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Abstract: Recently, polymers have entered into many medical and industrial applications. This work
aimed to intensively study polypropylene samples (PP) embedded with micro and nanoparticles
of PbO for their application in radiation shielding. Samples were prepared by adding 10%, 30%,
and 50% by weight of PbO microparticles (mPbO) and adding 10% and 50% PbO nanoparticles
(nPbO), in addition to the control sample (pure polypropylene). The morphology of the prepared
samples was tested; on the other hand, the shielding efficiency of gamma rays was tested for different
sources with different energies. The experimental linear attenuation coefficient (LAC) was determined
using a NaI scintillation detector, the experimental results were compared with NIST-XCOM results,
and a good agreement was noticed. The LAC was 0.8005 cm−1 for PP-10%nPbO and 0.6283 cm−1

for PP-10%mPbO while was 5.8793 cm−1 for PP-50%nPbO and 3.9268 cm−1 for PP-50%mPbO at
0.060 MeV. The LAC values have been converted to some specific values, such as half value layer
(HVL), mean free path (MFP), tenth value layer (TVL), and radiation protection efficiency (RPE)
which are useful for discussing the shielding capabilities for gamma-rays. The results of shielding
parameters reveal that the PP embedded with nPbO gives better attenuation than its counterpart pp
embedded with mPbO at all studied energies.

Keywords: polypropylene; PbO nanoparticles; SEM; mechanical; radiation shielding

1. Introduction

Radiation is present in a variety of forms that we encounter every day. One may be
exposed to the natural radiation background, including terrestrial radiation (0.21 mSv)
and cosmic radiation (0.33 mSv) [1–3]. Individuals that work with applications of nuclear
technology—such as nuclear power plants, various radiology departments, and oncology
centers—may be exposed to some additional radiation doses to such artificial radiation
sources beyond those which occur naturally [4,5]. Furthermore, there is a wide usage
of nuclear technology in space exploration, modification and identification of materials,
coating, food sterilization, agriculture, industry, and nuclear power facilities. Therefore,
researchers have studied and developed many new shielding materials to absorb radiation
and protect from the hazard of ionizing radiation [6,7].

A recent development in nanotechnology has helped to change the medical rules used
to prevent, diagnose, and treat diseases, and we are living in the era of nanomedical tech-
nology, for example, the manufacture of certain types of clothes that contain nanoparticles
such as lead and bismuth, and these clothes are resistant to radiation in medical centers and
industrial environments [8,9]. These nanoparticles are also added as a combination with
concrete and mortar to work at a good attenuation of radiation coming from radioactive
sources and radiological medical devices [10–12].

Using of polymer composites in attenuation of gamma rays has become an interesting
field of research and it plays an important role in gamma radiation protection; in particular
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protection from scattering radiation from materials along the path of photon source. In
order to study the behavior and the performance of polymer composites in radiation
protection application, it is important to identify the total attenuation cross-section which
are the basic parameters for the determination of the penetration depth of the photon in
any material [13–16].

Polypropylene composites are reinforced by metal oxides such as Pbo which is the
most used filler in polymeric matrix to shield gamma rays due to its high density and high
atomic number compared to other metal oxides [17,18]. In this work, polymer composites
of high density polypropylene were prepared via filling with power bulk lead and nano
lead oxide nanoparticles with different filler weight percentages. The role of polymer
was to acquire plasticity, easy formability, and to provide load-stress transfer. A study
was designed to evaluate the ability of PP-PbO NPs versus PP-PbO in attenuation of
gamma rays.

2. Materials
2.1. Polypropylene (PP)

Polypropylene is an economical material that offers a combination of outstanding
physical, chemical, mechanical, thermal, and electrical properties not found in any other
thermoplastic material. Compared with low- or high-density polyethylene, it has a lower
impact strength, but superior working temperature and tensile strength. Its features are
light weight, high tensile strength, impact resistance, high pressure resistance, excellent
insulating properties, and non-toxicity. Its density ranges from 0.901 to 0.905 g/cm−3,
tensile strength is 4800 psi, tensile modulus is 195,000 psi, tensile elongation at yield is
about 12%, the compressive strength is 7000 psi, and the Rockwell hardness test yielded a
92 [19,20].

2.2. Lead Oxide (PbO)

In this work, micro- and nano-sized lead oxide particles were used as fillers. Mi-
croparticles were purchased locally from Abico Pharmaceuticals, with a purity of 99.7%
and an average size of about 50 µm, while nanoparticles were purchased from Nano Tech
Company, as they were chemically prepared. Transmission electron microscopy (TEM)
[JEM-2100F, JEOL, Tokyo, Japan] at 200 kV as well as the XRD was performed on Wide
Angle X-ray Diffraction with Small Angle Capability at Egyptian Nanotechnology Center
(EGNC) as indicated in Figure 1. By examining these characteristics, it was confirmed that
PbO nanoparticles range in size from 50.7 nm to 19.5 nm with an average size of 30 nm [21].
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2.3. Polymer Mix Design

The samples in this study were prepared using a pressure-molding method for all
polymer samples as shown in Table 1. First, a 0.0001 g sensitive electrostatic balance was
used to weigh polypropylene and lead oxide, and then PP was put into a cylindrical mill at
165 ◦C (which is above the melting point of polypropylene) for 20 min at a rotational speed
of 40 rpm. After the polypropylene was completely melted, the PbO powder, whether
micro or nano, was added gradually with continuous rolling for 15 min to obtain a uniform
distribution of the powder in PP. The whole mixed sample was placed in an iron frame
with dimensions of 12.5 × 12.5 × 3 cm. Then, the samples were compressed by a hydraulic
heat press at a pressure of 10 MPa and a temperature of 850 ◦C for 15 min, the pressure
was gradually raised to 20 MPa for another 15 min. The sample is kept under pressure for
30 min to gradually cool down to a temperature of 400 ◦C, after which the pressure sample
is taken and cut into circular discs for measurement [22]. The density measured by the law
density = M/V, where M represents the mass of PP sheet and V its volume.

Table 1. Codes, chemical compositions in weight fraction, and densities of PP-PbO composites.

Codes

Compositions (wt%)
Density
(g·cm−3)PP

PbO

Micro Nano

PP 100 - 0.902 ± 0.004

PP-mPbO10 90 10 0.991 ± 0.002

PP-nPbO10 90 - 10 1.085 ± 0.009

PP-mPbO30 70 30 - 1.236 ± 0.011

PP-mPbO50 50 50 - 1.645 ± 0.007

PP-nPbO50 50 - 50 1.702 ± 0.009

3. Methodology
3.1. SEM Test

SEM analysis (JSM-6010LV, JEOL) was used to monitor the distribution, size, and
difference of micro and nano PbO particles in PP-PbO. Images acquired from SEM at a
magnification order of 5000× at 20 kV [23]. The purpose of determining the morphology of
the composite samples is to clarify the distribution of both micro and nano PbO particles
inside the PP.

3.2. Attenuation Test

Sodium iodide (NaI) scintillation detector with efficiency 15% at 0.662 MeV and
different radioactive point sources were used to test the attenuation parameters of the
prepared samples [24,25]. Each prepared sample was tested for three different thicknesses,
0.5, 1.5, and 2 cm, with a fixed diameter of 8 cm. Initially, the detector was calibrated using
Cs-137 and Co-60 sources, then the initial counting rate (N0) was determined in the absence
of a sample, where the source-to-detector distance was 24 cm and then a sample was placed
between the detector and the source at a distance of 4 cm from the detector as shown in
Figure 2 to determine the counting rate (N).The characteristics of the radioactive sources
that were measured are listed in Table 2 [26,27].
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Table 2. Characteristics of the radioactive sources used in this study.

PTB Nuclide Energy
MeV

Emission
Probability

Activity
Bq

Uncertainty
kBq

Am-241 0.060 35.9 259,000 ±2.6

Cs-137 0.662 84.99 385,000 ±4.0

Ba-133
0.081 32.9

275,300 ±1.5
0.356 62.05

Co-60
1.173 99.90

212,100 ±1.5
1.333 99.982

To know the shielding ability of the material, the linear attenuation coefficient (LAC)
was experimentally determined from the following equation [28]:

LAC =
1
t

ln
N0

N
(1)

The experimental results of LAC for PP-mPbO samples were compared with the results
obtained from NIST XCOM. The relative deviation between the two results is calculated by

Dev1(%) =
LACxcom − LACexp

LACexp
× 100 (2)

While the relative deviation between the results of LAC of the micro and the results
nano filler is determined by

Dev2(%) =
LACnano − LACmicro

LACmicro
× 100 (3)
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The linear attenuation coefficient (LAC) is the probability of photon interaction with
concrete sample per unit path-length. The half and tenth value layers (HVL and TVL) are the
material thicknesses enough to reduce the gamma ray intensity by 50% and 10% of its initial
intensity, respectively, while the mean free path (MFP) is defined as the average distance
between two successive collisions. These parameters are calculated by the following
equation [29,30]:

HVL =
LN(2)
LAC

, TVL =
LN(10)

LAC
, MFP =

1
LAC

(4)

The radiation protection efficiency (RPE) is an important parameter for estimating the
efficacy of shielding materials [31,32].

RPE, % =

[
1 − N

N0

]
× 100 (5)

4. Results and Discussion
4.1. SEM Results

The samples prepared from PP-mPbO and PP-nPbO were examined using scanning
electron microscopy (SEM) to determine the shape of the samples and the particle distribu-
tion inside the polypropylene in addition to their size as shown in Figure 3. It turns out that
the distribution of nanoparticles is more diffuse than fine particles, the smaller the size of
the PbO particles, the greater their spread, in addition to being more homogeneous inside
the polymer, which makes the percentage of voids in the material decrease, and this is one
of the reasons for increasing the attenuation of radiation as shown in the next section.
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4.2. Attenuation Results

The experimental LAC were determined using a NaI scintillation detector and different
point radioactive sources for micro sized polypropylene samples with different percentages
of PbO added in different proportions as tabulated in Table 3. In Table 3, the experimental
results were compared with NIST-XCOM results and the deviation between them were
obtained. The maximum relative deviation less than 4% for all prepared samples at all
different discussed energies. It is clear from Table 3 that the LAC decreases with increasing
energy in all the prepared samples. For example, for the first sample (PP), the value
of LAC at the lowest energy was 0.1734 cm−1 while at the medium energy 0.662 MeV
was 0.0784 cm−1 and at the highest energy studied was 0.0537 cm−1. However, when
adding lead oxide, we found an increase in the value of the LAC at energy 0.122 MeV
relative to the energy before it, and that was due to the presence of the K-edge (or called
k-absorpance) of lead oxide at 0.082 MeV and it remains effective after this energy at
medium energies and its effect disappear again at high energies. For example, for the
sample PP-m PbO30 the linear attenuation coefficient was 0.969, 1.304, and 0.333 cm−1 at
the energy of 0.081, 0.122, and 0.244 MeV, respectively. In Table 3, the measured density was
also shown experimentally by measuring the mass on the disc volume. It was found that
when the percentage of PbO increased, the density increased, as the density increased from
0.903 ± 0.007 to 1.645 ± 0.009 when the percentage of lead oxide was increased to 50%.

Table 3. The linear attenuation coefficient of PP with PbO micro particles of different percentages
and relative deviation compared with theoretical results.

Sample Code Energy (MeV)
LAC, cm−1

Dev1 (%) Density (g·cm−3)
NIST-XCOM Experimental

PP

0.060 0.1775 0.1734 ± 0.0011 2.32

0.903 ± 0.007

0.081 0.1637 0.1607 ± 0.0009 1.85

0.122 0.1468 0.1439 ± 0.0012 1.95

0.244 0.1181 0.1148 ± 0.0008 2.84

0.356 0.1027 0.0995 ± 0.0021 3.11

0.662 0.0794 0.0784 ± 0.0006 1.22

0.964 0.0666 0.0652 ± 0.0008 2.10

1.173 0.0605 0.0593 ± 0.0011 2.01

1.333 0.0566 0.0556 ± 0.0013 1.75

1.408 0.0550 0.0537 ± 0.0015 2.35

PP-m PbO10

0.060 0.638 0.6283 ± 0.0021 1.55

0.991 ± 0.005

0.081 0.379 0.3707 ± 0.0011 2.11

0.122 0.455 0.4480 ± 0.0009 1.65

0.244 0.176 0.1734 ± 0.0015 1.22

0.356 0.129 0.1237 ± 0.0019 3.85

0.662 0.089 0.0887 ± 0.0007 0.46

0.964 0.073 0.0718 ± 0.0013 1.77

1.173 0.066 0.0643±0.0022 2.48

1.333 0.062 0.0603 ± 0.0011 1.96

1.408 0.060 0.0587 ± 0.0018 1.77

PP-m PbO30
0.060 1.903 1.8709 ± 0.0022 1.71

1.236 ± 0.011
0.081 0.969 0.9486 ± 0.0012 2.11
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Table 3. Cont.

Sample Code Energy (MeV)
LAC, cm−1

Dev1 (%) Density (g·cm−3)
NIST-XCOM Experimental

0.122 1.304 1.2846 ± 0.0008 1.49

0.244 0.333 0.3284 ± 0.0021 1.48

0.356 0.200 0.1942 ± 0.0025 3.02

0.662 0.116 0.1149 ± 0.0005 1.10

0.964 0.091 0.0890 ± 0.0008 2.11

1.173 0.081 0.0791 ± 0.0020 2.21

1.333 0.075 0.0741 ± 0.0015 1.36

1.408 0.073 0.0719 ± 0.0025 1.38

PP-mPbO50

0.060 4.006 3.9268 ± 0.0013 1.97

1.645 ± 0.009

0.081 1.951 1.9115 ± 0.0032 2.02

0.122 2.713 2.6696 ± 0.0012 1.59

0.244 0.596 0.5837 ± 0.0018 2.02

0.356 0.319 0.3103 ± 0.0011 2.77

0.662 0.161 0.1589 ± 0.0020 1.35

0.964 0.121 0.1181 ± 0.0017 2.22

1.173 0.106 0.1037 ± 0.0012 2.05

1.333 0.098 0.0965 ± 0.0008 1.29

1.408 0.095 0.0933 ± 0.0016 1.57

In Table 4, the results of the LAC were presented for two polypropylene samples, to
which nanoparticles of lead oxide were added at a percentage of 10% and 50%, and the results
were compared with the same percentages of the micro particles shown in Table 3. It turns
out that polypropylene with PbO nanoparticles gives better attenuation than its counterpart
polypropylene with PbO microparticles at all studied energies. We found that, for example,
the LAC was 0.8005 cm−1 for PP-nPbO10 and 0.6283 cm−1 for PP-mPbO10 while it was
5.8793 cm−1 for PP-nPbO50 and 3.9268 cm−1 for PP-mPbO50 at 0.060 MeV. However, at high
energy, the deviation become lower compared with the deviation at low energy, where at
1.408 MeV the LAC was 0.1100 cm−1 for PP-nPbO50 and 0.0933 cm−1 for PP-mPbO50.

Table 4. The linear attenuation coefficient of PP with 10% and 50% PbO nano particles and the relative
deviation of micro samples.

Sample Code Energy (MeV) Experimental LAC, cm−1 Dev2 (%) Density (g·cm−3)

PP-nPbO10

0.060 0.8005 ± 0.0011 21.52

1.002 ± 0.007

0.081 0.4657 ± 0.0011 20.41

0.122 0.5518 ± 0.0011 18.82

0.244 0.2069 ± 0.0011 16.18

0.356 0.1461 ± 0.0011 15.31

0.662 0.1025 ± 0.0011 13.40

0.964 0.0813 ± 0.0011 11.71

1.173 0.0720 ± 0.0011 10.74

1.333 0.0673 ± 0.0011 10.30

1.408 0.0653 ± 0.0011 10.10
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Table 4. Cont.

Sample Code Energy (MeV) Experimental LAC, cm−1 Dev2 (%) Density (g·cm−3)

PP-nPbO50

0.060 5.8793 ± 0.0011 33.21

1.701 ± 0.005

0.081 2.7723 ± 0.0011 31.05

0.122 3.7140 ± 0.0011 28.12

0.244 0.7797 ± 0.0011 25.14

0.356 0.4047 ± 0.0011 23.33

0.662 0.1992 ± 0.0011 20.24

0.964 0.1437 ± 0.0011 17.85

1.173 0.1238 ± 0.0011 16.25

1.333 0.1142 ± 0.0011 15.48

1.408 0.1100 ± 0.0011 15.21

The relative deviation between the micro and nano for PP-PbO10 and PP-PbO50
samples is shown in Figure 4, we found that the deviation increases with the increase in
the percentage of PbO; furthermore, at the lowest energy, the deviation was higher and it
starts decreasing gradually with the increase in energy. In the PP-PbO10, the deviation was
21.52% at the energy 0.060 MeV, while the deviation was 33.21% for the material PP-PbO50
at the same energy. As for the highest studied energy (1.408 MeV), the deviation was 10.10%
for PP-PbO10, while it was 15.21% for PP-PbO50.
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Figure 5 describes the results of comparing the linear attenuation coefficient for the
four samples PP-mPbO10, PP-nPbO10, PP-mPbO50, and PP-nPbO50 at three energies
0.060, 0.081, and 0.122 MeV as shown in Figure 5a and at other three energies 0.224, 0.662,
and 1.333 MeV in Figure 5b. Figure 5 generally gives a brief comparison of the results
of Tables 3 and 4. From the results, we found that the new polypropylene sample PP-
nPbO50 has a higher attenuation at all energies shown in this figure than its counterpart
PP-mPbO50, and the reason is the surface area of nanoparticles is higher than that of
micro-particles, which makes it more diffuse and distributed inside the polypropylene
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material and thus makes the interaction of photons more probable, which increases the
attenuation of the material.
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LAC values have been converted to some specific values, such as half value layer
(HVL), mean free path (MFP), and 10th value layer (TVL), which are useful for discussing
the shielding capabilities for gamma-ray photons. Figure 6 displays the HVL, MFP, and
TVL at different energies for PP-mPbO10, PP-nPbO10, PP-mPbO50, and PP-nPbO50 where
in Figure 6a, the TVL were calculated three energies 0.060, 0.081, and 0.122 MeV. The results
showed that the lower TVL is PP-nPbO50 for energy 0.060 MeV, then the TVL is lower at
energy 0.122 MeV than at energy 0.081 MeV, due to the presence of the absorption region
owned by PbO, where at 0.06 MeV the tenth value was 3.665, 2.876, 0.586, and 0.392 cm
for P-mPbO10, PP-nPbO10, PP-mPbO50, and PP-nPbO50, respectively. Figure 6b shows
the results of the distance of photon inside the polypropylene material without collisions
(MFP) at three different energies 0.224, 0.365, and 0.662 MeV. Similarly, Figure 6c shows the
results of the distance the polypropylene material needed to reduce the incoming gamma
ray to half initial values (HVL) at three different energies—1.173, 1.333, and 1.408 MeV.

One of the most essential factors in this study is the radiation protection efficiency
(RPE). The importance of this parameter lies in the fact that it gives an indication of
the trend around the possibility of using prepared polypropylene samples in radiation
protection applications. It also provides information about the optimal concentration of
micro and nano PbO and the difference between them in the prepared samples, which
makes these samples suitable for the field of radiation protection. For this reason, we
examined the RPE of our prepared samples in Figure 7. We observed that RPE increases
with our transition from PP to PP-PbO50, which indicates that incorporation of Pb in
polypropylene has a positive effect on RPE values and this is normal, but the novelty in
this work is the comparison between micro and nanoparticles of PbO when incorporated
into polypropylene. The nano samples have RPE values that are superior to that of the
micro samples except at the low studied energies (0.060, 0.081, and 0.122 MeV) and when
50% of PbO is incorporated into polypropylene, the RPE values reach almost 100% as
shown in Figure 7. After that, the RPE values gradually decrease with the increase in
energy for all the studied samples. For example, the sample PP-nPbO50 has values of
100.00%, 99.94%, 32.86%, 21.93%, and 19.75% at energies of 0.060, 0.122, 0.662, 1.173, and
1.408 MeV, respectively.
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Finally, the current results were compared with previous work similar to this work; the
LAC of the current work was compared with HDPE embedded with micro and nanoparti-
cles CdO [33]. The comparison was made at 0.662 MeV as shown in Figure 8. The results
showed that the current work showed that the use of PP with micro and nano PbO is better
as a matrix than HDPE with micro and nano CdO in radiation attenuation at 0.662 MeV.
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5. Conclusions

Polypropylene (PP) samples embedded with PbO micro and nanoparticles were ex-
tensively studied for their application in radiation shielding. The morphological test was
carried out using SEM for the prepared samples, and it was found that the additions of
nanoparticles improve the morphological properties and reduce the voids in the polymer
compared to the microparticles. On the other hand, the protection efficiency of gamma rays
was tested for different sources with different energies. The experimental LAC was deter-
mined using the NaI detector, and the experimental results were compared with those of
NIST-XCOM and a good agreement was observed. The results of the shielding parameters
show that pp embedded with nPbO provides better attenuation than that of pp embed-
ded with mPbO at all studied energies. The LAC was 0.8005 cm−1 for PP-10%nPbO and
0.6283 cm−1 for PP-10%mPbO while was 5.8793 cm−1 for PP-50%nPbO and 3.9268 cm−1

for PP-50%mPbO at 0.060 MeV. From these findings, we conclude that these materials can
be used in many applications, including the preservation of liquid radioactive sources
in plastic materials made of this polymer. In addition, it can be used as an additional
protective shield on walls, doors, and windows.
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