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Abstract: Researchers and engineers are presently focusing on efficient waste material utilization in
the construction sector to reduce waste. Waste marble dust has been added to concrete to minimize
pollution and landfills problems. Therefore, marble dust was utilized in concrete, and its prediction
was made via an artificial intelligence approach to give an easier way to scholars for sustainable
construction. Various blends of concrete having 40 mixes were made as partial substitutes for
waste marble dust. The ultrasonic pulse velocity of waste marble dust concrete (WMDC) was
compared to a control mix without marble dust. Additionally, this research used standalone (multiple-
layer perceptron neural network) and supervised machine learning methods (Bagging, AdaBoost,
and Random Forest) to predict the ultrasonic pulse velocity of waste marble dust concrete. The
models’ performances were assessed using R2, RMSE, and MAE. Then, the models’ performances
were validated using k-fold cross-validation. Furthermore, the effect of raw ingredients and their
interactions using SHAP analysis was evaluated. The Random Forest model, with an R2 of 0.98,
outperforms the MLPNN, Bagging, and AdaBoost models. Compared to all the other models
(individual and ensemble), the Random Forest model with greater R2 and lower error (RMSE, MAE)
has a superior performance. SHAP analysis revealed that marble dust content has a positive and direct
influence on and relationship to the ultrasonic pulse velocity of concrete. Using machine learning to
forecast concrete properties saves time, resources, and effort for scholars in the engineering sector.

Keywords: waste; marble dust; building materials; mortar; concrete

1. Introduction

Keeping in mind sustainable development, the need is to curtail excessive industrial
processes, along with the enhancement of cost efficiency in parallel with a reduction in en-
vironmental pollution [1]. Industrial waste, when incorporated in concrete, can contribute
towards sustainable development in terms of environmentally friendly and economical
construction materials [2,3]. The partial replacement of cement and other constituents
of concrete has already been made extensively by industrial byproducts in various stud-
ies [4–8]. Several types of waste materials have been studied for their potential use in
building materials, such as marble [9–12], super-absorbent polymer [13,14], glass [15–17],
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slag [18], bagasse ash [19], rubber [20,21], plastic [22], ceramic [23,24], natural fiber [25–28],
and recycled aggregate [29–32]. Among these, marble dust, which is produced during
cutting processes in mines, has also been used in the production of concrete. The use of
marble dust, either as a natural aggregate [33–35] or as a replacement for Portland cement
(PC) [36–38], has been studied in various research. The major focus of existing studies has
been replacing cement with alternative sustainable materials to reduce emissions caused
by PC. Marble waste has been used as a cement replacement in concrete by various re-
searchers [33,35,39–42]. However, Li, et al. [43] reported the reduced emissions with 10%
marble dust replacement in concrete. Li, et al. [44] and Li, et al. [43] also proposed a paste
replacement method for reducing significant (i.e., 33%) cement content and enhancing the
utilization of marble dust waste with enhanced durability and strength. Marvila, et al. [10]
conducted research on cement and lime mortars using marble waste as a complemen-
tary binder. The authors observed that the results were satisfactory, with an increase in
mechanical strength with the use of marble waste. However, as a result of technology
advancements, laboratory testing is increasingly inadequate and uneconomical due to the
time and expense involved.

The mechanical characteristics of concrete can now be predicted using machine learn-
ing (ML) methods, owing to advances in artificial intelligence (AI) [45]. Classification,
clustering, and regression are examples of machine learning approaches that can be used
to estimate a variety of parameters with varying degrees of effectiveness and predict the
precise ultrasonic pulse velocity of concrete. As a result of recently evolved artificial intelli-
gence, the mechanical properties of different material types can be forecasted with the help
of supervised machine learning (ML) algorithms [46]. ML approaches, e.g., classification,
regression, and clustering, are deployed for statistical processes and for the prediction
of compressive strength with high accuracy [47]. The accuracy of the prediction can be
enhanced by the integration of standalone models, which yields an ensemble machine
learning (EML) model, as depicted by other fields of study [48,49]. The employment of
ensemble learning for the prediction of concrete parameters has been studied with a limited
scope. Random Forest and adaptive boosting (AdaBoost) are EML techniques that can
enhance prediction accuracy through the combination of voting and various regression tree
forecasting on the ultimate result [50]. Song, et al. [51] determined the compressive strength
of ceramic-waste-modified concrete both experimentally and with standalone techniques.
The marginal variation in the experimental results and the prediction model outcomes
were reported. Accordingly, the current study aims at investigating the usage of advanced
techniques for forecasting concrete properties. Ahmad, et al. [50] performed both EML and
standalone techniques for the prediction of concrete’s compressive strength and accuracy
comparison. It was reported that the outcome predicted by the EML techniques had more
accuracy than that of the standalone technique. However, the range of the standalone
technique results was also acceptable.

Taking into account the above-mentioned issues, NDT techniques are becoming an
emerging alternative solution nowadays. Rebound hammer and ultrasonic pulse velocity
(UPV) are the most commonly employed techniques [52,53], both in situ and in the labora-
tory, as per European standards [54,55]. The quality and homogeneity of different materials
such as rocks, wood, and concrete can be evaluated using a nondestructive test named
ultrasonic pulse velocity (UPV). In the said test, computation of the velocity using an
ultrasonic wave pulse that travels through the considered concrete structure is considered
to determine the quality and strength of concrete. The time required for the said pulse to
dissipate through the test specimen is measured. The ratio of the test specimen’s width to
the time consumed by the wave pulse for dissipation is called pulse velocity. The ultrasonic
wave speed relies on Young’s modulus and the density of the testing element. Great care
must be given while performing the test, although it is easy to conduct a UPV test. The
applicability of a UPV test is in the field, as well as in the laboratory. Both deterioration
analysis and quality control can be conducted using UPV. However, higher accuracy can
be achieved by considering both values to predict the strength of concrete. Even so, it has
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been revealed from experimental outcomes that the developed individual machine learning
models can achieve predictions with more accuracy. However, ensemble machine learning
models are gaining popularity these days; therefore, a performance comparison between
these models is necessary. In addition, in the designing phase of projects, it may be an
effective alternative for assisting civil engineers.

Only data regarding concrete composite mix proportions are usually accounted for in
various studies as input variables, instead of performing other additional measurements.
However, knowledge about the combined application of prediction models with NDT
techniques is still missing, pointing towards a research gap. Accordingly, the main aim
of the current study is to explore a reliable yet simple method for predictions of UPV for
waste marble concrete composites. Waste marble dust in concrete is explored in terms of
ultrasonic pulse velocity prediction through the application of artificial intelligence, as
presented in the current study. Nondestructive testing data are used for this prediction,
and its performance with existing artificial intelligence models, considering the effect of
raw ingredients and their interactions using SHAP analysis, is claimed to be the novelty
of the current research. To tackle challenges such as the excessive consumption of time
and money, novel machine learning algorithms are presented for anticipating the behavior
of waste concrete in terms of NDT. The focus of this research is to examine the UPV of
marble waste concrete and its estimation using an artificial intelligence approach. The
current work is unique in that it conducts experiments on waste marble concrete and uses
computational models for the prediction of UPV. This study is important for understanding
the significance of input parameters and their correctness in ML algorithm results. The
findings of the experimental work are also compared to the results of individual ML and
ensemble techniques in this study. Each model’s performance is additionally assessed
using k-fold cross-validation and statistical tests. Furthermore, a technique [56] is also
employed for the attainment of the implemented ML models’ enhanced explanation with
the help of global feature influence classification and the respective feature dependencies
and interactions. This technique discovers a novel area of knowledge in the form of
marble dust concrete ingredients’ influences on UPV, which is beneficial to researchers for
classifying suitable design mixes for marble dust concrete and for rapidly forecasting the
UPV of marble dust concrete without performing trial and error experimentation. The
above-mentioned knowledge area is also helpful for conducting studies in the future for the
strategic establishment of marble dust concrete with advanced functional and mechanical
features depending upon numerous limitations, such as time, cost, materials, and UPV
requirements, for various projects in the construction industry.

2. Materials and Methods

The raw materials included cement and marble dust, as well as fine and coarse
aggregates. For Type I OPC, the Blaine fineness value was 2196 m2/kg, and the relative
density was 2.43 g/cm3. The marble powder had a large specific surface area, which
suggests that adding it to concrete would improve its cohesiveness. An XRF technique
was performed in order to check the chemical composition. The physical properties were
determined using ASTM standards, i.e., ASTM C136, ASTM C29, ASTM C566, and ASTM
C128/C127. Table 1 lists the chemical content of the used marble dust, and Figure 1 shows
the physical appearance of the marble dust. Silicon dioxide in an amount of 73% was found
in the sand sample using an XRF technique. Locally accessible coarse aggregates up to
25.4 mm in nominal size were employed. The Type I cement’s surface area was 385 m2/kg.
The specific gravities of the sand and aggregate were 2670 and 2650 kg/m3, respectively.
Detailed information about the properties of the raw materials is available in a previous
study [51]. Figure 2 depicts the frequency distribution of each component used in the mixes.
It is related to distribution probability, which represents the number of observations linked
with a set of values or a single value. Table 2 also shows the physical parameters of the fine
and coarse aggregates. This research compares two mix designs, i.e., 20 different mixes for
controlled concrete and 20 different mixes for marble-replaced concrete. A marble content
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of 10% has been suggested in the literature for optimized properties. Therefore, 10% marble
waste was used in all the mixes for prediction using the artificial intelligence approach. The
study was designed to estimate the UPV using machine learning techniques, and this was
the main reason for selecting different types of mixes. Three cube specimens of 150 mm3

were prepared for each mix. After demolding, the specimens were water-cured for 28 days.
The ASTM C192/C192M was followed for the making and curing of the test specimens of
the concrete. Then, ASTM C597 was followed to determine the ultrasonic pulse velocity of
the concrete, as shown in Figure 3.

The test results showed that an increase in UPV was observed with the addition of
marble dust in the concrete. The UPV results of the controlled and waste marble dust mixes
are presented in Figure 4a,b, respectively. The UPV of the waste marble dust concrete was
higher than that of the controlled concrete. Calcium carbo-aluminate, which is formed in
concrete due to a reaction with the CaCO3 in marble dust, accelerates both the hydration
rate and strength development [37]. A greater pulse velocity indicated homogeneity
and excellent quality, whereas a lower pulse velocity indicated nonhomogeneity. The
methodology of the current research with the application of machine learning is shown in
Figure 5.

The dataset comprised 6 inputs: cement, marble dust, w/c ratio, coarse aggregates,
sand, and days. Table 3 describes the statistical analysis of the input parameters. Except
for age, which was evaluated in days, all the characteristics were weighted in kg/m3.
The findings of the descriptive analysis were dependent on many input factors. The table
provides the lowest and maximum values and ranges for each variable utilized in the model.
Other analytic parameters used to show the relevant values include standard deviation,
mean, mode, and a total of all the data points for each variable.

Figure 1. Marble dust.

Table 1. Chemical composition.

Components Marble Dust Cement

SiO2 14.08 18.93

Al2O3 2.69 9.89

MgO 2.77 1.67

CaO 42.14 59.6

K2O 0.63 1.13

Na2O 0.61 0.90

Fe2O3 1.94 3.59
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Table 2. Physical properties of raw materials.

Parameters
Maximum Size Fineness Modulus Moisture Content Density

mm - % kg/m3

Cement - - - 1432

Marble dust - 1.86 - 1118

Sand - 2.72 1.57 1790

Coarse aggregate 25.4 - 1.49 1591

Table 3. Details of input data.

Input Data

Cement
(kg/m3)

Marble Dust
(kg/m3)

Sand
(kg/m3)

Aggregate
(kg/m3)

Water
(kg/m3) Days UPV (m/s)

Standard Error 9.73 2.95 19.55 33.62 4.55 1.18 42.34

Median 472.84 17.24 615.26 1116.36 220.83 17.50 3334

Minimum 310.15 0.00 129.47 659.33 130.97 7.00 3110

Maximum 708.80 70.89 1020.65 1750.97 303.96 28.00 4502

Mode 486.95 0.00 620.06 1201.29 185.03 7.00 3357

Mean 484.40 25.49 618.70 1202.28 217.13 17.50 3518

Standard Deviation 86.98 26.39 174.90 300.70 40.67 10.57 378.68

Range 398.65 70.89 891.17 1091.64 172.99 21.00 1392

Figure 2. Relative frequency distribution of input parameters: (a) cement; (b) marble dust; (c) sand;
and (d) coarse aggregate.
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Figure 3. UPV testing procedure.

Figure 4. Experimental ultrasonic pulse velocity of mixes: (a) control; and (b) waste marble dust.
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Figure 5. Research methodology with application of machine learning for this study.

3. Results and Discussion

This section addresses the ultrasonic pulse velocity prediction algorithms. A single-
layer perceptron neural network (MLPNN) was used as an individual algorithm, while
Bagging, AdaBoost, and Random Forest models were implemented as ensemble ML ap-
proaches using Python code with Anaconda software. These algorithms are generally used
to anticipate outcomes based on input factors. All the techniques used six input parameters
and one output parameter (ultrasonic pulse velocity) during the modeling phase. All the
ensemble models were shown to be accurate and valid, as discussed below.

3.1. Multiple-Layer Perceptron Neural Network (MLPNN) Algorithm

Figure 6 depicts the statistical analysis of the predicted and actual results regarding
the UPV of WMDC for MLPNN modeling. A reasonably précised output and very low
variation between the anticipated and actual values was obtained with the MLPNN tech-
nique. The accuracy of predicting results was assessed as having a 0.88 R2 value. The
dispersions for the predicted and experimental values (targets) with the MLPNN model
errors are shown in Figure 7. The average, highest, and lowest values of the training set
were 6.20, 20.7, and 0.07 MPa, respectively. A total of 45% of the error values were less than
500 m/s, 45% were from 500 to 1000 m/s, and 10% were higher than 1000 m/s.



Materials 2022, 15, 4311 8 of 19

Figure 6. MLPNN model experimental and predicted results.

Figure 7. MLPNN model experimental and predicted values with the errors.

3.2. Bagging Algorithm

The correlation between the projected and actual results of the Bagging model is shown
in Figure 8. The R2 value for the Bagging model was 0.94, which represents the highly
precise and more accurate Bagging model with respect to the MLPNN model. Furthermore,
the dispersion of the projected values, the actual targeted values, and the errors for the
Bagging model are shown in Figure 9. It was noted that 45% of the error data was below
500 m/s, 47.5% was from 500 to 1000 m/s, and only 7.5% was higher than 1000 m/s. The
higher accuracy of the Bagging model with respect to the MLPNN model was revealed
from this analysis. It was also depicted by lower error and greater R2 values. In addition,
twenty submodels were employed using EML methods (MLPNN, AdaBoost, and Random
Forest) to obtain an optimized value that produced a firm output.
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Figure 8. Bagging model experimental and predicted results.

Figure 9. Bagging model experimental and predicted values with the errors.

3.3. AdaBoost Algorithm

A comparison of the projected and actual outputs for the AdaBoost model is shown
in Figure 10. The R2 value was 0.91, which showed a better outcome when compared to
the MLPNN model. The dispersions of the actual and predicted values with the errors
for the AdaBoost model are illustrated in Figure 11. However, 47.5% of the error values
were below 500 m/s, 45% ranged from 500 to 1000 m/s, and only 7.5% were higher than
1000 m/s. The higher accuracy of the AdaBoost model in comparison with the MLPNN
model was also depicted by lower error values.
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Figure 10. AdaBoost model experimental and predicted results.

Figure 11. AdaBoost model experimental and predicted values with the errors.

3.4. Random Forest Algorithm

The correlation between the predicted and actual output values for the Random Forest
model is provided in Figure 12. The R2 value for this model came out to be 0.98, showing
considerable accuracy compared to the MLPNN, Bagging, and AdaBoost models. The
dispersions of the actual and predicted values with the errors for the Random Forest model
are shown in Figure 13. Only 57.5% of the error values were below 500 m/s, 42.5% of
the values ranged from 500 to 900 m/s, and no values were found above 900 m/s. The
error distribution and R2 values were more accurate than the MLPNN, Bagging, and
AdaBoost models for the UPV prediction of WMDC. The R2 values, along with the error
values, obtained from all the considered ensemble ML models were in an acceptable range,
depicting better prediction outcomes. Hence, it was observed in this study that EML
techniques (Random Forest, followed by Bagging and Adaboost) predicted high-accuracy
outcomes when compared to a standalone MLPNN technique.
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Figure 12. Random Forest model experimental and predicted results.

Figure 13. Random Forest model experimental and predicted values with the errors.

4. Model Performance Assessment
4.1. K-Fold Cross-Validation Checks

Statistical analyses with Equations (1) and (2) were utilized to predict the responses
of the models. The legitimacy of the models was evaluated by utilizing a k-fold cross-
validation approach during execution. Usually, the validity of a model is performed with a
k-fold cross-validation process [57] in which random dispersion is perfomed by splitting
the model into 10 groups. The greater the R2 value and the fewer the errors (RMSE and
MAE), the higher the accuracy of the model. Furthermore, this process should be repeated
multiple (i.e., 10) times for a satisfactory result. The exceptional precision of a model can
be achieved by using this comprehensive approach. In addition, statistical analyses (i.e.,
RMSE and MSE) were also performed for all the models (Table 4). The Random Forest
model accuracy (inversely related to error values) compared to the AdaBoost, Bagging,
and MLPNN models was also supported by these checks. Statistical analysis as reported
in the literature [47,58] is used to assess the response of a model to prediction. The k-fold
cross-validation is assessed by utilizing R2, RMSE, and MAE. Respective dispersions for
the DT, Random Forest, AdaBoost, and Bagging models are presented in Figure 14. The
average and maximum values of R2 for the MLPNN were 0.55 and 0.88, respectively (refer
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to Figure 14a). The maximum and average values of R2 for the Bagging model were 0.94
and 0.66, respectively, as shown in Figure 14b. Contrary to this, the maximum and average
R2 values of the AdaBoost model were 0.91 and 0.62, respectively, as portrayed in Figure 14c.
In comparison, the maximum and average values of R2 for Random Forest were 0.98 and
0.76, respectively (see Figure 14d). To compare the error values (RMSE and MAE), the
RMSE and MAE values for all the models are shown in Table 4. The Random Forest model,
with the lowest error and a higher R2 value, performed better in results prediction.

MAE =
1
n

n

∑
i=1
|xi − x| (1)

RMSE =

√√√√
∑

(
ypred − yre f

)2

N
(2)

where n is the number of total data samples, x and yre f are the data sample reference values,
and xi and ypred are the model prediction values.

Table 4. Statistical descriptions of MLPNN, Bagging, AdaBoost, and Random Forest models.

Models MAE (m/s) RMSE (m/s) R2

MLPNN 564.4 676.7 0.88

Bagging 500.8 594.7 0.94

AdaBoost 531.4 637.6 0.91

Random Forest 429.3 475.7 0.98

Figure 14. K-fold cross-validation: (a) MLPNN model; (b) Bagging model; (c) AdaBoost model; and
(d) Random Forest model.
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4.2. Comparison of Machine Learning Models

Both ensemble ML and individual approaches were explored in this study for the
estimation of WMDC with the aim of sustainable development in terms of environment-
friendly construction materials. Random Forest, Bagging, AdaBoost, and MLPNN machine
learning techniques were used in this study to predict the compressive strength of WMDC.
The goal of the MLPNN algorithm was the development of a model that could predict
the target variable accurately. On the other hand, for the Bagging technique, a random
sample was selected from the data of the training set, i.e., the selection of individual data
points could be made multiple times. The individual training of the said weak models
was conducted in the pursuance of numerous data sample generation and based on task
type, such as classification or regression or average or majority of these predictions to
give an estimate with high accuracy. For the establishment of an algorithm’s prediction
superiority, the employed algorithms were compared for targeted performance. MLPNN
and Random Forest are two alternative learning techniques that can be utilized in similar
applications. The main rationale for using a Random Forest rather than an individual
decision tree or MLPNN was that it allowed the aggregation of predictions of multiple
decision trees in a single model. The theory was that a single model comprised of numerous
poor models is still preferable to a single good model. Given the widespread performance
of Random Forests, this s true. As a result, Random Forests are less prone to overfitting.
Random Forest’s major benefit is that it relies on a collection of different decision trees to
arrive at any solution. It is an ensemble method that takes into account the findings of
multiple classifying algorithms of the same or different types. It is capable of both regres-
sion and classification. A Random Forest generates accurate predictions that are simple
to comprehend. It is capable of effectively handling huge datasets. In comparison to the
individual MLPNN method, the Random Forest algorithm is more accurate at predicting
outcomes. The sklearn (Scikit-learn) library was used, and 50% of the data were taken
for training purposes and 50% for testing. The output of the Random Forest model was
more accurate, having a 0.98 R2 value, in comparison to Bagging with 0.94 R2, AdaBoost
with 0.91 R2, and MLPNN with 0.88 R2. Furthermore, the performances of the MLPNN,
Bagging, AdaBoost, and Random Forest models were also evaluated by utilizing a k-fold
cross-validation technique and statistical analysis. The performance of the model was
higher with low error levels. However, it was difficult to assess optimized machine learn-
ing regressors to forecast results from a wide range of topics because the performance of
the model was very much dependable on the datapoints and the model’s input parameters.
On the other hand, for ensemble ML techniques, submodels were generated to leverage the
weak learner that could be optimized and trained with data for achieving a higher value of
R2. Other researchers have also observed that AdaBoost, Bagging, and RF models are more
accurate in predicting outcomes than individual machine learning techniques [45,50,59–61].
Feng, et al. [45] observed that an AdaBoost model outperformed individual models, includ-
ing an artificial neural network (ANN) and a support vector machine (SVM), in terms of R2

and error values. In addition, Ahmad, et al. [50] compared the performances of Bagging,
AdaBoost, gene expression programming (GEP), and DT and concluded the best predictor
was the Bagging algorithm, with an R2 of 0.92. Similarly, Farooq, et al. [60] compared the
performance of Random Forest with those of ANN, GEP, and DT approaches and found
that the Random Forest model had greater precision than the others, with an R2 of 0.96.
A higher accuracy for Random Forest was also reported in the literature, having an R2 of
0.98 to calibrate a low-cost particle monitor. The dispersion of values for the determinant
coefficient of the Bagging, AdaBoost, and Random Forest submodels is shown in Figure 15.
The values of R2 for all the submodels of Random Forest were greater than 0.76, as shown in
Figure 15, while most values of R2 in the cases of the submodels for AdaBoost and Bagging
were less than 0.63 and 0.51 (Figure 15), respectively. It depicts the higher accuracy of the
Random Forest technique for results prediction, showing a maximum value of R2, i.e., 0.98.
Therefore, the Random Forest model was suggested to predict the ultrasonic pulse velocity
of waste marble dust concrete.
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Figure 15. R2 values of submodels.

4.3. Effect of Raw Ingredients and Their Interactions Using SHAP Analysis

An in-depth ML model explanation was made in the current research. In addition to
this, the respective feature dependencies and interactions were also discovered. Initially,
the implementation of a SHAP tree explainer for the entire dataset was performed for
the provision of an enhanced global feature impact description by the mergence of SHAP
descriptions. A tree explainer, i.e., a tree-like SHAP approximation technique, was em-
ployed [62]. In this technique, the tree-based model’s internal structure, i.e., the sum of the
calculation set linked with a leaf node of the tree model that leads to low-order complexity,
is assessed [62]. The highest-precision prediction model was obtained by the Random For-
est algorithm for the UPV of marble dust concrete. Accordingly, the model interpretation
was made for the UPV of marble dust concrete with the help of SHAP analysis.

Figure 16 depicts the violin SHAP-plot values of the considered features for the pre-
diction of UPV for marble dust concrete. A unique color is used to show the feature values
in this plot, and the x-axis-corresponding SHAP value represents the output contribution.
For example, for marble dust, the content input feature had a higher impact and positive
influence, showing the direct relation of this feature with the UPV of marble dust concrete.
This means that an increasing content of marble would result in a higher UPV value. A
SHAP value of more than 100 in the form of red points (high-value color) at the rightmost
side depicts that higher marble dust content enhanced the marble dust concrete UPV. In
the case of the curing age feature, a positive influence was seen here as well. At 7 days
of age, it is depicted in blue, showing a lower value. Whereas, at 28 days, it increased, as
depicted from the higher, i.e., red, values on the right side of the axis. However, in the
case of the water content feature, both positive and negative influences are depicted. The
water content up to the optimum content was influenced positively; beyond that, there
was a negative influence on the UPV of marble dust concrete. In the case of considerably
decreased water content, it was also negatively influenced due to affected compaction,
resulting in enhanced porosity and, ultimately, a decreased UPV of marble dust concrete.
Similarly, sand, aggregate, and cement had more or less the same influence and were on
the border of having both positive and negative influences. This evaluation relied on the
dataset employed in this study, and high-precision outcomes may also be achieved with
more datapoints.
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Figure 16. SHAP plot.

The feature interactions with the UPV of marble dust concrete are presented in
Figure 17. The marble dust feature interaction is shown in Figure 17a. It can be observed
from the plot that marble dust positively interacted with the UPV of marble dust concrete
and was in a positive–direct relationship. It may also be noted that, among all the features,
marble dust majorly interacted with cement, as it was used as a cement replacement. In
Figure 17b, the positive influence of curing days on the UPV of marble dust concrete is
observed because more interaction of days with the cement hydration process ultimately
increased the strength and UPV of the concrete. The w/c feature interaction is plotted in
Figure 17c. The w/c indicated both negative and positive impacts, depending upon its
content. The major interaction of w/c was with the cement content, as both water and
cement have a link to the hydration process, which is mainly dependent on curing age
(days). Then, the cement content feature interaction with sand did not show any particular
trend (Figure 17d) and showed almost the same pattern.

Although SHAP was used for the interpretations in this study, there are numerous other
post hoc explanatory models that can be used for the same purpose. As a result, we recom-
mend comparing the interpretations obtained using various explanation methodologies. The
SHAP-plot values estimated using SHAP, for example, may differ from those obtained using
other explanation approaches. Furthermore, the research focused on concrete’s UPV. The
study, however, can be applied to other strength parameters as well, such as compressive
strength, etc. Other strength features need to be predicted using ML in conjunction with post
hoc explainable approaches, and the underlying rationales are required to be explained. As
a result, the influencing parameters that are required for the design stage can be discovered
using this approach, but they still need to be investigated in the future.

Figure 17. Cont.
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Figure 17. Interaction plots of various parameters: (a) marble dust; (b) days; (c) w/c ratio; and
(d) cement.

5. Conclusions

The incorporation of marble waste dust into concrete can be an efficient way to
improve the environment and reduce landfill pollution. To achieve this, waste marble dust
was used in concrete. Additionally, soft computing techniques were compared to predict
waste marble dust concrete (WMDC) characteristics. Based on the conducted research, the
following conclusions were drawn:

• An amount of 10% marble dust in concrete influenced the ultrasonic pulse velocity. The
ultrasonic pulse velocity increased due to the reduced porosity of concrete with marble
dust. In this case, waste marble dust concrete with 10% marble dust (as a replacement)
showed improved UPV compared to the control mix with 0% marble dust.

• Due to its greater R2 and lower error levels, the Random Forest model outperformed
AdaBoost, Bagging, and MLPNN techniques in terms of prediction. The MLPNN,
Bagging, AdaBoost, and Random Forest models had R2 values of 0.88, 0.94, 0.91, and
0.97, respectively. However, the ensemble model results for Random Forest, followed
by Bagging and AdaBoost, were acceptable.

• A k-fold cross-validation technique and statistical analyses revealed adequate Random
Forest, AdaBoost, and Bagging outcomes. These tests also showed that the Random
Forest model outperformed the MLPNN, AdaBoost, and Bagging models.

• The study validated the application of ultrasonic pulse velocity for forecasting the
ultrasonic pulse velocity of sustainable cementitious composite. Therefore, the pre-
sented techniques using artificial intelligence seemed reliable for predicting waste
marble dust concrete properties.

• A higher SHAP-plot value depicted the positive relation of marble dust content with
the UPV of marble dust concrete.

• The feature interaction plot represented that marble dust and curing days positively
interacted with cement content and improved the UPV of concrete.

This study was limited to the prediction of the UPV of waste marble dust concrete with
limited input parameters and machine learning algorithms (an MLPNN-based approach
and decision-tree-based approaches). It is suggested that more comprehensive research
on waste marble dust needs to be conducted with more criteria included. Adding addi-
tional input factors and expanding the database can produce more trustworthy findings
and provide a more comprehensive expression. These parameters should include, in the
future, compressive strength, temperature effect, acid attack resistance, chlorine resistance,
sulphate resistance, and corrosion. Advanced technologies such as particle swarm opti-
mization (PSO) and M5P trees can be used to make more accurate predictions. However,
for better results, machine learning approaches can be coupled with heuristic methods,
such as the whale optimization algorithm and ant colony optimization, and then compared
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with the current study. Further studies should be carried out to investigate the chemical
properties of waste marble dust, as well as all other mechanical properties that are key to
any application in concrete.
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