement Clinkers
3.1.1. Influence of Dopants on the Coexistence of Ternesite and Ye’elimite

The addition of the dopants had a significant influence on the formation of ternesite
as a single phase [23,24]. Therefore, some minor elements may promote the coexistence of
ternesite and ye’elimite. The influence of dopants on the phase composition of clinker A
sintered at 1150 ◦C for 30 min are presented in Figure 2. The main minerals of clinker A
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were ye’elimite, ternesite, belite, anhydrite and ferrite. Free lime and alumina were found
in the clinker without a dopant, indicating incomplete clinker formation.
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Figure 2. XRD patterns of doped cement clinker A. (a) CaF2; (b) P2O5; (c) Na2O; (d) MgO; (e) Fe2O3.

The incorporation of CaF2, P2O5 and Na2O had a significant effect on the phase
compositions of the cement clinkers. In the presence of these dopants, free lime was not
observed, indicating that these dopants improved the burnability of the raw mix. The added
dopants were able to enter the solid solution on the basis of oxide compositions [25–27].
CaF2 can be utilized as a mineraliser during the clinkering process. When CaF2 was added
to the raw mixes, the intensity of ternesite increased with the corresponding decrease of the
anhydrite and belite diffraction peak intensity. The ye’elimite peak became stronger with
the increase of the CaF2 dosages. Similarly, the addition of P2O5 enhanced the formation
of ternesite and ye’elimite (Figure 2b). It was indicated that P2O5 and F can facilitate
the formation of ye’elimite in CSA cements [28]. A comparison between P2O5 and CaF2
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suggests that P2O5 is more beneficial for the promotion of the formation of ternesite. The
formation of ternesite and ye’elimite also increased with the addition of Na2O (Figure 2c).
When the content of Na2O was 0.3%, the most effective promotion of the formation of
ternesite was achieved.

Fe2O3 and MgO did not demonstrate a notable influence on the formation of ternesite
(Figure 2d,e). The free lime peak was still detected when these two dopants were incorpo-
rated into the cement clinkers. The addition of Fe2O3 promoted the formation of ye’elimite,
while the intensity of ye’elimite slightly decreased in the presence of MgO. It was shown
that Fe2O3 could substitute Al2O3 in C4A3S to form C4A3 − xFxS, and the incorporation of
Fe2O3 promoted the formation of cubic ye’elimite [29].

Table 5 presents the mineralogical compositions of cement clinkers doped with CaF2,
P2O5, Na2O, Fe2O3 and MgO. The ye’elimite content of these doped clinkers was close
to the targeted content of TCSA cement clinkers. It could be seen that small amounts of
anhydrite were found in clinkers doped with CaF2, P2O5, and Na2O, resulting in a high
percentage (~30%) of ternesite. The clinker doped with Na2O showed the highest content
of ternesite. Free lime was found in the clinkers doped with Fe2O3 and MgO. Compared
with the clinkers doped with CaF2, P2O5, and Na2O, more anhydrite and a much lower
content of ternesite formed in these two clinkers. The results indicate that the addition
of CaF2, P2O5 and Na2O can promote the formation of ternesite at 1150 ◦C, and can thus
achieve the coexistence of ternesite and ye’elimite. Moreover, Na2O is the most effective
candidate among the five dopants.

Table 5. Quantitative mineralogical compositions of doped cement clinker A (wt.%).

Phase 0.5% CaF2 0.3% Na2O 0.3% P2O5 0.5% Fe2O3 0.5% MgO

C4A3S-o 32.2 29.5 30.0 30.5 30.2
C4A3S-c 6.9 11.3 9.6 10.8 6.7

C5S2S 25.3 28.5 27.8 16.3 18.5
C2S 22.3 18.8 20.7 24.7 26.5

C4AF 5.7 6.2 5.9 6.2 5.3
C2F 3.9 3.5 3.2 4.3 3.7
CS 3.7 2.2 2.8 5.6 6.7

f-CaO - - - 1.6 2.1

3.1.2. Influence of the Gypsum Content in the Raw Mixes on the Clinker Composition

It was reported that the formation of ternesite is associated with the burning tempera-
ture and proportioning of raw materials [7,30]. The SO3 to Al2O3 ratio had a significant
effect on the formation of ternesite during the preparation of CSA cement clinkers [17].
Figure 3 shows the XRD patterns of cement clinkers produced with different amounts of
gypsum in the raw mixes. These clinkers were doped with 0.3% Na2O and sintered at
1200 ◦C for 30 min. The intensity of the ternesite increased with the increase of the gypsum
amounts in the raw mixes. Excessive gypsum content in raw mixes may cause a much
lower content of ternesite due to the high quantities of anhydrite present in the cement
clinkers (clinker C). Accordingly, the decrease in the belite diffraction peak intensity can
be clearly observed. Moreover, increasing the gypsum content in raw mixes promoted the
formation of ye’elimite. Considering the complete formation of ternesite and ye’elimite,
the gypsum content in the raw mixes should be moderate, like the proportion of clinker B.
Therefore, clinker B was further analyzed in the following study.
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3.1.3. Influence of the Burning Conditions on the Clinker Composition

The influences of the production parameters, such as the sintering temperature and
retention time, were studied in order to produce TCSA cement clinkers. The phase com-
positions of clinker B with 0.3% Na2O obtained under different clinkering conditions are
demonstrated in Figures 4 and 5. Tables 6 and 7 give the quantitative phase compositions
of cement clinkers sintered in different conditions. All of the clinkers showed similar
phase compositions, ye’elimite, ternesite, ferrite, belite and anhydrite. Free lime was not
identified by XRD in the clinkers. In general, adequate proportioning and calcination can
be identified by a low free lime content [31]. As shown in Figure 4 and Table 6, when the
sintering temperature rose, the intensity of the ternesite increased, while that of anhydrite
decreased. The peak of belite was not clearly observed at 1150 ◦C. As the temperature was
higher than 1200 ◦C, the intensity of ternesite decreased, while that of belite and anhydrite
increased. When the temperature rose to 1220 ◦C, the ternesite peak was not obvious. The
peak of ternesite disappeared completely, and the belite peak was significantly strong at
the temperature of 1250 ◦C. Ternesite was stablilised at temperatures between 900 and
1200 ◦C [32–34]. It has been also reported that ternesite could decompose above 1210 ◦C
in the belite-ye’elimite-ternesite clinker [35]. In this experiment, the clinker sintered at
1150 ◦C showed the highest content of ternesite. Meanwhile, an obvious enhancement in
the formation of ye’elimite could be detected with the rise of sintering temperature. When
the sintering temperature rose above 1200 ◦C, the intensity of the ye’elimite was almost
constant. Therefore, the clinkers burned at 1150 ◦C are beneficial to the preparation of the
TCSA clinker.

Figure 5 and Table 7 depict the effect of the retention time on the phase compositions
of cement clinkers obtained at 1150 ◦C. There seemed to be little difference in the ternesite
peak intensity with the retention time being prolonged. The formation of ternesite was not
affected by prolonging the heating time [35]. It was shown that increasing the retention
time can promote the formation of ye’elimite. When the retention time was prolonged
to 30 min, the intensity of the ye’elimite was almost constant, and simultaneously the
anhydrite peak was weakened. Therefore, the suitable retention time appears to be 30 min.
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Table 6. Quantitative mineralogical compositions of clinker B sintered at different tempera-
tures (wt.%).

Phase 1100 ◦C 1150 ◦C 1200 ◦C 1220 ◦C 1250 ◦C

C4A3S-o 31.8 37.5 35.4 33.5 32.7
C4A3S-c 5.3 8.2 7.9 8.8 9.5

C5S2S 25.7 34.6 29.2 10.3 -
C2S 16.4 5.5 10.6 25.7 33.5

C4AF 5.6 4.0 3.8 4.3 4.6
C2F 4.4 5.4 5.8 4.8 4.3
CS 9.6 4.8 7.3 12.6 15.4

f-CaO 1.2 - - - -
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Table 7. Quantitative mineralogical compositions of clinker B sintered at 1150 ◦C for different
retention times (wt.%).

Phase 15 min 30 min 45 min 60 min

C4A3S-o 31.8 37.5 35.9 35.8
C4A3S-c 7.1 8.2 8.5 7.8

C5S2S 32.5 34.6 33.9 34.4
C2S 11.7 5.5 6.5 6.7

C4AF 3.6 4.0 4.5 4.7
C2F 5.8 5.4 5.3 4.9
CS 7.5 4.8 5.4 5.7

The compressive strengths of clinker B with 0.3% Na2O obtained under different
clinkering conditions are presented in Figures 6 and 7. The strength development was
enhanced by raising the sintering temperature. The early-age strength development of
CSA cement is mainly associated with the hydration of ye’elimite with anhydrite and the
precipitation of ettringite [36,37]. For TCSA cement clinkers, the early strength may also be
ascribed to the hydration of ye’elimite with anhydrite. The increase of the ye’elimite content
caused the improvement of the early strength with the rise of the sintering temperature.
When the temperature was higher than 1200 ◦C, the effect of the sintering temperature
on the early-age strength was insignificant due to the constant ye’elimite content. The
lower early strength of clinkers sintered at temperatures below 1200 ◦C may be due to the
inadequate anhydrite which was consumed by the formation of ternesite in the clinkers.
After 28 days of hydration, the clinker obtained at 1250 ◦C showed the highest strength
of 72.6 MPa, while the strengths of the clinkers sintered at 1150 ◦C, 1200 ◦C and 1220 ◦C
were similar, at around 55 MPa. The cement clinkers sintered at 1250 ◦C could be called
BCSA cement clinker due to the absence of ternesite. The highest strength of this cement
was mainly due to the hydration of ye’elimite with a large amount of anhydrite (~15%).
Compared with this cement, the clinker fried at 1150 ◦C contained the highest content of
ternesite, but the lowest content of anhydrite, which resulted in its much lower strength.
The similar strength of clinkers sintered at 1150 ◦C, 1200 ◦C and 1220 ◦C indicated that
ternesite could improve the strength development at later ages.
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Figure 7. Compressive strength of cement clinker B sintered at 1150 ◦C for different retention times.

The clinkers burned for 15 min had the lowest strength from 1 d to 28 d (Figure 7).
This may be explained by the lower content of ye’elimtie. When the retention time was
more than 30 min, not much change was observed in the early-age strength. After 28 days
of hydration, the clinker burned for 30 min gained the highest strength. Therefore, the
optimum retention time is 30 min, considering the strength development.

3.1.4. Characterization by XRD and SEM

As shown in the above investigation, TCSA cement clinkers can be prepared well at
1150 ◦C for 30 min by doping with 0.3% Na2O. Figure 8 displays the Rietveld refinement
plot of the TCSA cement clinker. The main minerals C4A3S, C5S2S and C4AF formed in the
synthetic TCSA cement clinker. The diffraction peaks of C2S and CS were also observed,
but with low contents. The phase composition of the clinker was somewhat different to
the target mineralogical composition. The refinement had a Rwp value below 9%, which
indicates that the quantitative phase analysis result was highly accurate.
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Figure 8. Rietveld refinements for the TCSA cement clinker with 0.3% Na2O, Rwp = 8.55.
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The clinkers obtained at 1250 ◦C for 30 min were marked as BCSA cement clinkers.
Table 8 presents the mineralogical compositions of the TCSA and BCSA cement clinkers.
The ye’elimite content of the BCSA cement clinkers was close to that of TCSA cement
clinkers. It can be seen that large amounts of belite and anhydrite were formed in the BCSA
cement clinkers. The addition of Na2O can facilitate the formation of ternesite in TCSA
cement clinkers. The ye’elimte content was slightly higher and the anhydrite content was
much lower when Na2O was added to the TCSA cement clinkers.

Table 8. Quantitative mineralogical compositions of the TCSA and BCSA clinkers (wt.%).

Phase TCSA (No
Dopants)

TCSA (0.3%
Na2O)

BCSA (No
Dopants)

BCSA (0.3%
Na2O)

C4A3S-o 36.0 37.5 38.8 39.9
C4A3S-c 8.4 8.2 6.2 7.5

C5S2S 30.1 34.6 - -
C2S 8.2 5.5 29.8 28.8

C4AF 6.1 4.0 7.2 6.4
C2F 3.3 5.4 3.5 3.6
CS 7.9 4.8 14.5 13.8

Figure 9 shows the SEM micrographs of cement clinkers which were doped with
0.3% Na2O. Rounded particles of belite and polygon ye’elmite could be observed in the
BCSA cement clinkers (Figure 9a). Micron-sized rodlike grains of ternesite and rhombic
particles of ye’elimite were found in the TCSA cement clinkers (Figure 9b). It is known that
the morphology of ye’elimite is a rhombic decahedron [38,39]. The size of the ye’elimite
crystals of TCSA cement clinkers seemed to be much smaller than those of BCSA cement
clinkers. This may be related to the lower sintering temperature for TCSA cement clinkers.
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3.2. Performance of the TCSA Cement
3.2.1. Setting Time

The setting time of CSA cements is characterized by the initiation of the solidification
and subsequent hardening [40]. Table 9 presents the setting time of TCSA and BCSA
cement clinkers. It can be seen that the TCSA cement clinkers exhibited shorter setting
times than the BCSA cement clinkers. The hydration reaction of ye’elimite with calcium
sulfate is initiated quickly, and promotes the precipitation of ettringite, resulting in the
rapid setting of CSA cements [41]. The faster hydration rate of TCSA cement clinkers may
be associated with the smaller size of ye’elimite grains. Moreover, the incorporation of
ternesite resulted in a great reduction of the setting times of the cements [42]. When Na2O
was incorporated into the cement clinkers, the setting times of both cement clinkers were
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significantly shortened. For the TCSA cement clinker, 0.3% Na2O decreased the final setting
time by 10 min. For the BCSA cement clinker, the same dosage of Na2O shortened the initial
and final setting times by 20 min. Therefore, a much greater decrease in setting time was
achieved for the BCSA clinker than for the TCSA clinker. The ye’elimite content of clinkers
doped with Na2O was slightly higher than that of clinkers with no dopants. Additionally,
the addition of alkali (Na2O) can accelerate the hydration of cement [43]. These two aspects
may shorten the setting time of cement clinkers.

Table 9. Setting time of TCSA and BCSA cement clinkers.

Clinkers Initial Setting Time (min) Final Setting Time (min)

TCSA (no dopants) 20 30
TCSA (0.3% Na2O) 17 20
BCSA (no dopants) 55 70
BCSA (0.3% Na2O) 35 50

3.2.2. Compressive Strength

The TCSA and BCSA cement were prepared by mixing the corresponding clinkers
with gypsum. Considering that the BCSA cement clinkers contained a large amount of
anhydrite which originated from the decomposition of ternesite, the BCSA cements were
prepared by mixing the clinkers with 5% gypsum, while the TCSA cements were obtained
by adding 10% of gypsum. Figure 10 demonstrates the compressive strength development
of the TCSA and BCSA cements. In the absence of dopants, TCSA cement exhibited greater
compressive strength than BCSA cement, especially after 3 days of hydration. When Na2O
was doped during the clinkering, the early strength gain of the TCSA and BCSA cement
pastes were similar. The minor difference was that a small decrease in the strength of TCSA
cement at 1 d could be found. After 28 days of hydration, the compressive strength of TCSA
cement showed a significant increase compared with BCSA cement. It can be concluded
that the formation of ternesite can improve the mechanical strength of cement. Previous
investigations reported that the incorporation of ternesite could enhance the later strength
of BCSA cement [18,44]. The presence of Na2O improved the compressive strength of BCSA
cement. The addition of alkali (Na2O) can accelerate the hydration of cement and raise the
degree of reaction [43], which is beneficial to the strength development of BCSA cement.
The effect of Na2O had different effect on the strength development for TCSA cement.
The addition of Na2O caused a significant decrease in the strength of TCSA cement at 3 d
and 7 d. This may be associated with the phase composition of TCSA clinker. The early
strength of TCSA cement may mainly depend on the hydration of ye’elimite with calcium
sulfate [21]. The addition of Na2O caused a much lower content of anhydrite, which may
decrease the early strength of TCSA cement. After 28 days of hydration, the strength gains
of TCSA cements with and without Na2O were similar. This indicates that a higher content
of ternesite increases the later strength of TCSA cement with Na2O. It is because of this that
the long-term strength of TCSA cement should be studied further.

3.3. Hydration of TCSA Cement Pastes

The changes of the hydration products were determined using XRD and TG/DSC.
Figure 11 gives the XRD patterns of TCSA and BCSA cements hydrated for 1, 3, 7 and 28
days. It can be seen that the TCSA and BCSA cements formed large amounts of ettringite.
There were also some unhydrated clinker phases after 28 days of hydration, such as
ye’elimite, belite and ternesite. Amorphous hydrated aluminum hydroxide was not found
due to its poor crystalline structure [45,46].
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Figure 11. XRD patterns of TCSA and BCSA cement pastes at 1, 3, 7 and 28 days. (a) TCSA cement
(no dopants); (b) TCSA cement (0.3% Na2O); (c) BCSA cement (no dopants).
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For TCSA cement pastes (Figure 11a,b), a significant reduction in the intensity of the
ye’elimite peaks was discovered with ongoing hydration. The intensities of the ettringite
peaks increased until 7 days of hydration. At 28 days, the decrease of the ettringite peak
intensities could be clearly observed. The intensities of the ternesite peaks significantly
decreased with time, especially after 28 days of hydration. This suggests that the ternesite
formed in TCSA cement clinker is a reactive phase. Traces of strätlingite (C2ASH8) were
found in the TCSA cement pastes. Belite could react with AH3 to produce strätlingite in
CSA cements after the depletion of calcium sulfate [47]. It was found that the content of
strätlingite increased with the decrease of the gypsum content in the CSA cements [48].
The lower content of gypsum in TCSA cement may cause the formation of strätlingite. In
addition, the dissolution of ternesite was accompanied by the release of calcium silicate,
which would react with AH3 to form strätlingite. It can be seen that strätlingite was
present in the pastes with 0.3% Na2O after 3 days of hydration, while this occurred in the
pastes with no dopants at day 7. Compared with the pastes with no dopants, the ettringite
peaks were more intense in the pastes with 0.3% Na2O at 3 d and 7 d. The addition of
Na2O affected the hydration products of TCSA cements, and thereby caused the different
strength developments shown in Figure 10. As seen in Figure 11c, BCSA cement displayed
a similar ettringite and ye’elimite evolution as for TCSA cement. The ye’elimite peaks
were larger than those of TCSA cement with no dopants. Gypsum was observed even after
7 days of hydration, and disappeared at 28 days. No strätlingite was discovered in the
BCSA cement pastes.

Table 10 presents the phase compositions (in weight) of TCSA cement doped with
Na2O, and BCSA cement. The consumption of ye’elimite, anhydrite and gypsum was
faster for TCSA cement. The low sintering temperature could improve the hydration
rate of ye’elimite [49]. The amount of ternesite decreased between days 1 and 28. This
indicates that ternesite participates in the hydration. The release of calcium sulfate from
the dissolution of ternesite can promote the formation of ettringite. This resulted in a
higher amount of ettringite in the TCSA cement pastes. Moreover, it was found that the
reactivity of belite was higher in TCSA cement pastes. This was confirmed by the formation
of strätlingite from the reaction of belite with AH3. In contrast, the lower reactivity of belite
and a complete lack of strätlingite were observed in the BCSA cement pastes.

Table 10. Quantitative phase compositions of TCSA and BCSA cements (wt.%).

Phase TCSA (1 d) TCSA (3 d) TCSA (28 d) BCSA (1 d) BCSA (3 d) BCSA (28 d)

C4A3S 7.7 5.5 4.2 11.1 9.8 7.5
C5S2S 26.2 22.7 19.5 - - -
C2S 4.6 2.1 - 25.5 25.3 24.6
CS 0.5 - - 2.7 1.3 -

CSH2 1.3 - - 5.2 3.4 -
Ettringite 33.8 36.3 30.6 30.7 33.6 31.2

strätlingite - 3.4 6.7 - - -
Amorphous 25.4 28.2 30.6 23.9 26.2 30.4

Figure 12 presents the TG-DSC plots of TCSA cements (0.3% Na2O) hydrated for 1, 3,
7 and 28 days. All of the pastes exhibited a continuous mass loss at 100–700 ◦C. The mass
loss, centered at ~110 ◦C, was mainly due to the decomposition of ettringite [50,51]. The
second endothermic peak was found between 150 and 220 ◦C, which was related to the
dehydration of strätlingite. Aluminum hydroxide was formed together with ettringite, but
it was not detected by XRD, and was identified at approximately 250–300 ◦C [52,53]. The
exothermic peak was observed between 700 and 800 ◦C, but the phase corresponding with
this peak was not clear. Some additional peaks were observed around 900–1000 ◦C, which
may be associated with the presence of carboaluminate hydrate phases. The total mass
losses of the cement pastes increased from days 1 to 7, but decreased at 28 days. Gypsum
was not detected, in agreement with the XRD findings. This demonstrates that the gypsum
from the hydration of ternesite was consumed for the formation of ettringite.
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Figure 12. DSC-TG plots of the TCSA cement pastes at 1, 3, 7 and 28 days.

4. Conclusions

A new type of ternesite–ye’elimite cement clinker was synthesized by incorporating
minor elements. The impact of dopants on the phase formation was investigated in order
to attain the coexistence of ternesite and ye’elimite. This paper also aimed to study the
cements’ performance. The following conclusions can be made on the basis of this study:

(1) Fe2O3 and MgO did not demonstrate a remarkable effect on the formation of ternesite.
The addition of CaF2, P2O5 and Na2O can promote the formation and coexistence of
ternesite and ye’elimite at 1150 ◦C. Na2O is the most effective dopant to facilitate the
formation of ternesite.

(2) A moderate gypsum content in the raw mixes for clinker B could facilitate the coexis-
tence of ternesite and ye’elimite. A sintering temperature of 1150 ◦C and a retention
time of 30 min were beneficial for the production of TCSA cement clinkers.

(3) The TCSA cement clinkers exhibited shorter setting times than the BCSA cement
clinkers. In the absence of dopants, TCSA cement exhibited greater compressive
strength than BCSA cement. When Na2O was incorporated into the clinkers, the
early strength gains of the two cements were similar. After 28 days of hydration, the
compressive strength of TCSA cement showed a significant increase compared with
BCSA cement.

(4) The dissolution of ternesite could promote the formation of ettringite. The reactivity
of belite was higher in TCSA cement due to the formation of strätlingite.

Considering that ternesite will continue to hydrate at later ages, further work will
concentrate on the long-term performance of TCSA cements, including its mechanical
strength, dimensional stability and ettringite formation.
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