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Abstract: This work is the preliminary part of a research program which is aimed at finding some new
methods and design solutions for helicopter main rotor multidisciplinary optimization. The task was
to develop a parametric geometric model of a single-blade main rotor applicable for varied methods
of numerical aerodynamic modeling. The general analytical assumptions for the parametric main
rotor design were described. The description of the main rotor blade parametric design method based
on Open GRIP graphical programming was presented. Then, the parametric model of a blade was
used for aerodynamic models independently developed for panel method and advanced CFD solver.
The results obtained from the CFD simulations and panel analysis for main rotor aerodynamics
were compared and assessed using analytical calculations. The calculations and simulations for a
single-blade and completed rotor were performed for different helicopter weights and rotor pitch
angles. The results of different computer aerodynamic analysis environments were compared for
the possibility of their application in an optimization loop. This is preliminary work that describes
only a partial problem that could be used in the future as part of a comprehensive methodology
for aerodynamic and structural optimization of a helicopter rotor. As an output of the research,
new options for main rotor optimization are developed. The combined parametric modeling with
aerodynamic analysis, as described in this paper, provide the preliminary design for a main rotor
spiral, as an element of the optimization loop.

Keywords: helicopter main rotor; rotor blade; geometric modeling; aerodynamic panel method; CFD

1. Introduction

Military rotorcrafts that are currently operating are mostly constructions that were
designed in the second half of the twentieth century. The constructions (in the preliminary
and detail design phases) were prepared with classic mathematical calculations, eventually
supported with CAD. With improved computerized options, design processes have been
fully transferred to virtual environments. New aircraft structures are fully designed using
computer methods; however, the structures of the existing constructions have also been
modeled using engineering software, which is described in [1].

The most popular engineering design solution using CAD is a point and click method.
A more comprehensive design method is to prepare a model that is generated as a result
of entered parameters, which can be obtained by using scripting in the environment’s
language; an example of parametric blade optimization is shown for a wind turbine blade
in [2], and for a main rotor blade in [3]. The parametric design includes options to quickly
change the model’s features without time-consuming 3D modeling. It is important to note
that the influence of parametric change can be rapidly checked in numerous variants.

The helicopter rotor blade is an element which can be successfully adapted to paramet-
ric design, because of mathematical functions which precisely describe blade features. The
parametric model is the first step to prepare the main rotor optimization process [4]. Some
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examples have been shown in different works: parametric airfoil design [5–7], structural
design [8,9], and aerodynamic design [10]. A good parametric analysis of the rotor blade
framework is presented in [11]. In this research, the parametric model was prepared using
GRIP modeling language, which is an integral part of the Siemens NX environment. The
usage of GRIP in parametric modeling was conducted in [12–14].

The proposed graphical programming language offers the possibility to prepare a
geometric and structural model of the aircraft element. The designed part is fully described
by the program script. In addition, the elements’ features can be calculated from mathemat-
ical functions, for example, polynomials for shape parametrization. After programming
the structure, Open GRIP offers the possibility to analyze the inertia physiognomy of
the body. The obtained data are the basis for the strength calculation. The program also
grants a function for preparing forms which can be filled by the user. Therefore, some
parameters can be changed during the design loop, without changing the program code. In
the future, it is crucial to prepare a full parametric optimization. An effective approach to
main rotor blade optimization was proposed in [8,10,15–18], and effective optimization of
rotor construction was proposed in [19].

This work is part of a research program that is aimed at finding the best rotorcraft
construction optimization solutions. The first step of the research program was an analysis
of modern helicopter constructions and an outline of design parameters that are crucial in
helicopter main rotor design. The results of the analysis showed that there is a field were
rotor construction can be improved in accordance with modern combat field requirements
which are dynamically changing due to fast technological improvements. The results, with
charts and a comparison of parameters were published in [20].

On the basis of construction comparisons, we conducted a study of new design
methods or combinations of some separate solutions. The aim of the study was to provide
a versatile, accurate main rotor model that could be analyzed, validated, as well as quickly
and easily changed in the optimization process. As a new approach to rotorcraft design,
we combined the parametric programming CAD model generator with the CFD and
panel method, with the goal of providing new possibilities for improving the construction
optimization procedure. The effects and possibilities of CFD main rotor studies that were
implemented in the main rotor development procedure were well presented in [21–23]. In
addition, a CFD analysis, as a base for a strength analysis because of load prediction, was
clearly shown in [24].

The development of the method started with the main rotor blade, as the main element
that generates thrust. An existing rotor blade model was taken as a basis to conduct and
authenticate the method. As previously described in the Introduction, the blade model
was prepared using the parametric method in GRIP language. GRIP language was chosen
because it is user-friendly graphical programming code for easily preparing the model
with extensive built-in possibilities for quickly calculating the inertia parameters of the
generated model, which could be used in further optimization steps, which is crucial when
the strength of the construction is taken into consideration in the optimization loop. Further,
the model was validated using the CFD and panel methods, and the thrust results were
compared with the analytical calculations. The methods were also compared with each
other to choose the appropriate procedure to perform the most efficient optimization. To the
best of our knowledge, similar studies that combined the proposed methods for rotorcraft
main rotor design and main rotor optimization procedure have not been conducted.

This paper is organized as follows: The research methods are described in Section 4,
where the mathematical model, which is the basis for the parametric programming, is
defined, and in the second part of this section, the CFD and panel method settings are
given; the validation results are described in Section 3; and the results are discussed and
concluded in Section 4.
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2. Research Methods
2.1. Parametric Description of a Single-Blade Rotor with Aspect of Its Geometrics and Aerodynamics

The construction process of helicopter rotor blades requires consideration of fatigue,
strength, stiffness, cost, and vibrations. The rotor blade works in a changeable environ-
ment, and therefore, the designer has to take into consideration all of the parameters that
transform during flight. Periodic changes in the flow velocity on the blade section can
modify the angle of attack and the Mach number, and as a consequence, can change the
aerodynamic coefficients. Blade turns (relative to hinge axis) and blade deformation cause
a periodic change in inertial forces and provoke a cyclic modification in the angles of attack
and flow velocity. The flexibility of the main rotor blades and their work in a strong cen-
trifugal force field induce an inseparable connection between loads and deformations. An
analysis of the problems mentioned and also the noise level or flow disturbance requires a
versatile evaluation of the main rotor blade’s work conditions. Effective blade aerodynamic
modeling was proposed in [25].

The precise blade geometric design is crucial for obtaining the required main rotor
power. As described in [26], the geometric parameters of the blade are the following:

- Radius The length of the blade measured from the axis of rotation to the tip;
- Chord The length of the blade measured from the airfoil leading edge to the trailing

edge and, for a tapered blade, it is the function of local radius;
- Airfoil The cross-sectional shape that determines the aerodynamic parameters of the

blade, i.e., lift, drag and momentum coefficients;
- Contour shape This is the final shape of the blade, which depends on the chord

function and tip shape;
- Geometric twist Variation of the airfoil angle between the chord and a plane of

rotation along the radius;
- Aerodynamic twist Variation of the airfoil shape along the radius;
- Position and shape of trim tabs Defines the possibility to adjust the rotating blade to

the plane of rotation.

The area of a blade root airfoil transfers the whole load from the rotating aerodynamic
surface to the blade grip sticking out of a rotor head block. The shape of the root is dictated
by the build conception and the adopted aerodynamic solutions. The geometric twist is
usually settled on several degrees. The shape of the rotor tip depends on the aerodynamic
problems, for example, achieving the speed of sound or the noise level. An analysis of rotor
blade tips was described in [27]. According to the mentioned work, there are three main
types of helicopter tip designs: BERP tip, the parabolic tip, and the swept (tapered) tip. An
example of a main rotor blade is shown in Figure 1.

To evaluate the prepared parametric model, a theoretical lift calculation must be
conducted. The lift can be calculated in vertical flight using the blade element theory
combined with the momentum theory. The first assumptions are the mass conservation
equation for rotor disc:

.
m = ρAvi (1)

and the momentum conservation equation for hoovering rotor:

T =
.

mw (2)

The energy conservation equation is the work of the rotor to change the rate of energy
in fluid:

Tvi =
1
2

.
mw2 (3)
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Figure 1. The geometry of the main rotor blade: (a) Rotor shape (c, chord and c0, mounting holes
spacing); (b) blade parameters (αS(r/R), geometric twist angle in dependence on nondimensional
radius; A and B, airfoil change zone; d, blade thickness) (figure prepared by authors).

The calculation is based on the thrust coefficient, as a function of pitch angle and
inflow angle, and is given [28,29]:

CT =
∫ 1

0

aσ

2
(ϑ − δ)r2dr (4)

where a is the lift curve slope, σ is the rotor solidity, ϑ is the pitch angle, δ is the inflow
angle, and r is the current radius.

According to Figure 2, the inflow angle δ can be defined by:

δ = arctg(
W + vi

Ωr
) (5)

where W is the vertical velocity, vi is the induced velocity, and Ω is the rotor angular
velocity.
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Figure 2. Blade element aerodynamic forces (figure prepared by the authors).



Materials 2022, 15, 4275 5 of 20

To calculate the induced velocity, for required thrust in hover, the equation solved
from the momentum theory is given:

vi =

√
T

2ρA
(6)

where T is the rotor thrust, ρ is the air density, and A is the rotor planform area. For hover,
the W velocity equals 0.

The inflow angle can be defined with the inflow ratio as λi = δ/r, therefore, the thrust
coefficient will transform to:

CT =
∫ 1

0

aσ

2

(
ϑr2 − λr

)
dr (7)

Rotor performance can be calculated with the combination of the blade element
theory with the momentum theory. Therefore, the induced velocity can be determined for
nonhomogeneous inflow distribution, by using the differential form of the momentum
theory:

dCT = 4λiλrdr (8)

with the blade element theory CT equation form.
As a result, for hover where λc = 0, the inflow ratio for the induced velocity is:

λi =
aσ

16

[√
1 +

32
aσ

ϑr − 1

]
(9)

The σ rotor solidity equation is necessary, which, in this work, is nonuniform along
the blade span as a consequence of non constant chord. The rotor solidity is calculated as:

σ =
∫ 1

0

bc(r)
πR

dr (10)

where b is the number of blades, c(r) is the chord in function of radius, and R is the rotor
radius.

The thrust coefficient is the function of radial location of the blade measured from the
centre of rotation to the blade tip. It is calculated as an integral with the r limits from 0 to 1.
However, to obtain better quality results, a tip loss factor can be proposed [30]:

B = 1 − ac(r = 1)
2R

(11)

The tip loss factor is taken as an upper limit of the coefficient integral. The thrust losses
are also a result of the root cutout. It is usually 10% to 30% of the blade radius. Including
tip loss factor and root cutout, the thrust integration is:

T =
1
2

ρabΩ2R2
∫ B

rR

c(ϑ − δ)r2dr (12)

According to [22], the mean lift coefficient for the main rotor blade can be determined:

CL =
6CT

σ
(13)

The calculations described above were all prepared in MATLAB. The estimated math-
ematical thrust model is the basis for the CFD computation evaluation.

The program build is defined using the algorithm presented in Figure 3. The code is
constructed as a loop to look for the collective angle required for a given aircraft weight.
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Figure 3. The algorithm developed in Matlab for determining the distribution of the blade’s parame-
ters and its aerodynamic thrust.

It starts by defining the input parameters that can be obtained from first cut calculations
and the mission flight conditions. In the beginning, the collective is positioned at 0◦ angle.
Next, the position radius coordinates are defined for the twist and chord values in the
given sections. The thrust is a radius position integral, and therefore, all program functions
are defined as dependent on x. Using the chord and twist values, the chord and twist
polynomials are interpolated. These polynomials are also used in the GRIP program to
create the blade geometrics. Next, the inflow angle, the rotor solidity, and tip loss factor are
given. All the specified equations are inputs to the thrust integral which is bounded by the
root cutout and the tip loss factor. The blade attack angle is calculated using the pitch angle
with addition of collective. The thrust equation is computed using loop. The collective
angle is increased in each step until the result is similar to the hover required force for
the assumed mass. The determined collective is used for the CFD analysis to check the
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parametric model aerodynamic parameters. The procedure described above can be applied
for the hover case calculations and for vertical or horizontal flight conditions as well.

To present the possibilities of Matlab calculations for future main rotor optimization,
a multi-dimensional analysis was conducted. The main rotor thrusts were calculated for
different numbers of blades, twist angles, and mean chord values. The computations
were made for the collective angle 7.47◦. The distribution of thrust values as a function
of twist angle and chord value are shown in Figures 4–6. As predicted, the highest thrust
value is obtained for a five-blade rotor, although the reference system is a four-blade rotor,
corresponding to the rotor design of the Polish W-3 Sokol helicopter.
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2.2. Modeling the Blade Geometrics and Aerodynamics Using Proprietary Software Applications

The calculations of the blade were performed for an existing main rotor blade of a
Polish military W-3 SOKOL helicopter. The model could be easily modified with different
parameters. The technical specifications are shown in Table 1, however, some details such
as the blade and tip shape (which are provided from design documentation) cannot be
published. The simulation was performed for the aerodynamic calculations, therefore, it
was modeled as an empty shell only to provide the blade shape.

Table 1. Main rotor technical specifications.

Rotor radius 7.85 m

Blade mean chord 0.44 m

Blade airfoil NACA 23015

Geometric twist −12◦

Root cutout 0.21R

Root incidence angle 5.34◦

Figure 7 shows the original algorithm dedicated to the rotor blade parametric model-
ing. The rotor blade parametric models were prepared in Siemens NX Open Grip language.
It is a programming language that can draw a CAD model with commands and is able
to execute advanced customized operations in a more effective way than interactive NX
operations. Numerous interactive operations can be executed using GRIP language. It is
possible to draw geometric objects using control of parameters or load data from a file to
modify the geometrics. Exemplary program code for parametric modeling of the blade
geometrics is presented in Listing 1.
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Listing 1. Part of GRIP code with blade surface generation.
. . . .

SPL3(K+1)=SPLINE/PT0(1..N-1) $$ upper surface
SPL4(K+1)=SPLINE/PT1(1..N-1) $$ lower surface
dfi=fi(4)*cr+fi(3)*cr+fi(2)*cr+fi(1)

MAT=MATRIX/XYROT,-dfi
SPL1(K+1)=TRANSF/MAT,SPL3(K+1)
SPL2(K+1)=TRANSF/MAT,SPL4(K+1)
$$ LN(K+1)=TRANSF/MAT,LN1(K+1)

PT2(K+1)=POINT/ENDOF,XSMALL,SPL1(K+1)
PT3(K+1)=POINT/ENDOF,XLARGE,SPL1(K+1)
PT4(K+1)=POINT/ENDOF,XLARGE,SPL2(K+1)
LN(K+1)=SPLINE/PT3(K+1),PT4(K+1)

DELETE/PT0,PT1,SPL3,SPL4,LN1

IFTHEN/K<M
K=K+1
JUMP/L10:
ELSE
JUMP/L40:
ENDIF

L40:
A=&POINT(PT3(1))
B=&POINT(PT4(1))

SPLC(1)=SPLINE/PT2(1..K+1)
SPLC(2)=SPLINE/PT3(1..K+1)
SPLC(3)=SPLINE/PT4(1..K+1)
SSRF(1)=BSURF/MESH,SPLC(1..2),WITH,SPL1(1..K+1),TYPE,3,TOLER,.01,.01
SSRF(2)=BSURF/MESH,SPLC(1),SPLC(3),WITH,SPL2(1..K+1),TYPE,3,TOLER,.01,.01

SSRF(3) = RLDSRF/SPLC(2)„SPLC(3)

SSRF(4) =RLDSRF/SPL1(1)„SPL2(1)
SSRF(5) =RLDSRF/SPL1(K+1)„SPL2(K+1)
BLD(1)=SEW/SSRF(1..5)
. . . .

The program prepared for generating the main rotor blade was easy to modify, and
the blade parameters could be changed without needing to repeat an interactive method.
The blade radius, chord, chord distribution, twist, and airfoil shape could be easily changed
to generate a model with new features. The process of parametric model generation is
presented in Figures 8 and 9.
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2.3. Aerodynamic Modeling of a Single-Blade and Complete Main Rotor

The generated model was implemented in two computer environments to evaluate the
properties of the obtained blade shape. The main rotor blade was implemented in a CFD
software, i.e., ANSYS Fluent and an aerodynamic modeling software, i.e., DARcorporation
Flightstream. The domain for CFD was prepared in ANSYS Spaceclaim. The air density in
the simulations was 1.25 kg/m3 and it was constant.

The implementation was conducted to assess the model and to prepare its applicability
in further research; however, it was also conducted to compare two different tools for
aerodynamic rotorcraft analysis with mathematical calculation. With the results of the CFD
analysis, a further strength analysis is possible. In addition, the CFD analysis is a crucial
step in the optimization process of a modern main rotor blade design.

2.3.1. One Blade CFD Modeling in ANSYS Fluent

In ANSYS Fluent, a one blade CFD model was prepared. The fluid domain was
prepared using Ansys Spaceclaim. It was generated with a quarter of a sphere and half
of a cylinder. The air enclosure were 20 m long and high, and the width of the enclosure
was 10 m. A hybrid mesh was built for the computational area using the ANSYS Mesh
module. Body and face sizing were used with inflation to generate the correct mesh. The
boundary layer was modeled using the full thickness option. It was set at 20 mm for
25 layers with a growth ratio of 1.2. The obtained y+ value was 8. The maximum element
size was set at 1000 mm, with a size reduction closer to the blade of 20 mm. The 3D bodies
were transformed into a tetrahydra mesh with prismatic components within the boundary
layer. The mesh consisted of almost 2,837,051 elements. The mesh is shown in Figure 10.

The boundary conditions are presented in Figure 11. The blade is fixed in the enclosure
which is modeled by combining half of a hemisphere with a cylinder. In addition, to obtain
correct body sizing, a smaller cuboid enclosure was made around the blade, and by naming
the object faces, an air flow direction was projected.

To imitate the main rotor blade working environment, velocity change, pitch, and
inflow angle were implemented with mathematical expressions. A velocity change was
realized by an expression that raised the inflow speed with the span. To model a change
in the inflow angle, the inflow directions on the X and Y axes were expressed using the
cosine of the X axis and sine of the Y axis. The inflow angle was calculated from the inflow
ratio with the Matlab program. Table 2 presents the inflow input function to model the air
flow over the blade. The polynomial was a 4th grade polynomial, the higher grades gave
similar results. The functions values changed with the span.
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Table 2. Example of the inflow functions for the inflow modeling in the FLUENT rotor blade analysis.

Inflow X direction function for
5.96 pitch angle

cos(PI/180 × (5.96 − (−1.40420898843306 × 10−5 ×
(z/7.85[m])3 + 0.00154624103083247 × (z/7.85[m])2 −
0.0591574921598430 × (z/7.85[m]) + 1.07777970150355)))

Inflow Y direction function for
5.96 pitch angle

sin(PI/180 × (5.96 − (−1.40420898843306 × 10−5 ×
(z/7.85[m])3 + 0.00154624103083247 × (z/7.85[m])2 −
0.0591574921598430 × (z/7.85[m]) + 1.07777970150355)))

The viscosity model which was used for simulations was k-omega SST. It was applied
because it is recommended for rotating machinery.

2.3.2. One Blade Panel Modeling in FligtStream

In the second aerodynamic environment, a main rotor blade model was also prepared.
The parametric blade model was easily implemented. Software was used to import the CAD
files from commercial software, and therefore, the tool could be used in the optimization
loop.

In the Flightstream, the mesh is generated only on the studied element. It does not
required from user preparing an enclosure and environment. The mesh is generated
automatically by the software. Because of the simplicity of the software, the inflow angle
and the change of the pitch angle were modeled with the blade position in the reference
frame. Velocity change was simulated by the build “shear” freestream option and prepared
input .txt file with the velocity magnitude across the span. The advantage of the solver is
the fact that the model for conducting a simulation is ready to use three–four times faster
than in the Fluent environment. However, rotorcrafts are complex constructions that work
in versatile conditions, and therefore, some working states may not be imitated. The solver
was setup with steady viscous parameters. The solver setup is shown in Figure 12.
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2.3.3. Main Rotor CFD Modeling in ANSYS Fluent

In the second stage of the research, the blades were multiplied and positioned in a
rotational plane. The fluid domain were also modeled in Spaceclaim. A mesh was built
for the computational area using the Mesh Ansys module. The boundary conditions are
presented in Figure 12. Body sizing and inflation were used to generate the correct mesh.
The boundary layer was modeled using the full thickness option. The air enclosure was
75 m long and wide, and the height of the enclosure was 25 m. The maximum element
size was set at 2000 mm, with a size reduction closer to the blade of 20 mm. The boundary
layer was modeled using the full thickness option. It was set at 20 mm for 25 layers with a
growth ratio of 1.2. The obtained y+ value was 8. The 3D bodies were transformed into a
triangular mesh. The mesh consisted of nearly 5,300,000 elements.

The blades were placed in the enclosure which was modeled with cuboid. In addition,
to obtain correct body sizing, a smaller cylinder enclosure was made around the blades. By
naming the object faces, an air flow direction was projected. The analysis was performed
with mesh motion, and therefore, there was no inlet, because the air flow was provoke by
the rotating blades. The boundary conditions are presented on Figure 13.
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The blades were set at the pitch angle calculated for the required thrust. The models
were set to rotate with the main rotor angular speed. The inflow angle was assumed to
be generated in the solver with the rotational movement. The viscosity model for the
simulation that produced the most accurate results with the lowest time consumed was
realizable k-epsilon with scalable wall function.

2.3.4. Main Rotor Panel Modeling in FligtStream

Since the modeling was performed using CFD software, the panel environment was
also tested to provide results for parametric modeling in the optimization procedure. The
model building was more time-consuming and it was easy to make a mistake, because
the pitch angle and inflow angle were modeled by the blade’s position. The blades were
multiplied and positioned in a rotational plane. The mesh was generated the same way as
it was generated for the one blade case. The cases were calculated with an unsteady solver.
The rotational movement was modeled with motion settings, where the angular velocity
and rotation axis could be defined.

3. Results

The evaluation results are shown in Tables 1 and 2. In both cases, the parametric
model has no issues when implemented. Calculations of the aerodynamic thrust were
conducted for selected design weight values corresponding to those from the range of
operating weights of the W-3 Sokol helicopter (i.e., between 4900 and 6400 kg).

Table 3 shows the comparison of the results of Fluent and Flightstream stationary blade
modeling with mathematical calculations for a given thrust and the required collective angle
for that thrust. The collective angles were calculated using thrust Equation (9) using Matlab
procedure, combining the blade element theory with the momentum theory. According
to the obtained results, shown in Figure 14, CFD modeling resulted in a high accuracy of
expected resultant forces; both solvers produced similar results. However, for lower thrust,
Flightstream, which is mainly designated to steady simulations, delivered a more accurate
result.

During the preparation of the stationary simulation, it is crucial to model the exact
inflow conditions. The main advantage of this type of imitation is the short time for the
solver calculations. As compared with a four blade rotary model, it provides the results
about 9–10 times faster. It also offers the possibility of checking the different collective
values and inflow angle using one model and solver settings. This type of simulation is a
good choice for evaluating the first cut blade loads.

Table 4 presents the comparison of results from Fluent and Flightstream for the main
rotor model with modeled rotational movement. The mathematical assumptions are the
same as in the steady model. The results presented in Figure 15 show that, for the rotary
model, definitely better results are obtained with the Fluent solver. The Flightstream
environment gives the most accurate findings with the unsteady solver, nevertheless, they
is a 20% difference btween the mathematical and CFD solver model. The advantage of
the Flighstream simulation is the duration of calculation. For the Ansys software, the
calculations with mesh preparation last about 3 h (for a 30 threads computer station); with
the DARcorporation solver, the simulation with meshing is ready in up to 30 min (with
8 threads). Despite the results, the Flightstream simulation can be used, when a designer
needs to take a first look at the rotor aerodynamics behavior. However, to obtain accurate
findings, a CFD simulation needs to be conducted.

The rotary model provides the calculations and forces that can be used in further
analysis. It can be applied to the strength model and can calculate the required mass
parameters to sustain the blade loads. Combining the models’ mass loads from rotary
motion can also be simulated.



Materials 2022, 15, 4275 16 of 20

Table 3. Results obtained from analyses of the one blade model.

Simulation Input Parameter Fluent Flightstream

Weight
(kg)

Analytical
Thrust (N)

Collective
(◦)

CFD
Thrust (N) ∆ (%) Panel Method

Thrust (N) ∆ (%)

6400 15,696 7.47 15,591 0.67% 15520 1.12%

6000 14,715 7.06 14,870 1.05% 14850 0.92%

5600 13,734 6.66 14,041 2.24% 14150 3.03%

5200 12,753 6.26 13,242 3.83% 12602 1.18%

4900 12,017 5.96 12,592 4.78% 12133 0.96%
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Figure 14. Line graphs of aerodynamic thrust dependencies for the one blade model.

Table 4. Results obtained from analyses of the complete rotor model.

Simulation Input Parameter Fluent Flightstream

Weight
(kg)

Analytical
Thrust (N)

Collective
(◦)

CFD
Thrust (N) ∆ (%) Panel Method

Thrust (N) ∆ (%)

6400 62,784 7.47 64,472 2.69% 74186 18.16%

6000 58,860 7.06 58,504 0.60% 71112 20.82%

5600 54,936 6.66 55,862 1.69% 68917 25.45%

5200 51,012 6.25 52,044 2.02% 63205 23.90%

4900 48,069 5.95 49,175 2.30% 59462 23.70%
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4. Conclusions

As stated in the Introduction, this work is part of an aerospace construction optimiza-
tion research program. It is the second step in preparing the optimization loop for rotorcraft
constructions.

In this research, it was confirmed that graphical programming language with a user-
friendly syntax is a good solution for this type of geometric modeling. The commands are
intuitive and easy to use. The code is short and the blade model is generated within a few
seconds. In addition, the language offers an inertia analysis for solids, which is planned to
be used in future research on the optimal blade design. The generated model was versatile
and easy to adjust in different environments. There were no compatibility problems with
the CFD solvers.

The parametric model behaved as it was assumed. The CFD analysis confirmed that
the generated shape had the aerodynamic features that were preferred during the design
phase. The mathematical assumptions of the inflow angle were confirmed with the rotary
CFD model.

This research shows a new approach to rotor blade inflow modeling. The stationary
blade with complex air flow analytical model gives correct results and consumes less
computer power and time. Therefore, it is possibile to implement this type of simulation in
the preliminary design of a main rotor, which is useful in optimization studies. Combining
the stationary blade with parametric modeling is the first stage of optimization to evaluate
a construction and to enhance the first cut shape. This method provides an initial shape in a
short period of time. Therefore, even when the calculations are combined with mechanical
analysis (FSI), the analysis time is reduced. Finally, the iterative procedure for optimization
studies is proposed in Figure 16. In the first phase, the CFD model can be replaced with
a panel code environment. To summarize, the results of this study can serve as a basis
for developing a main rotor aerostructural model (combining aerodynamic properties
and finite element structure) for further strength analysis, where both the aerodynamic
and weight loads can be considered. In future work, in accordance with the research
program, the CFD and FE model will be combined using scripting methods to prepare an
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optimization loop to find a design shape that fulfils modern combat field requirements and
offers the best mass properties.
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Nomenclature

A Main rotor disc area
a Main rotor blade lift curve slope
B Tip loss factor
b Number of blades
CL Lift coefficient
CT Thrust coefficient
c Blade chord
.

m Mass flux through the rotor disc
R Main rotor blade total radius
r Main rotor blade current radius position
T Main rotor thrust
vi Main rotor induced velocity in hover
w Rotor induced velocity in far wake
W Climb velocity
δ Inflow angle
ρ Air density
λ Total inflow ratio
λc Climb inflow ratio
λi Induced inflow ratio
σ Rotor solidity
ϑ Pitch angle
Ω Rotor angular velocity

Abbreviations

CAD Computer-aided design
CAM Computer-aided manufacturing
CAE Computer-aided engineering
CFD Computational fluid dynamics
GRIP Graphic integrated programming
FSI Fluid structure interaction
BERP British engineering rotor program
MATLAB Matrix laboratory-multi-paradigm programming language and numerical

computing environment
SIEMENS NX CAD/CAM/CAE software developed from Unigraphics system
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