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Abstract: The indentation test is a popular method for the investigation of the mechanical properties
of materials. The technique, which combines traditional indentation tests with mapping the shape of
the imprint, provides more data describing the material parameters. In this paper, such methodology
is employed for estimating the selected material parameters described by Ramberg–Osgood’s law, i.e.,
Young’s modulus, the yield point, and the material hardening exponent. Two combined identification
methods were used: the P-A procedure, in which the material parameters are identified on the basis
of the coordinates of the indentation curves, and the P-C procedure, which uses the coordinates
describing the imprint profile. The inverse problem was solved by neural networks. The results
of numerical indentation tests—pairs of coordinates describing the indentation curves and imprint
profiles—were used as input data for the networks. In order to reduce the size of the input vector,
a simple and effective method of approximating the branches of the curves was proposed. In the
Results Section, we show the performance of the approximation as a data reduction mechanism on a
synthetic dataset. The sparse model generated by the presented approach is also shown to efficiently
reconstruct the data while minimizing error in the prediction of the mentioned material parameters.
Our approach appeared to consistently provide better performance on the testing datasets with
considerably easier computation than the principal component analysis compression results available
in the literature.

Keywords: parameter identification of material model; inverse analysis; indentation test; indentation
curve; imprint profile; artificial neural networks

1. Introduction

It is necessary to frequently inspect the mechanical properties of materials that poten-
tially deteriorate due to aging processes under difficult environmental conditions. When
the data of material properties are not available, the structure safety has to be verified
using the limit state criteria. Adopting the appropriate material data for structure analysis
requires the identification of the material parameters at many points of the system. Material
identification problems are present, e.g., in the pipelines used for transporting hydrocar-
bons, which are the structural elements of the marine industry and power distribution
companies. In all of these cases, the aim is to formulate diagnostic procedures that are
non-destructive or almost non-destructive, fast, and economical [1]. Hardness testing is
one of these methods.

The hardness test, also known as the indentation test, is a very common strength
test used to determine the properties of the constitutive material parameters of materials
such as steel, rocks, laminates, or even coffee beans. The popularity of the test is due
to the simple measuring device (hardness meter) as well as the simplicity and speed of
the measurements. Indentation is an almost non-invasive test that can be easily carried
out in situ directly on the structural component. Many articles present an evaluation of
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mechanical properties such as carbon steel [2], bearing steel [3], austenitic stainless steel [4],
and pipeline steel [5]. Paper [6] describes an experimental exploration of the post-impact
behavior of pseudo-ductile carbon laminates. Article [7] incorporates the indentation test
method into a geotechnical practice. An interesting approach is presented paper [8], where
the authors used an artificial neural network (ANN) model to predict the plastic anisotropy
properties of sheet metal. Moreover, an ANN combined with finite element analysis (FEA)
might be used to derive a uniaxial tensile flow from spherical indentation data [9].

The subject literature [10–12] is devoted mainly to the assessment of material parame-
ters resulting from the analysis of indentation curves. These curves show the relationships
between the penetration depth of the indenter tip and the pressure force during sample
loading and unloading. On the one hand, it is obvious that it is necessary to know these
characteristics. On the other hand, however, it is not always possible to measure these
parameters directly on the structure. This problem is solved by the use of the so-called
hybrid methods.

The development of computer technologies in the last decades has allowed for the
application of advanced numerical computations in many problems of science. Research
is being carried out on computing using hybrid systems. One of the precursors to hybrid
processing is Noor. The papers [13,14] present numerous applications of hybrid systems for
the analysis of various problems in mechanics and materials. Computation hybridization
is a combination of different computational methodologies, such as standard computing,
called hard (HC) and soft computing (SC) [15,16], for the representation and processing
of information. In practice, each type of calculation (HC, SC) has some advantages and
limitations. Hence, the combination of different types of methods used in hybrid systems
enables a reduction in the difficulties typical for each of them and makes it possible to com-
plement each other and more fully use the strengths of both approaches [17,18]. In hybrid
applications, SC, used for control, pattern recognition, signal processing, and identification,
is hidden inside the HC computing systems or subsystems. SC can complement or replace
HC to eliminate its limitations. Another use of SC is to create more user-friendly software
features that could not be accomplished with standard computing alone.

The fusion of SC and standard computations has become a method of analysis used
also by practicing engineers. In engineering, intelligent hybrid systems are used as elements
that support the design of metal processing technology [19]. In recent years, hybrid systems
have started to be used to solve complex problems of structural mechanics and materials.
Some of the most effective computational techniques are numerical–neural hybrid systems
(NNs) based on SC and standard computations [17]. Examples of the use of hybrid systems
based on HC and NN in the field of engineering are the identification of a wide class of
materials, including composites [20], soils [21], and geomaterials [22]. The integration of
these methods may be used to formulate neural models of various types of materials, e.g.,
elastic–plastic or orthotropic [17]. The identification of the parameters of another model of
an elastic–plastic material (Johnson–Cook) using data from hybrid bending experiments
and their numerical simulations is shown in [23].

Systems integrating HC and NN are particularly useful in situations where good
analytical models are unknown or very complex. In cases where analytical models are
unknown or incomplete, NN can be used to formulate or estimate analytical models using
experimental data. Using HC and NN is very popular in the case of material parameter
identification [24–26].

In this article, we propose the performance of an approximation as a data reduction
mechanism on a synthetic dataset. The sparse model generated by the presented approach
is also shown to efficiently reconstruct the data,] while minimizing errors in prediction. Our
approach is shown to consistently provide a better performance on the testing datasets with
considerably easier computation than the principal component analysis (PCA) procedure,
which has been proposed in the references [1,27].
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2. Materials and Methods
2.1. Methods of Identifying Material Parameters

In practice, according to [27], the following procedures for identifying material param-
eters are applied:

• P-A: In situ hardness testers with the appropriate research software used for determin-
ing indentation curves. These curves are transferred to the computer, and parameter
identification is performed based on this.

• P-B: The P-A procedure is supplemented with a laser profiler, which provides data on
the imprinted shape. The imprint profile and indentation profile are both applied in
the identification process.

• P-C: The third procedure is based on reading the coordinates of the imprint profile
obtained by using a manual hardness tester. These data are input for inverse analysis.

The indentation test also generates some errors due to the fact that several materials
with different yield strength values and strain hardening indexes may give identical force–
displacement relationships. One way to overcome this problem is to use the double indent
technique [28,29]. In such cases, it is also worth using identification on the basis of a double
result of the indentation test, which is a combination of the P-A procedure and the P-C
procedure. This approach allows for increasing the sensitivity of the identified parameters.
It should be taken into account that the indentation curves generated during loading and
unloading are susceptible to measuring system and data transfer errors, but the geometry
of the imprint curves is usually reproduced correctly. An indentation test mentioned in
this manuscript is based on the traditional Rockwell test (A and C scale), see [30]. The
Rockwell hardness test is based on forcing a cone-shaped diamond indenter in the sample
with hardness within the ranges provided by the A, C, D, and N scales or a ball-shaped
steel indenter in the sample with hardness within the ranges provided by the B, E, F, G,
H, K, and T scales. The test conditions are defined by the standard [30], the requirements
of the hardness testers [31], and the standard of the calibration of hardness patterns [32].
Based on the indentation curves and imprint profiles, it is possible to obtain the values of
the selected material parameters, e.g., the values of Young’s modulus, the yield point, and
the material hardening parameter.

2.2. The Application of NN to Analyze Regression and Identification Problems

Due to its basic feature, which is the ability to generalize knowledge for new, previ-
ously unknown data, NNs are widely used in various scientific and engineering fields.
Comprehensive reviews of the use of NNs in civil engineering have been presented in the
literature, e.g., see [33–38]. In addition, networks can be formulated to analyze different
regression problems by providing input/output data according to Paez’s classification [39].
In this study, NNs were used to analyze regression and identification problems. Solving a
regression problem is related to estimating output values y(x;w) based on variable input
vectors x:

x→ SN→ y(x, w) (1)

where x, y—network input and output vectors; w—vector of generalized network weights.
Inverse problems [34] concern situations where the system responses are known

but there is not complete information on the reasons for this phenomenon. The inverse
analysis combines experimental mechanical engineering with computer simulation and
mathematical programming. In the first stage of this procedure, tests are performed from
which measurable quantities are selected. In the next stage, experience is simulated. Then,
mathematical programming is applied to reduce the objective function, which defines
divergences between the value measured and its calculated equivalent [35]. In engineering,
inverse problems are frequently implemented as a sequence of direct problems. In the case
of more complex tasks, where both direct and inverse problems are considered, hybrid
calculation systems are used, see [17].
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This manuscript addresses a problem called internal identification, which corresponds
to the identification of the parameters of the system material. Variable inputs act as the
action parameters (applied force) and response parameters (displacement). Variable outputs
are the material constants. A hybrid approach combining two computational models—FEM
and NN—was applied to solve the identification problem. The material model is described
by the Ramberg–Osgood (R–O) power law in Section 2.3.

2.3. Ramberg–Osgood Material Model

This study used the so-called continuous model (curvilinear) that describes the rela-
tionship of σ(ε), assuming the form of a smooth curve, which reflects the material behavior
in the elastic and elasto-plastic range with the potential reinforcement. Such a model can be
applied to materials without a clear yield point, such as stainless steel [40] or aluminum [41].
Metals of that type, such as common hot-rolled structural steels, can also be modeled for
design purposes as perfectly elastic–plastic.

In practice, however, it is necessary to perform more detailed modeling of material
relationships. For this purpose, an R–O power law is often followed. Article [42] suggested
a non-linear relationship between stress and strain in the following form:

ε =
σ

E0
+ p ·

(
σ

σp

)n
(2)

where E0—initial Young’s modulus; σp—plastic strain for the adopted elastic limit;
n—parameter characterizing material strengthening degree.

Equation (2) was primarily designed for aluminum steels, but it proved to be applicable
to other metals with non-linear relationships, including stainless steel alloys. For design
purposes, a conventional elastic limit σ0.2 for a permanent strain ε0.2 = 0.2% can be adopted
as the elastic limit. With the above-mentioned assumptions, Formula (2) is as follows:

ε =
σ

E0
+ 0.002 ·

(
σ

σ0.2

)n
. (3)

In order to estimate the value of exponent n, the reference stress level should be
determined σx. For a known strain value ε0,x corresponding to stress σx, exponent n is
given by the following formula:

n =
ln( ε0.2/ε0,x)

ln( σ0.2/σx)
. (4)

The coordinates of the second reference point (σx, ε0,x) are determined based on the
existing strains (stresses), considering the two following cases:

• If the analysis is conducted within the elastic range (for σ ≤ σ0.2), then the stress
corresponding to the permanent strain 0.1% can be assumed as a second reference point.

• If the analysis is conducted within the plastic range (for σ > σ0.2), then the tensile
strength corresponding to the highest point of the curve can be assumed as a second
reference point.

For aluminum, the material strengthening degree is adopted from the range n ∈ 〈5, 48〉
depending on the type and variety of steel and product type (sheets, tapes, sections, pipes,
etc.) [41]. For stainless steels, parameter n is taken from the range n ∈ 〈4, 9〉 within the
standards [40,43,44]. In the task presented below, the model parameters are identified, for
which isotropic elastic–plastic material with exponential amplification is described by the
R–O law, see. [42], also known as Hollomon power law was assumed [45]. The originally
formulated law for the uniaxial state is as follows:

σ =

{
E0 ε dla ε ≤ σY

E0
,

σY

(
E0 ε
σY

)n
dla ε > σY

E0
,
. (5)
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where σY—plastic limit in a uniaxial stress state.
Tri-axis version of this popular model is implemented in many commercial FEM

programs, e.g., Abaqus [46].
Figure 1 shows a graphic interpretation of the R–O material model (5), showing the

power relationship between strain and stress σ(ε) for elastic–plastic material with given
values: E0 = 200 GPa, σY = 380 MPa, and n = 0.092 [1].

Figure 1. An example diagram σ(ε) generated for elastic–plastic material with reference values:
E0 = 200 GPa, σY = 380 MPa and n = 0.092.

The R–O law can also be applied to the modeling of structure material exposed to
low-cycle loads. Articles [17,47,48] adopted a modified R–O model, where strain ε(σ)
during loading is defined by a skeleton curve (Figure 2):

ε =
σ

E0
+

2σY
3E0

(
σ

σY

)n
(6)

However, the next loading/unloading cycles are described by a family of hysteresis
loops, which are illustrated in Figure 2 (see [49]):

ε− εe
R =

σ− σe
R

E0
+

4 σY
3 E0

(
σ− σe

R
2 σY

)n
(7)

where εe
R, σe

R—strain and stress during unloading.
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Figure 2. Skeleton curve and hysteresis loop for Ramberg–Osgood’s material model. Figure 2. Skeleton curve and hysteresis loop for Ramberg–Osgood’s material model.

The skeleton curve is marked in black in Figure 2—it carries out the first cycle of
loading in the mechanical system. The blue color marks the branch of the loop that unloads
the system in each cycle. The branch of the loop that unloads the system in cycles from the
second to the final one, depending on the needs, is marked in magenta.
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2.4. Samples Generation by FEM

In papers [1,49], identification procedures of material parameters were performed.
The research groups made the simulation results available for further analysis. The tasks
were conducted by indentation tests using FEM for different material sets. The FEM is one
of the basic tools of computer-aided scientific research and engineering analysis, with a
very wide range of applications and high popularity. The possibility of using FEM requires
knowledge from various fields of application (departments of physics, structural mechanics,
etc.), mathematical knowledge about the basics, and IT knowledge to be implemented
on computer hardware. Numerical computations were carried out in the ABAQUS [46]
environment, which enables individual material characteristics to be used in calculations
together with the generation of complex calculation grids and finite sliding formulation.

In the program, the indentation test for a material sample 1 mm high and 2 mm in
diameter was modeled. For the material of the test sample, the deformation plasticity as
the material behavior was adopted. This model is primarily intended for use in developing
fully plastic solutions in ductile metals. It does not need to be combined with any other
mechanical material models since it completely describes the response of the material.
The analyzed element was divided into 1690 four-node finite elements of various dimen-
sions. The values and intervals between the lower and upper data limits assumed for the
computations were as follows:

• Young’s Modulus 170 GPa ≤ E ≤ 220 GPa 9 parts;
• Yield stress 330 MPa ≤ σY ≤ 460 MPa 13 parts;
• Exponent 0 ≤ n ≤ 0.2 40 parts.

Additional material parameters with constant values were Poisson’s ratio ν = 0.3 and
the yield offset σ0.2 = 100 MPa. The parameters of the mathematical model were identified
based on the sample with a static diagram shown in Figure 3.

Figure 3. Finite element mesh and contact model of task.

The geometry and indenter tip’s material were compliant with the requirements of the
standard [31]. A diamond indenter (Figure 4) with an opening angle of 120◦ and spherically
truncated at a radius of 200 µm was adopted. An isotropic, linear elastic material was
applied for the indenter. Constant elasticity values of E = 1140 GPa and ν = 0.07 were
assumed, according to paper [50]. The indenter computational model was discretized by
144 finite elements (Figure 3).
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Figure 4. Cross-section of the tip of the sphero-conical diamond indenter.

Contact between the indenter and material sample was modeled using a pure master-
slave contact algorithm: nodes on one surface—the slave—cannot penetrate the segments
that make up the other surface—the master (Figure 3). After performing the computations,
S = 4680 imprint profiles and 190 indentation curves were obtained, which had 36 and
100 points, respectively.

3. Case Study

In studies [50], to reduce the number of data describing both curves, principal com-
ponent analysis (PCA) was used. PCA is also common in signal processing as discrete
Karhunen–Loève transform (KLT) or a proper orthogonal decomposition (POD) in mechan-
ical engineering, e.g., [49]. Owing to the reduced vector of input data, the assessment of the
selected parameters (E, σY, n) of elastic–plastic R–O material was relatively easy using NN.
However, the PCA method has some disadvantages with the dimensionality reduction
of datasets: it may lead to some amount of data loss, it tends to find linear correlations
between variables, which is sometimes undesirable, and it fails in cases where the mean
and covariance are not enough to define the datasets, see e.g., [51]. Therefore, the authors of
this article decided to present an alternative method of data reduction from the experiment.
Approximation by means of a set of basic functions is equally effective but easier to use.

The presented manuscript illustrates a new approach to identifying the selected
parameters of the elastic–plastic material. The analysis employed the simulation results
of the indentation tests by G. Maier’s research group [52]. The general algorithm of the
proposed method is presented in the scheme in Figure 5. The identification process included
P-A and P-C procedures. It comprised the following crucial stages:

Figure 5. Algorithm of the applied procedure of identifying the material parameters.

Stage 1: The imprint indentation curves (Figure 6) and profile curves (Figure 7) used
for identification consisted of 200 and 72 data, respectively. In order to facilitate the training
of the neural network, i.e., to avoid overfitting and improve the ability of the general
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networks, both curves were approximated separately. Basic approximation functions were
selected individually for individual branches of the indentation curves and curve branches
describing the shape of the imprint profile. Approximation curve factors were used as
input data in the next identification stage.

Figure 6. Example diagrams of indentation curves and their approximation functions (the letters a
and b denote separate branches of one diagram).

Figure 7. Example diagrams of imprint profiles and their approximation functions (the letters c and d
denote separate branches of one diagram).

Stage 2: The MLP, which performs the inverse task, was developed at this stage. This
network had the following architecture: 8-H-3 (Figure 8). Based on eight data describing the
curves (indentation and imprints), three selected parameters of the elastic–plastic material
were identified: E, σY, and n. For the calculations, H = 15 neurons were assumed in the
hidden layer of the neural network.

Figure 8. The structure of the applied MLP network.

In order to estimate the correctness of the results of the performed approximations
(Stage 1) and NN formulation (Stage 2) (see Figure 5), the following error measures were used:
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• Mean squared error (MSE):

MSE =
1
P ∑P

p=1 ∑P
p=1

(
t(p)
i − y(p)

i

)
, (8)

where
p = 1, . . . , P—pairs of data;

y(p)
i —reference data;

t(p)
i —computed values.

• Average absolute relative error (avr epi):

MSE =
1
P ∑P

p=1 epi, where epi =

∣∣∣∣∣1− y(p)
i

t(p)
i

∣∣∣∣∣ · 100%, (9)

• Linear regression coefficient (ri):

ri =
∑P

p=1

(
t(p)
i − ti

)(
y(p)

i − yi

)
√

∑P
p=1

(
t(p)
i − ti

)2
∑P

p=1

(
y(p)

i − yi

)2
, (10)

where ti =
1
P ∑P

p=1 t(p)
i , yi =

1
P ∑P

p=1 y(p)
i .

3.1. Stage 1 for P-A Procedure

In the approach of the P-A type, the material was identified based on the indentation
curve. This curve shows the relationship of force F applied to the indenter from the
vertical displacement of indenter v. Figure 6 demonstrates example indentation curves P(v)
determined for different parameters of an elastic–plastic material.

Every indentation curve from the prepared set S = 5740 of elements is marked by
100 pseudo-measurable points (200 coordinates—Figure 6). To reduce the number of
coordinates, the curve diagrams were divided into two parts, a and b, which were then
approximated by the following functions:

fi(x) = Φi(x) aT (11)

where i = a or b; a—vector of coordinates of approximating functions; Φi—vector of base
functions with the following form:

Φa =

[
x, x2, ln(x),

1
x

]
, Φb =

[
1, x, ln(x),

1
x

]
. (12)

Due to this approach, instead of 200 data describing each indentation curve, eight
curve factors fi(x) were obtained, so data compression was performed.

3.2. Stage 1 for P-C Procedure

In the P-C approach, the identification of material parameters was performed based
on the size of the imprint profile. Figure 7 shows example curves that describe the imprint
profiles. These curves describe a relationship between two indenter coordinates: radial—r
and vertical—v. As it is shown in Figure 7, the shape of the curve also depends on the
adopted material parameters.
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Each of the set S = 5740 of profiles is described using 36 points (72 coordinates). In this
case, curve diagrams were also separated into two parts: c and d. Branches c and d were
also approximated using Formula (4), assuming i = c and d:

Φc =
[
1, x, x2, x3

]
, Φd =

[
1, x, ln(x),

1
x

]
. (13)

Table 1 includes the maximum values: absolute error—e, mean square error—MSE,
and linear regression coefficient—r, which allow for estimating the approximation quality.

Table 1. Maximum values of absolute error (e), mean square error (MSE), and linear regression
coefficient (r) for P-A and P-C procedures.

Procedure Curve avr ep (%) MSE r

P-A
a 1.601 0.4751 0.9996

b 0.229 0.1003 0.9982

P-C
c 2.227 0.7693 0.9989

d 0.980 0.3874 0.9975

The average absolute relative error did not exceed 2.5% when approximating each
branch of the graphs. The mean square errors were at an acceptable level not exceeding 1.
The linear regression coefficients were close to 1, which means that Function (11) fi(x)
reproduced the course of the coordinates describing the indentation curve and the imprint
profile as accurately as possible. Based on the presented results, it can be concluded that
the approximation process was conducted correctly.

3.3. Stage 2 for Procedures: P-A and P-C

In this manuscript, for the identification of material parameters, both in the P-A and
P-C procedures, MLP was applied and developed with the use of the processed patterns
generated in the indentation test. A total of 2000 patterns were selected for training
the network, and 3740 patterns were adopted for testing the network. After the initial
calculations, the network with the structure 8-15-3 (Figure 8) was approved for further
analysis. Eight network inputs were the approximation factors, while the output from them
comprised the identified material parameters (E, σY, n). H-15 neurons in the hidden layer
were adopted for calculations. Bipolar sigmoidal activation functions (Fh) for the neurons of
the hidden layer and linear functions in the output layer were adopted. The formulation of
the network was conducted offline with the use of a Toolbox (Neural Network Toolbox [53]),
working in the MATLAB computing environment [54]. The pseudo-Gaussian Levenberg–
Marquardt method was used for learning.

The built MLP network 8-15-3 represented the following formula:

y(x; w) = ∑15
h=1 w(2)

h Fh

(
∑8

j=1 w(1)
hj xj + w(1)

0j

)
+ w(2)

0 . (14)

where Fh—activation functions of hidden layer neutrons; w—network parameter vector
(weights and biases).

MLP network preparation process: structure 8-15-3 (Figure 8) was completed after
900 training epochs for the mean square errors of learning and testing: MSEL ≈ 1.2 × 10−5,
MSET ≈ 1.1 × 10−5.

Figure 9 shows the correlation of the material parameter values calculated during the
NN testing and generated as a set of data used in the P-A identification procedure. The
coefficients are rE = 0.924, rσY = 0.944, and rn = 0.965, respectively, for the estimated Young’s
modulus, yield stress, and exponent of the material strengthening degree. In the case of the
P-C procedure, the estimation results are very similar to those above. The coefficients of
regression are rE = 0.938, rσY = 0.946, and rn = 0.954. The NN was developed correctly.
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Figure 9. Plots for testing linear correlation in the P-A procedure for MLP 8-15-3; (a) Young’s modulus,
(b) yield stress, (c) exponent of material strengthening degree.

4. Results and Discussion

Figures 10a, 11a and 12a illustrate the error distributions in the estimates of Young’s
modulus E, yield point σY, and hardening exponent n obtained from the NN simulation
(Stage 2). The visualized results were computed starting from “perfect data”, namely the
pseudo-experimental values of the measurable quantities as provided by the preliminary
direct analysis in ABAQUS. As shown in Figures 10–12, the most significant errors were
found by identifying the Young’s modulus E values as 0.88% and 1.01% for P-A and P-C,
respectively, and the yield point σY as 2.04% for the P-A procedure and 1.75% for the P-C.
Figures 10b, 11b and 12b illustrate the error distribution for the parameter values in the
estimates of Young’s modulus E, yield point σY, and the hardening exponent n obtained
from the neural network simulation (Stage 2). As can be seen, the greatest estimation errors
occur by the identification of the material hardening exponent n and are approximately 20%
for both types of the analyzed procedures. However, it should be noted that these errors
apply to a few patterns (see Figure 12b). The analysis results indicate a similar accuracy
between the P-A and P-C procedures according to the two-stage neural identification of
the material parameters. Additionally, it should be mentioned that applying the proposed
approach is distinguished by the higher efficiency and accuracy of the identification than
the approach suggested in paper [49].
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In the case of not using data compression, the inverse analysis allowing for the reading
of the material data would be numerically ineffective. The neural network would have to
have the following architectures: MLP: 200-H-3 for the P-A procedure and MLP: 72-H-3.
The computing time and CPU usage would increase significantly, see [55]. The comparative
assessments of the P-A, P-B, and P-C approaches in the works of Maier’s team [1,27] should
be treated as indicative and not conclusive, as the authors define it. The above-mentioned
works present the results of errors in the form of graphics, from which the maximum
errors can be read approximately. For the exponent n, for example, errors comprised about
60% of single datasets in each procedure. In fact, the proposed identification procedure
(compression and network errors) and the amount of experimental data may affect the
comparison criterion and limit its relevance and effectiveness.

5. Conclusions

This manuscript exhibits the application of neural networks for identifying the param-
eters (E, σY, n) of elastic–plastic material. A two-stage identification process was performed
based on pseudo-experimental data. One applied two identification procedures: P-A and
P-C. In the P-A procedure, the material parameters were identified based on the coordinates
of the indentation curves, but in the P-C procedure, they were based on the coordinates of
the imprint profile.

One of the most important scientific results of this paper is the original proposal of
the input data compression of the neural network. Due to its simplicity, approximation as
compression can be competitive in relation to, e.g., principal component analysis (PCA).
Approximation is a very synthetic method, takes less time to solve the problem of data
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reduction, and requires less computation than the PCA method. The use of classic approxi-
mation allowed for reducing the architecture of the neural network from 200-H-3 for P-A
and 72-H-3 for P-C to architecture 8-15-3. The analysis performed implies the following:

• A neural network with back-propagation (PBNN) can be effectively used for identify-
ing material parameters described by Ramberg–Osgood’s law, i.e., Young’s modulus
E, yield point σY, and the material hardening exponent n;

• A correctly performed approximation process is an effective way to reduce the mul-
tidimensionality of the input space of a neural network and allows for achieving a
satisfactory accuracy in the estimation of material parameters;

• In the suggested approach of the two-stage hybrid identification of elastic–plastic pa-
rameters, the accuracy and parameter estimation errors of the P-A and P-C procedures
are similar.

The proposed approach can be used in practice as a component of the software
analyzing the results of real indentation tests. The direction of development of the presented
research could be the use of the results from real indentation tests. There are also plans to
investigate the possibility and effectiveness of using probabilistic models, mainly Bayesian
neural networks (BNNs), as well as combining them with classic determinist NNs.
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Abbreviations

ANN artificial neural network
CPU central processor unit
FEA finite element analysis
FEM finite element method
FLNN feedforward layered neural network
HC hard computing
KLT Karhunen–Loève transform
MLP multilayer perceptron
MSE mean square error
MSEL mean square errors of learning
MSET mean square errors of testing
NN neural network
PBNN neural network with back-propagation
PCA principal component analysis
POD proper orthogonal decomposition
R–O Ramberg–Osgood
SC soft computing
E0 initial Young’s modulus
Fh activation function
FOut output function

t(p)
i computed values set

y(p)
i reference data set
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ε0,x known strain
ε0.2 permanent strain
εe

R strain points during unloading
σ0.2 yield offset
σe

R stress points during unloading
σY yield stress
σp plastic strain for the adopted elastic limit
σx determined stress
Φi vector of approximation base functions
a vector of coordinates of approximating functions
w NN parameter vector (weights and biases)
x NN input vector
y NN output vector
n parameter characterizing material strengthening degree
r radial indenter coordinates
v vertical displacement of indenter
υ Poisson’s ratio
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