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Abstract: We propose a simple but rapid strategy to fabricate self-crosslinked dual-crosslinking elas-
tomers (SCDCEs) with high mechanical properties. The SCDCEs are synthesized through one-pot
copolymerization of Butyl acrylate (BA), acrylic amide (AM), and 3-Methacryloxypropyltrimethoxysilane
(MEMO). Both the amino group on AM and the methoxy group on MEMO can be self-crosslinked after
polymerization to form a dual-network crosslink consisting of hydrogen bonds crosslink and Si-O-Si
covalent bonds crosslink. The SCDC endow optimal elastomer with high mechanical properties (the
tensile strength is 6MPa and elongation at break is 490%) as the hydrogen bonds crosslink can serve as
sacrificial construction to dissipate stress energy, while covalent crosslinking networks can ensure the
elasticity and strength of the material. These two networks also contribute to the recoverability of the
elastomers, leading them to recover their original shape and mechanical properties after being subjected
to deformation in a short time.

Keywords: elastomers; dual-crosslinking; hydrogen bonds

1. Introduction

Elastomers are widely used in various fields such as tires, biomaterials, seals, wearable
electronic devices, soft robots, sensors, and other fields [1–4]. These require elastomers
with high mechanical properties. Hence, it is important to seek for ways to fabricate and
toughen elastomers. There are many toughening strategies of elastomers: (i) incorporating
nanofillers to introduce high-level energy dissipation through friction and the break of filler
network; (ii) constructing special structures such as hard and soft segments in polyurethane
to form microphase separation; (iii) introducing sacrificial bonds, which can improve
the toughness of elastomers by dissipating energy and redistributing stress before the
failure of elastomers [5–8]. Among them, introducing sacrificial bonds is an emerging and
effective strategy [9–11].

To introduce sacrificial bonds, there are methods including constructing double net-
works, dual crosslinking, and sacrificial skeleton [12–14]. Inspired by the work of double
networks hydrogels, Luo et al. introduced 2-ureido-4[1H]-pyrimidinone (UPy) motifs
which dimerize and form strong hydrogen bonds, creating covalently crosslinked polyiso-
prene (PI) elastomers. Elastomers toughened by UPy groups show higher toughness and
mechanical strength than those toughened by hydroxyl groups [15]. Peng et al. synthesized
a strong, tough dual crosslinking elastomer consisting of ionic bonds and Diels–Alder
(D-A) bonds. The ionic bonds serve as sacrificial bonds through electrostatic interaction,
while the D-A crosslinks confer elasticity [16]. Zhu et al. designed a sacrificial skeleton,
combing a microscopic three-dimensional inverse opal-mimetic skeleton of glutaraldehyde
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cross-linked chitosan and a continuous matrix of sulfur-vulcanized natural rubber, and
fabricated defect-tolerance, strong, and tough soft materials [17]. Nevertheless, all the
strategies, including double networks, dual crosslinking, and sacrificial skeleton, hold a
critical drawback which is the complexity of synthesis. Therefore, it is necessary to find a
way to reach a rapid synthesis of elastomers with high mechanical properties, including
sacrificial structures.

To simplify the preparation steps of polymers, self-crosslinking is usually a good ap-
proach. This approach has been used to fabricate coating, adhesives, hydrogels, etc. [18–21].
However, this self-crosslinking has not been explored to fabricate dual-crosslinking elas-
tomers. For example, adding silane coupling agents is a popular self-crosslinking method
which is usually used to prepare an acrylic emulsion [18]. Therefore, we can envision that
the organofunctional siloxane introduced in the polymer backbone chain may self-crosslink
and form covalent bond networks. If other monomers which provide sacrificial bonds are
also polymerized in the backbone chain, a dual networks elastomer with high mechanical
properties may be conveniently fabricated.

In this paper, we developed a self-crosslinking approach toward the facile construction
of dual-crosslinking elastomers with high mechanical properties. The silane coupling agent
and acrylamide (AM) were introduced into the polymer chain, making the polymer able
to self-crosslink under an ambient environment. Thus, the crosslinked elastomer with
hydrogen bonds formed by amino and Si-O-Si covalent bonds, which are self-crosslinked,
can be simply prepared just after polymerization. In our material, hydrogen bonds act as
sacrificial bonds to toughen the elastomers and enable the elastomers to be self-healable; the
self-crosslinking Si-O-Si bonds maintain the shape of the elastomers and provide strength.
In addition, this dual-crosslinked network possesses ideal dynamic nature, leading to
the rapid self-recovery of elastomers. In general, the elastomers show high mechanical
properties (the tensile strength is 6MPa and elongation at break is 490%) and fast self-
recoverability.

2. Materials and Methods
2.1. Materials

2, 2-azobisisobutyronitrile (AIBN) was provided by Kermel (Tianjin, China). Butyl
acrylate (BA, stabilized with Hydroquinone monomethylether, >99.0%, TCI, Shanghai,
China), acrylic amide (AM, >98%, Alfa Aesar, Shanghai, China), 3-Methacryloxypropyltri-
methoxysilane (MEMO, >98%, Adamas, Shanghai, China), Tetrahydrofuran (THF), 1,4-
dioxane, n-hexane, and petroleum ether were purchased from Tansoole.com (accessed on
22 July 2021) (Shanghai, China). BA was filtrated through a basic alumina column to remove
the inhibitor, while other reactants were used without further purification.

2.2. Synthesis of the SCDCEs

The facilely constructed self-crosslinking dual crosslinking elastomers (SCDCEs) were
synthesized simply by free-radical copolymerization of BA, AM, and MEMO. The details of
polymerization were as follows: firstly, 8.88 g (0.0692 mol) BA, 2.13 g (0.03 mol) AM, 0.19 g
(0.0008 mol) MEMO, and a bit of AIBN were dissolved in 30 mL THF. Additionally, then
it is transferred to a 150 mL there-neck round bottom flask equipped with an economical
allihn condenser and a magnetic stirrer. Dissolved oxygen in the mixture was removed
by bubbling argon for at least 20 min. The monomers were then polymerized under an
argon atmosphere with stirring at 70 ◦C for 6 h. After polymerization, the product was
precipitated in petroleum ether or n-hexane at least three times. The precipitate was then
dissolved in the 20 mL 1,4-dioxane and then transferred to a square Teflon mold in the air.
After the polymer networks were self-crosslinked at 25 ◦C in air for 24 h, the samples were
put into a vacuum oven at 60 ◦C for 7 days to evaporate the solvent. After this process,
transparent films were obtained (Figure 3a).
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2.3. Characterization

The FTIR spectra were measured by an attenuated total reflection mode at room
temperature using a Thermo Scientific (Waltham, MA, USA) Niolet iS50 FTIR. Thermo-
gravimetric analysis (TGA) was performed on a NETZSCH TG209F1 thermogravimetric
analyzer. The heating rate was 10 ◦C min−1. A TA Instruments Q1000 was used to perform
the differential scanning calorimetry (DSC) measurements in the temperature range of
−70 ◦C to 60 ◦C (10 ◦C min−1). Raman spectra (DXR, Thermo Fisher Scientific, Waltham,
MA, USA) were performed to confirm the characteristic peaks with a DXR laser (532 nm).
A SPI4000 AFM instrument of Seiko using silicon tips (NSG10) was used to perform atomic
force microscopy (AFM) tests. The spring constant of 3 N m−1 was at a resonance frequency
of 228.9 kHz. Additionally, the measurements were all carried out in tapping (AC) mode.
The rheological measurements were carried out using a TA AR2000ex rotational rheometer
(TA instrument Ltd., New Castle, DE, USA). The samples were 8 mm in diameter and
0.9–1.1 mm thick and were cut into disks. Stress relaxation tests were performed at a
strain of 0.1% for 40 s. Temperature sweep tests were performed on the samples at a wide
temperature range of 25 ◦C to 180 ◦C with a strain of 0.1%. Strain scanning tests were per-
formed at a constant frequency of 1.0 Hz. Periodic structural failure and reconstruction tests
were performed on SCDCEs with periodic strain (0.1% and 50%) at a constant frequency
of 1.0 Hz. A universal testing machine (Instron 5967) was used to measure mechanical
properties. To obtain the stress–strain curves and cyclic tension curves, all the tests were
carried out with a strain rate of 0.083 s−1 at room temperature.

3. Results and Discussion
3.1. Fabrication and Structure

The SCDCEs are simply synthesized through the one-pot free-radical copolymeriza-
tion of butyl acrylate (BA) acrylic amide (AM) and 3-Methacryloxypropyltrimethoxysilane
(MEMO) with azobisisobutyronitrile (AIBN) initiator, resulting in an uncrosslinked copoly-
mer (Figure 1a). The amino group of the AM molecule can provide hydrogen bonds as
sacrificial bonds. Additionally, the methoxy groups on the MEMO can be self-crosslinked
in the air to form a Si-O-Si bond crosslinking network. So SCDCEs can be prepared through
only one step. After polymerization, the uncrosslinked polymer only needs to be self-
crosslinked in the air for 24 h to obtain a covalent network crosslinked by Si-O-Si bonds
(Figure 1b). Moreover, the amine groups of AM are evenly distributed on the polymer back-
bones, forming hydrogen bonds with each other and dispersively aggregating. These form
hydrogen bond crosslinkings, which are dynamic and reversible (Figure 1b,c). Based on the
above design mechanism, a series of samples were fabricated by changing the amount of
MEMO to control the ratio of the two crosslinks. The self-crosslinked double-crosslinking
elastomers are denoted as SCDCE-x, where x represents the percentage of MEMO (mol,
%). The random copolymerization makes the two crosslinks disperse from each other
and results in a transparent elastomer (Figures 2c and 3a). It can be envisioned that the
dynamic hydrogen bond crosslinking can separate gradually and dissipate a great amount
of energy during deformation, whereas covalent Si-O-Si bond crosslinking preserves the
elasticity of the elastomer thus allowing them to recover their original shape upon stress
relief. The hydrogen bonds can be reformed during the recovery process, making SCDCEs
self-healable (Figure 1c).
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Figure 1. Design concept and synthesis. (a) Synthesis of the SCDCE: copolymerize BA, AM, and
MEMO by one-pot free-radical copolymerization with AIBN initiator. (b) Self-crosslink. (c) Schematic
description of self-crosslinking mechanisms and proposed mechanisms for the energy dissipation of
SCDCs under deformation.
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Figure 2. Structure analyzing and thermal properties. (a) FTIR spectrum of the SCDCEs samples.
(b) Raman spectrum of SCDCEs. (c) Photograph of SCDCEs swelling in THF. (d) AFM phase image
of SCDCE-0.8. TGA (e) and DTG (f) curves of SCDCE-0.8.
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Figure 3. Dynamic properties. (a) Stress relaxation curves of SCDCEs samples. The samples are
stretched to a strain of 0.1% for 40 s. Temperature-dependent FTIR spectra at (b) 1700–1660 cm−1,
(c) 1580–1500 cm−1 and 3500–3100 cm−1 of SCDCE-0.3 upon heating from 25 ◦C to 140 ◦C. (d–f) Depen-
dence of the SCDCEs samples G′ and G′′ moduli on temperature. The samples are stretched to a strain
of 0.1% at a constant frequency of 1.0 Hz.

The structures of the SCDCEs were characterized by Fourier transform infrared spec-
troscopy (FTIR). It can be found that the SCDCEs samples exhibit several characteristic
peaks: the absorption peaks at 3350 cm−1 and 3180 cm−1 indicate the presence of N-H
stretching vibration [22–24]; the peak at 1680 cm−1 can be attributed to the C=O stretching
vibration [23,24]; the absorption peak at 1200 cm−1 can be assigned to the Si-O-Si bonds [25].
To verify that the methoxy groups of MEMO are cross-linked to form Si-O-Si bonds, the
Raman spectrum of SCDCEs was obtained (Figure 2b). The absorption peak at 540 cm−1

belongs to the Si-O-Si bonds, demonstrating that the methoxy group of MEMO reacted to
each other and was self-crosslinked by forming Si-O-Si bonds [26]. Moreover, an atomic
force microscope (AFM) image (Figure 2d) reveals that Si-O crosslinks could self-assemble
nanoparticles, forming microphase separations in SCDCEs (which can improve mechanical
properties). This microphase separation may broaden the glass transition region of the
SCDCEs [27]. The glass transition temperature (Tg) values of SCDCEs obtained from the
differential scanning calorimetry (DSC) curve lie within the range from −19 ◦C to 3 ◦C
(Figure S1), which confirms that the materials are rubbery rather than glassy plastics at
room temperature. The TGA and DTG curves of SCDCE-0.8 are shown in Figure 2e–f. The
main weight loss occurred in the temperature range of 350–400 ◦C. The weight loss of
the sample did not reach 5% until 250 ◦C, indicating that the sample is resistant to high
temperatures to a certain extent.

3.2. Dynamic Nature of the Dual Crosslinks

The dynamic nature of the dual-network elastomers is investigated by performing
stress relaxation experiments. The samples are tested at the strain of 0.1%, and the results
are shown in Figure 3a. It is obvious that when the dynamic network relaxes, and the
force exerted on this network is released, SCDCE exhibits an apparent relaxation behavior.
Furthermore, the more applied force that is released refers to the higher molar ratio of
MEMO addition. This is attributed to the presence of Si-O-Si bond crosslinks which are
covalent permanent crosslinks.
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3.3. Mechanical Properties

To characterize the mechanical properties of the SCDCEs, the tensile tests were carried
out at a strain rate of 0.083 s−1 on dumbbell-shaped samples. Representative stress–strain
curves are shown in Figure 4a. It can be noted that as the MEMO content increases, the in-
tensity of SCDCEs increases, but stretchability decreases (Figure 4b). The breaking strength
of SCDCE-0.3 is 3 MPa, and the elongation at break is 490%. When the MEMO content
increased to 0.6% and 0.8%, the tensile strength of the elastomer increased to 4 MPa and
6 MPa, and the elongation at break decreased to 300% and 200%. It can be inferred that, with
the increase of MEMO content, Si-O-Si covalent cross-linking between polymer molecules
increases, leading to an increase in strength but a decrease in elasticity.
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Figure 4. Mechanical properties. (a) Tensile tests of SCDCEs samples at a strain rate of 0.083 s−1.
(b) Summary of mechanical properties of the SCDCEs. (c) Ashby plot of the mechanical properties
of SCDCEs and recently reported acrylate-based elastomers [28–36]. Cyclic stress–strain curve of
SCDCE-0.3 (d), SCDCE-0.5 (e) and SCDCE-0.8 (f). (g) Schematic photo of SCDCEs stretching process.

To further explore the excellent mechanical properties of SCDCEs, cyclic tensile exper-
iments were carried out for SCDCEs (Figure 4d–f). The first-time cyclic stress–strain curves
of SCDCEs have large hysteresis loss, which indicates a large amount of energy dissipation.
However, during the cyclic loading and unloading process, the stress on reloading is less
than that on the initial loading for the same strain. This stress softening phenomenon is
referred to as the well-known Mullins effect [37,38]. Obviously, upon deformation, the
hydrogen crosslinks should preferentially break before the fracture of Si-O-Si covalent
crosslinks. It can be speculated that the reversible break and reformation of hydrogen
crosslinks lead to energy dissipation [15], improving the mechanical properties of SCDCEs.
The integrated area of the hysteresis loop is calculated to quantify the energy dissipation,
as shown in Figure 4g. It can be seen that in the first cycle, the hydrogen bond breaks as
a sacrificial construction, resulting in huge hysteresis loss. The hydrogen bond could not
be repaired immediately during the second and third cycle stretching, and the area of the
hysteretic loop decreased to 20–40% of the original, indicating that the hydrogen bond
cross-linking network greatly improved the toughness of SCDCEs. At the same time, with
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the increase of MEMO addition, the proportion of the Si-O-Si covalent bond cross-linking
network was increased, and the strength of SCDCEs was increased. Together, these two
networks give high mechanical properties to SCDCEs.

3.4. Self-Recoverability

In practical use, it is required that the elastomer can recover its original shape and
mechanical properties after being subjected to deformation. To further investigate the
rapidly constructed dual-crosslinking structure, we investigated the network restoration
and reconstruction tests. Firstly, strain scanning tests were carried out to determine the
linear viscoelastic region of SCDCEs, and the results were obtained as shown in Figure 5a–c.
G′ and G′′ values of the three samples of SCDCEs remain constant in the strain range
of 0–10%, indicating that no obvious damage occurred in the three samples at this stage.
Moreover, the values of G′ and G′′ in the three samples were positively correlated with
the proportion of Si-O-Si bonds crosslinking network, and the values of G′ and G′′ in
SCDCE-0.8 were greater than those in SCDCE-0.5 which were also greater than those in
SCDCE-0.3. When the strain exceeded 10%, the values of G′ and G′′ of the three samples
began to decrease, indicating that the network structure began to be damaged.
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After that, the structural recovery and reconstruction performances of SCDCEs were
analyzed through periodic structural failure and reconstruction tests. The three samples
were tested with an alternate small strain (γ = 0.1%, frequency = 1.0 Hz) and a large one
(γ = 50%, frequency = 1.0 Hz). It can be observed from Figure 5d–f that when the strain
drops from 50% to 0.1%, the values of G′ and G′′ of the three samples nearly return to the
original level, and SCDCE-0.8 can immediately restore the values of G′ and G′′ that are
almost the same as the original. It shows that after the crosslinking network of SCDCEs is
destroyed, it can be rebuilt in a very short time to recover to the original performance. More
interestingly, after the strain dropped from 50% to 0.1%, the values of G’ and G′′ of the
three samples increased to a constant state in a short time gradually, indicating that there
was a certain time depending on the network restoration and reconstruction. This time
dependence is more obvious when the proportion of Si-O-Si bonds crosslinking network is
smaller, as more hydrogen bonds crosslinking networks are needed to repair and rebuild
the network, which means it takes more time to approach the original performance of the
sample. In general, this dual-crosslinking structure can achieve efficient restoration and
reconstruction in a short time after being damaged, which is related to the ratio of the two
kinds of cross-linked networks.
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The small strain recoverability of SCDCEs was obtained from the periodic structural
failure and reconstruction tests. To investigate the recoverability of SCDCEs stretched to
a large strain, a sample of SCDCE-0.8 was stretched to a strain of 300% (Figure S2). After
releasing the stress, the instant residual strain was 150%, and it decreased gradually as a
function of time. The sample recovered fast, and it took only 120 s to achieve 90% recovery.
Approximately 4600 s were taken to recover to the original shape with no evident residual
strain. This rapid recoverability of the sample demonstrates the excellent ability of SCDCEs
to retain the original shape of the elastomers after deformation.

4. Conclusions

In conclusion, we developed a self-crosslinking approach toward the facile construc-
tion of dual-crosslinking elastomers and synthesized a series of elastomers with high
mechanical properties. We introduced MEMO and AM onto the polymer backbone, en-
abling the elastomer to form a self-crosslinking double crosslink. The SCDN consists of
Si-O-Si covalent crosslinks and hydrogen bonds crosslinks. During stretching, the hydrogen
bonds can serve as sacrificial structures which can dissipate energy and redistribute stress
before the failure of elastomers. This leads to the high mechanical properties of SCDCEs.
The Si-O-Si covalent crosslinks can maintain the network. We found that the increased
proportion of siloxane can increase the mechanical properties of the SCDCEs. As a result,
the SCDCs process leads to high strength (6 MPa), high stretchability (490%), and the fast
recovery of elastomers.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma15113983/s1. Figure S1: DSC curves of SCDCEs samples under
N2 in the temperature range of −70 ◦C to 60 ◦C at a heating scan rate of 5 ◦C min−1; Figure S2:
Recovery time of SCDNE-0.8 after stretched to the strain of 300%.
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