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Abstract: Powder spreading is one of crucial steps in selective laser sintering (SLS), which controls
the quality of the powder bed and affects the quality of the printed parts. It is not advisable to
use empirical methods or trial-and-error methods that consume lots of manpower and material
resources to match the powder property parameters and powder laying process parameters. In this
paper, powder spreading in realistic SLS settings was simulated using a discrete element method
(DEM) to investigate the effects of the powder’s physical properties and operating conditions on
the bed quality, characterized by the density characteristics, density uniformity, and flatness of the
powder layer. A regression model of the powdering quality was established based on the response
surface methodology (RSM). The relationship between the proposed powdering quality index and
the research variables was well expressed. An improved multi-objective optimization algorithm of
the non-dominated sorting genetic algorithm II (NSGA-II) was used to optimize the powder laying
quality of nylon powder in the SLS process. We provided different optimization schemes according
to the different process requirements. The reliability of the multi-objective optimization results for
powdering quality was verified via experiments.

Keywords: selective laser sintering; spread the powder quality; parameter optimization; DEM;
RSM; NSGA-II

1. Introduction

Selective laser sintering (SLS) is one of the typical additive manufacturing processes,
which creates objects via scanning and layer-by-layer sintering. As a novel technology used
for the design and manufacturing of complex shapes and structures, SLS is implemented a
fast rate for automobile, shipbuilding, aerospace, and medical applications [1,2]. The laying
of a flat, uniform, and high-density powder bed is the aim when preparing the molded
parts to ensure good performance [3,4]. The size accuracy and mechanical properties of the
sintered parts are directly affected by the powder laying quality, which is closely related to
the powder flow characteristics and powder laying process parameters [5].

Flowability is an essential powder property for the achievement of uniformly spread
powder layers [6]. The powder must have appropriate rheological properties to form thin,
dense, and uniform powder layers [7]. The commonly used characterization methods for
powder fluidity include the angle of repose method, outflow velocity method, Hausner
index method, Carr fluidity index method, and shear method [8,9]. The powder flow
characteristics depend on many parameters, such as the particle size distribution [10,11],
particle shape [12,13], interparticle interaction force [14], and temperature [15]. For example,
Wei et al. [16]’s research suggests that the surface shape affects the stability of the particle
stacking structure and the uniformity of the pore distribution. Dai et al.’s research showed

Materials 2022, 15, 3849. https://doi.org/10.3390/ma15113849 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15113849
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://doi.org/10.3390/ma15113849
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15113849?type=check_update&version=1


Materials 2022, 15, 3849 2 of 20

that [14] both the sliding friction and rolling friction hinder the particle flowability, leading
to a higher angle of repose and a lower packing fraction in the sandpile.

The technological parameters of the roller spreading process are relatively complex,
which include the thickness of the powder layer and the diameter, rotation speed, and
displacement speed of drum [17]. It is not advisable to optimize the powder laying process
through experience and tedious experiments. Therefore, it is necessary to optimize the
technological parameters of the roller powder laying process via numerical simulation
to improve the spreading properties of the powder. The discrete element method (DEM)
has great advantages in simulating the motion of powder systems [18,19]. The basic idea
of the DEM is to divide the system into a number of particles, whereby the response of
the whole system is described through the mechanical and kinetic states of each particle
in the system [20]. The DEM has been widely used to investigate the flow mode and
dynamic behavior of powder particles in additive manufacturing and to reveal the effects
of the powder laying process on the powder laying quality [21,22]. For instance, Meier [23]
studied the influence of the particle size distribution and adhesion forces between particles
on the uniformity of the powder layer in additive manufacturing. Tan et al. [24] established
a contact model between powder particles, which took van der Waals forces between
particles into account. The parameters of the contact model were calibrated experimentally.
The powder laying process was simulated, the density uniformity of powder layer was
evaluated, and the fluidity of the new powder and residual powder was compared.

It is of great significance to establish the relationship between powder property pa-
rameters, powder laying process parameters, and powder laying quality to expand the
raw material range of the powder promotion process. The evaluation index of the powder
spreading quality can be divided into powder quality (such as the powder density, powder
spreading thickness, coverage rate, and surface uniformity) and powder flow morphology
(such as deposition rate and avalanche angle change rate) aspects. More scholars are focus-
ing on the influence of the powder laying process on the powder laying quality. Mussatto
et al. [7] systematically studied the effects of the powder morphology, diffusion rate, and
layer thickness on the powder bed morphology uniformity. Chen [25] studied the fluidity
and powder quality of the powder laying process. The results showed that the continuity
and stability of the powder flow decrease with the increase in powder spreading speed and
the decrease in powder spreading layer thickness, which lead to the deterioration of the
bulk density and uniformity. Yao et al. [26] simulated the powder laying process with a
316L stainless steel powder scraper. The effects of technological parameters, the scraper
structure, and the powder particle size on the powder laying quality were studied. The op-
timum process parameters were determined. Parteli et al. [27] developed a DEM numerical
tool for the SLS powder laying process, with which the characteristics of the powder layer
deposited on the parts are studied by applying it to the roller powder dispensing system.
The results showed that an increase in powder spreading speed and wider particle size
distribution will lead to an increase in the surface roughness of the powder layer, and will
ultimately affect the quality of the parts.

The powder laying process parameters and physical powder parameters affect each
other and affect the quality of the powder laying process. At present, some researchers still
use empirical or trial-and-error methods in this process, which consume more manpower
and material resources to match the powder property parameters and powder laying
process parameters. Although DEM simulation of the SLS powder laying process can
monitor the powder laying quality well, this approach requires a lot of time because the
powder size is very small, the simulation system is huge, and the computing capacity
is limited. In the development of various optimization methods, the response surface
methodology (RSM) and genetic algorithm (GA) are used to optimize parameters to solve
engineering problems [28–30]. The multi-objective optimization method, which uses
polynomials to fit the relationship between factors and responses, can simplify these
engineering problems. The influences of the single factor and interaction factor on the
response index were analyzed previously and the optimal parameters were obtained [31].
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In this paper, powder spreading in realistic SLS settings was simulated using the DEM
to investigate the effects of the powder’s physical properties and operating conditions on
the bed quality, characterized by its density characteristics, density uniformity, and flatness
of the powder layer. The central composite design (CCD) approach was used to generate
13 groups of cases and to establish the regression model of the 3 indicators. A regression
model of the powdering quality was established based on the response surface methodology.
According to the analysis of variance (ANOVA), the influences of single factors and their
interactions on the response indicators were determined. Multi-objective optimization
was carried out for the drum powder laying parameters and the optimization results were
verified via experiments. This study will be helpful to optimize the drum powder laying
process parameters and improve the powder laying quality in the SLS process.

2. Methods
2.1. Discrete Element Method

In this model, based on the Hertz–Mindlin model and SLS powder paving process, the
particle gravity, collision force between particles (between particles and wall), friction, van
der Waals force, and electrostatic force were comprehensively considered to describe the
contact dynamic behavior of nylon powder at preheating temperature via DEM. There are
two modes of motion, namely translational motion and rotational motion, which describe
the motion of particles according to Newton’s second law of motion:

mi
dvi
dt

= ∑
j

Fc
ij + ∑

k
Fnc

ik +Fg
i (1)

Ii
dωi
dt

= ∑
j

Mij (2)

where Fe
ij is the contact force of particle j to particle i or wall j to particle i, Fnc

ik is the

non-contact force of particle k to particle i or wall k to particle i, and Fg
i is the self-gravity of

nylon power i; vi is the position vector of the particle i, ωi is the angle vector of the particle
i, and Mij is the torque of particle j to particle i or wall j to particle i.

Fc
ij can be decomposed into the normal contact force Fnc and tangential contact force Ftc.

The contact force Fnc of nylon powder i in the normal direction is composed of the normal
elastic force Fnc,s, normal damping force Fnc,d,van der Waals Fvdw

nc , and static force Fele
nc :

Fnc = Fnc,s + Fnc,d + Fvdw
nc + Fele

nc (3)

The Van der Waals forces take into account only the gravitational component based
on Hmaker’s theory. The normal elastic force Fnc,s and normal damping force Fnc,d can be
obtained according to the Hertz–Mindlin model:

Fc
n,s =

4
3

E∗
√

R∗δn
3/2 (4)

Fc
n,d = −2

√
5
6

β
√

Snm∗vrel
n (5)

where E∗ is the equivalent elastic modulus of nylon powder, R∗ is the equivalent radius of
nylon powder, m∗ is the equivalent mass of nylon powder, β is the damping coefficient,
and Sn is the normal contact stiffness, the expression of which is as follows:

E∗ =
Ep

2(1− γ2
p)

(6)
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R∗ =

[
1
Ri

+
1
Rj

]−1

(7)

m∗ =

[
1

mi
+

1
mj

]−1

(8)

β =
Ine√

In2e + π2
(9)

Sn = 2E∗
√

R∗δn (10)

where Ep is the elastic modulus of nylon powder, γp is Poisson’s ratio of nylon powder, and
mi and mj are the mass of nylon powder i and j, respectively; e is the recovery coefficient of

collision between nylon powders, δn is the normal overlap quantity, and vrel
n is the normal

relative velocity of contacting nylon powder.
Van der Waals forces are inherent in fine particle flows [32]. In the study of fine particle

flow, the Hamaker theory is often used to calculate Van der Waals forces between fine
particles [33]:

Fvdw
PP = −

∂U0
PP

∂Z0
= −

App

12Z2
0

didj

di + dj
(11)

Fvdw
pw = −

∂U0
pw

∂Z0
= −

Apwdi

12Z2
0

(12)

where Fvdw
PP is the Van der Waals force between particles, Fvdw

pw is the Van der Waals force
between particles and walls, di and dj are the diameters of particles i and j, Z0 is the
distance between the particles, App is the Hamaker constant between powders, and Apw is
the Hamaker constant of the powder and wall.

The friction charge of the powder involves the friction charge between the powder
and the wall, as well as between the powders. The electrostatic force between two charged
particles is calculated by:

Fele
pp =

1
4πε0

qiqj

r2
ij

nij (13)

where qi and qj are the charges of particles i and j, respectively; rij is the distance between
the centers of particle i and j, ε0 is the dielectric constant of vacuum, and nij is the unit
vector from particle i to particle j.

The electrostatic force between the particle and the conducting plane is:

Fele
pw =

1
4πε0

qi
2

[2(Z0 + s)]2
npw (14)

where s is the correction factor and npw is the unit vector. Refer to the literature for detailed
information on static force modeling [34].

2.2. Establishment of Powder Laying Process Model

Nylon powder was selected as the research object in this study. The DEM model of
the powder laying process established in this research is based on PA3200 powder. The
preheating temperature of the SLS powder laying process is 171 ◦C. The contact parameters
of nylon powder in DEM simulation are calculated according to the inverse parameter
results. The DEM simulation results agree well with the experimental results. The reliability
and accuracy of the DEM model at preheating temperature were verified.

The above research laid a foundation for the study of the PA3200 SLS powder laying
process. Figure 1 shows the SLS powder DEM model established in this study. The
construction and verification process of the DEM model are detailed in our previous



Materials 2022, 15, 3849 5 of 20

work [34,35]. Tables 1 and 2 present the physical parameters and working parameters,
respectively, in the SLS powder laying process.
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Figure 1. DEM simulation of roller spreading processes.

Table 1. DEM model parameters of PA3200 powder spreading process.

Parameter Value

Density (kg/m3) 1000
Shear modulus of powder (MPa) 61
Poisson ratio of power 0.35
Wall density (kg/m3) 7800
Wall shear modulus (Gpa) 80
Poisson ratio of wall 0.30
Coefficient of sliding friction between powder and wall 0.51
Coefficient of rolling friction between powder and wall 0.15
Hamaker constant between powder and wall 9.72 × 10−20

Resilience factor between powder and wall 0.52
Coefficient of sliding friction between powders 0.48
Rolling friction coefficient between powder and wall surface 0.24
Springback coefficient between powders 0.11
Hamaker constant between powders (J) 7.21 × 10−20

Powder charge generation factor 0.03
Power D50 (µm) 50
Number of powder particles 215,000

Table 2. Working parameters of numerical simulation of powder laying process.

Parameter Value

Drum translational velocity Vs (mm/s) 60, 100, 140, 180, 220, 260, 280, 320
Ratio of drum linear velocity to translational velocity Vr/Vs 0.16, 0.33, 0.50, 0.66, 1.0, 1.31, 2.0, 2.63
Diameter of roller Rg (mm) 4, 12, 20, 24, 28, 32, 36, 40
Powder particle D50 diameter (µm) 30, 40, 50, 60, 70, 80, 90, 100
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2.3. Quality Index of Powder Laying

It is necessary to characterize the quality of nylon powder in the molding area before
studying the influence of powder laying process parameters and powder property parame-
ters on the quality of nylon powder laying in the molding area. In this study, the quality of
powder laying is expressed by the density characteristics, density uniformity, and flatness
of the powder layer in the formation area.

A schematic diagram of the area meshing used to measure the apparent density is
shown in Figure 2. The density of the powder layer in the formation area is characterized
by the ratio of the total particle mass to the particle volume of the layer:

ρ =

n
∑

i=1
mi

n
∑

i=1
vi

(15)

where vi is the volume of grid i and mi is the particle mass of grid i.
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The standard deviation of the apparent density of the powder layer in the formation
region is denoted by S, which can be used to represent the density uniformity of the
powder layer. The standard deviation S of the apparent density of the powder layer can be
expressed as:

S =

√√√√ 1
N − 1

N

∑
i=1

(
ρ′i − ρ′

)2
(16)

where ρ′ is the average apparent density of particles in the selected box, which is given by:

ρ′ =

N
∑

i=1
ρ′i

N
(17)

Here, Ra is the surface roughness. This can be used to characterize the flatness of the
powder layer, which is given by [36]:

Ra =
1
l

∫ l

0
|y(x)|dx (18)

where l is the sampling length, y(x) is the distance between the contour point and the
reference line in the x direction, and the reference line is the least squares centerline of
the contour.

In order to study the influence of the number of grids on the flatness of the powder
layer in the formation area, the sampling lengths on the horizontal and vertical sections
are divided by different number of grids. Figure 3 shows the effect of the mesh number on
the standard deviation of the apparent density of powder layer ρ′ in the formation area.
It can be seen that ρ′ increases with the increase in mesh number. When the number of
grids increases from 20 to 48, the number of particles in each grid increases, but ρ′ is less
sensitive to the number of grids. The effect of the number of grids on the surface roughness
of the powdering layer Ra in the formation area is shown in Figure 4. When the number
of grids increases to a certain extent, Ra does not change much. Therefore, the number of
grids should not be too large when calculating the surface roughness of the powder layer in
the formation area. In order to find out the optimum cell size, the mesh size of the powder
layer selection box in the formation area should meet S1 ≥ 2.5dmax and S2 ≤ 0.5dmin. Here,
dmax is the maximum particle diameter and dmin is the minimum particle diameter.
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2.4. Response Surface Methodology

The response surface methodology (RSM) proposed by British statisticians Box and
Wilson in 1951 [37] is frequently used to approximately fit unknown functions, such as the
relationship between variables and responses. In practical applications, RSM establishes
mathematical relations through regression analysis of the test results of physical experi-
ments or simulation tests, which can evaluate the relevant factors and their interactions to
determine the optimal level range. RSM has been successfully applied to optimize a variety
of processes [38–40].

The basic idea of RSM can be summarized as follows:

y = f
(

x1, x2, · · · , xp
)
+ ε (19)

where y is a variable, f
(

x1, x2, · · · , xp
)

is the response function of factor x1, x2, · · · , xp, and
ε is the residual of the construction model.

The second-order response surface model is:

y = β0 +
m

∑
i=1

βixi +
m

∑
i=1

βiix2
i +

m

∑
i<j

βijxixj + ε (20)

where β0 is the constant term, βi is the linear effect of xi, βij is the interaction effect of xi and
xj, and βii is the second-order response of xi. The second-order response surface method
mainly includes the central composite design (CCD), Box–Behnken design, uniform design,
and D-optimal design. The most commonly used second-order response surface design
method is the central composite design method, which is used to optimize the reaction
process parameters or to find the best synthesis conditions [41]. The central composite
design method includes the universal rotary composite design, quadratic orthogonal
composite design, and others. In this research, the universal rotating combination design is
used to design the DEM simulation test scheme.

The general rotating composite design experiment was carried out considering the
drum translation speed Vs (mm/s) and particle size d (mm) of D50 as experimental factors.
The design factors of the DEM simulation test for the nylon powder laying process are
shown in Table 3. The CCD model of RSM was used to generate 13 cases. The response
indexes of the apparent density Y1, standard deviation of the density Y2, and powder layer
roughness Y3 can be calculated using Equation (18). Table 4 shows the simulation results of
the corresponding indicators.
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Table 3. Design factor level of DEM simulation test for nylon powder laying process.

Test Factor −1.414 −1 0 1 1.414

Drum translational
velocity Vs (mm/s) 68.93 100.00 175.00 250.00 281.07

particle diameter d (µm) 39.46 50.00 75.00 100.00 110.36

Table 4. DEM simulation test scheme and simulation results of powder laying process (Rg = 20 mm,
Vr/Vs = 0.5).

Test No.
Translational
Velocity
Vs (mm/s)

Particle Size
D (µm)

Apparent
Density
(kg/m3)

Standard
Deviation of
the Density
(kg/m3)

Roughness
(µm)

1 175.00 75.00 535.00 79.60 42.04
2 100.00 100.00 542.10 113.70 40.60
3 175.00 75.00 535.00 79.60 42.04
4 175.00 39.64 572.20 75.60 43.02
5 250.00 100.00 549.40 124.90 44.21
6 250.00 50.00 558.40 82.50 43.12
7 175.00 75.00 535.00 79.60 42.04
8 175.00 110.36 557.70 133.90 42.14
9 281.07 75.00 535.80 95.10 45.25
10 68.93 75.00 553.30 90.80 44.36
11 100.00 50.00 563.50 67.30 44.37
12 175.00 75.00 535.00 79.60 42.04
13 175.00 75.00 535.00 79.60 42.04

2.5. Multi-Objective Optimization Method Based on Genetic Algorithm

The multi-objective optimization problems (MOP) approach was first proposed by the
Italian economist V. Pareto in 1896 [42]. The optimization objective can be expressed as:

min Y = F(X) = [F1(X), F2(X), · · · , Fm(X)]
s.t.gi(X) ≤ 0 . . .

hj(X) = 0, j = 1, 2, · · · , q
(21)

where X is the optimization parameter vector, X = (x1, x2, · · ·, xm) ∈ D, Y is the optimiza-
tion target vector, and Y = ( f1, f2, · · · fm) ∈ F.

In general, different objectives are in conflict with each other for MOP. There is no
single optimal objective solution for MOP, but the Pareto optimal solution is set [43]. The
Pareto optimal solution set is defined as ∀x ∈ Ω; if x′ ∈ Ω does not exist in the domain ∆x,
let (x′ + ∆x) ∈ Ω, when the following conditions are satisfied:

Fi
(
x′ + ∆x

)
≤ Fi

(
x′
)

(22)

Fj
(
x′ + ∆x

)
≤ Fj

(
x′
)

(23)

We note that x′ ∈ Ω is the Pareto optimal solution set used for multi-objective optimization.
The non-dominated genetic algorithm II (NSGA-II) is a kind of multi-objective genetic

optimization algorithm, which was proposed by Kalyanmoy et al. in 2002 [44]. In this
research, the NSGA-II improved algorithm Gamultiobj function provided by MATLAB is
used to optimize the powder laying quality.
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3. Results and Discussion
3.1. Variance Analysis and Regression Model Establishment

Design-expert 8.0.6 was used to conduct an RSM analysis on the DEM simulation
results from the SLS powder laying process shown in Table 4. The response surface
equation for the powdering quality can be obtained via regression analysis of the numerical
simulation results. The apparent density, standard deviation of the density, and surface
roughness formulae of the powder layer in the formation area are as follows:

Y1 = 716.3832− 0.3129vs − 3.7645d + 0.0008vs
2 + 0.0234d2 (24)

Y2 = 149.1053− 0.33340vs − 2.0568d + 0.0011vs
2 + 0.0194d2 (25)

Y3 = 57.6460− 0.1181vs − 0.1330d + 0.0006vsd + 0.0002dvs
2 (26)

where vs is the translational speed of the drum and d is the diameter of particle D50.
Analysis of variance (ANOVA) is used to test the significance of the fitted second-order

regression equation. The drum translation velocity Vs (mm/s) and the particle size D (mm)
of the powder D50 are selected as independent variables of the multi-objective optimization
model. In the optimization of powder laying process in the formation area, there are three
objectives to be optimized, namely the maximum apparent density, the minimum standard
deviation of the apparent density, and the minimum surface roughness. The regression
model of the powdering quality established by the RSM is the objective function to be
optimized, F1(x) = −Y1, F2(x) = −Y2, F3(x) = −Y3.

If the drum speed is too slow, the production efficiency will be affected; if the speed is
too fast, the powder laying quality will be reduced. Therefore, the interval constraint is
100 ≤ Vs ≤ 300 (mm/s). The particle size of D50 is mainly controlled by the thickness of
the powder layer, and the interval constraint is 50 ≤ D ≤ 100 (µm).

The crossover rate is 0.8, the population size is 100, the maximum evolution algebra
is 200, the stop algebra is 200, and the deviation of the fitness function is 10−100. The
variation rate is determined by the feasible region adaptation equation. The adaptive
feasible mutation method can be used to assess the diversity of the population, which is
conducive to the optimization of the results. The tolerance is set to 10−4 as the termination
condition of the calculation. The other parameters are set to recommended values.

3.2. Effects of Powder Laying Process Parameters on Powder Laying Quality Index

In the formation area, the distribution of the normal residual diagram includes the
apparent density of the powder layer, the standard deviation of the apparent density, and
the surface roughness, as shown in Figure 5. It can be seen that the distribution of the
residual points is almost in a straight line. The results show that the second-order model
fitting effect of the nylon powder quality in the SLS process is good.

The response surface diagram of the relationships among the drum translational
velocity, particle size, and powder laying quality is shown in Figure 6. Based on the
response surface diagram, the influence of a single factor on the process parameters (drum
translation speed) and powder property parameters (nylon powder particle size) can be
assessed, and the synergistic influence of these parameters on the powder laying quality
can be obtained.

The analysis shows that the particle size has a great influence on the apparent density,
standard deviation of the density, and roughness of the powder layer in the formation
area. The smaller the particles are, the more likely they are to agglomerate under the action
of electrostatic and van der Waals forces. Therefore, the pores left by the roller powder
are smaller and the densification degree of the powder bed is also increased. The smaller
particle size improves the apparent density of the powder layer, reduces the standard
deviation of the density, and improves the density uniformity, but is not conducive to
reducing the surface roughness. The effects of the roller translation speed on the apparent
density and density uniformity of the formation area are relatively small, but the effect on
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the roughness is greater. With the increase in drum translation speed, the apparent density
of the powder layer in the formation area decreases slowly. When the drum translation
speed increases to a certain extent, the apparent density of the powder layer will increase
slightly, although the overall change trend will be small. However, this is contrary to the
effects of the roller translational velocity on the density uniformity and roughness. If the
roller translation speed is too high or too low, this will not be conducive to improving
the uniformity of the powder layer density and reducing the roughness of the powder
layer surface. The apparent density of the powder layer is in conflict with the standard
deviation of the apparent density and the surface roughness in the target formation area.
This is also consistent with the previous simulation results. The regression equation for the
powdering quality established based on the RSM is reliable and can predict the powdering
quality well.

3.3. Multi-Objective Optimization Results for the Powder Laying Quality

Based on the Gamultiobj function, 80 Pareto optimal solutions were obtained to assess
the nylon powder quality during the SLS process. Partial Pareto optimal solutions are given
in Table 5. Here, an optimal compromise solution is selected in the Pareto set according to
product preference. The first solution is biased towards the maximum apparent density
of the powder layer in the formation region. The second solution is biased towards the
best uniformity of the powder layer density in the formation region. The third solution is
biased towards the optimal surface flatness of the powder layer in the formation region.
If all three are considered, the fourth solution can be selected as the optimal compromise
solution. When the particle size of the powder is determined in the actual engineering
process, the appropriate drum translation speed can be selected according to Table 5 to
optimize the powder laying quality. Through this method, the matching of the physical
property parameters and the SLS powder laying process parameters and the prediction of
powder laying quality were achieved.

Table 5. Partial Pareto optimal solution for multi-objective optimization of powdering quality via
DEM simulation.

Test No. x(1) x(2) f(1) f(2) f(3)

1 100.000 50.000 −566.332 71.509 44.637
2 145.201 52.547 −555.438 69.179 43.021
3 124.124 100.000 −545.108 113.938 41.099
4 153.701 55.058 −551.242 69.371 42.750
5 122.961 50.120 −562.044 69.813 43.759
6 105.078 50.003 −565.348 71.035 44.424
7 126.765 97.187 −542.746 108.696 41.219
8 151.930 68.351 −539.267 74.025 42.255
9 109.506 50.645 −563.553 70.626 44.202
10 129.048 88.767 −538.274 95.260 41.578
11 120.959 99.525 −544.970 113.299 41.123
12 118.713 98.379 −544.272 111.400 41.182
13 146.365 91.364 −538.048 98.421 41.471
14 139.111 50.677 −558.840 69.282 43.257
15 114.194 87.017 −539.307 93.891 41.798
16 124.878 95.907 −542.035 106.622 41.277
17 104.755 100.000 −546.880 115.748 41.181
18 133.703 50.750 −559.483 69.377 43.396
19 139.166 90.231 −538.007 96.921 41.494
20 152.929 66.994 −540.043 73.241 42.296
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Figure 5. Normal residual diagram of powder quality from DEM simulation: (a) normal residual
diagram of apparent density; (b) normal residuals of standard deviation of the density; (c) normal
residual diagram of powder surface roughness.
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Figure 6. Response surface diagram of powdery mass from DEM simulation: (a) performance density;
(b) standard deviation of the density; (c) roughness.
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4. Experimental Verification

PA3200 powder with a particle size of 50.02 mm was selected as the experimental
material, The polymer powder sintering machine (FS251) designed and manufactured
by Hunan Hua Shu Hi-tech co., Ltd., was used for the powder laying experiment. The
molding process parameters are shown in Table 6.

Table 6. SLS process parameters used in the experiment.

Parameter Value

Laser power (W) 21
Scanning interval (mm) 0.15
Drum diameter (mm) 40
Ratio of drum linear velocity to translational velocity 0.5
Preheating temperature of formation cylinder (◦C) 171
Preheating temperature of powder feeding cylinder (◦C) 132

In order to explore the influence of the powder laying parameters on the SLS powder
laying quality and to verify the optimized test results, an experimental method of online
sampling was designed to measure the powder laying quality. Figure 7 shows the schematic
diagram of the SLS powder laying quality detection process. In the formation area, three
experimental package layers can be seen, with each layer containing a powder paving roller
working from the bottom up to 100 mm/s, 140 mm/s, and 227 mm/s, respectively. Each
layer of the experimental package has the same design, including 13 statistical picker boxes,
1 no-cover statistical picker box, and 1 statistical picker box cover. The size of the outer
cavity of the selection box is 20 mm × 20 mm × 10 mm, and the thickness of the cavity wall
is 2 mm. The lumen is filled with powder. After sintering, it is cooled for a period of time
and then the sintering package is removed. The sintered parts of the statistical selection
box are then cleaned and sandblasted. The statistical selection boxes in each layer after
cleaning are numbered and distinguished. A high-precision balance (accurate to 0.0001 g)
is used to measure the mass mpi of each statistical selection box in each layer. Here, mpi can
be expressed as:

mpi = m1i −m2 −m3 (27)

where m2 is the mass of an open statistical box and m3 is the mass of the statistical box cover.
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The powder’s apparent density ρ′pi in each statistical selection box is:

ρ′pi =
mpi

liwihi
(28)

where li, wi, and hi represent the length, width, and height of the sintered parts in the
statistical selection box, respectively.

The apparent density of the powder layer in the formation area is:

ρp =

13
∑

i=1
mpi

13
∑

i=1
liwihi

(29)

The standard deviation of laminar density in the formation zone is:

Sp =

√√√√ 1
N − 1

N

∑
i=1

(
ρ′pi − ρ′pi

)2
(30)

where ρ′pi is the average value of the apparent density of the powder in the selection box.
According to the above experimental methods, the statistical box was prepared, as

shown in Figure 8a. We selected the box to sinter the molded parts for powder cleaning
(see Figure 8b). After cooling for a period of time, the size and quality parameters of the
sintered parts in the statistical selection box were measured, as shown in Figure 9.
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With the increase in drum speed, the apparent density of the powder in the formation
area decreases (Figure 10). The reliability of the numerical simulation study on SLS powder
laying process of nylon powder was verified. When the PA3200 powder D50 is 50 µm,
the diameter of powder spreading drum is 40 mm, the ratio of the linear velocity to
translation velocity of the drum is 0.5, the translation velocity of drum is 100 mm/s,
the apparent powder density in the formation area is 579.8 kg/m3 (Figure 10a), and the
standard deviation of the apparent powder density in the formation area is 70.3 kg/m3

(Figure 10b). This is in good agreement with the absolute value of optimization target result
no. 1 in Table 5, and the errors are 2.38% and 1.69%, respectively. When the roller translation
speed is 140 mm/s, the apparent powder density in the formation area is 543.1 kg/m3 and
the standard deviation of the apparent powder density in the formation area is 66.1 kg/m3.
This is in good agreement with the absolute value of optimization target result no. 14 in
Table 5, and the errors are 2.82% and 4.59%, respectively. This shows that the experimental
method of online sampling and measurement of the powder laying quality is feasible and
that the multi-objective optimization results of the nylon powder laying quality in the SLS
process based on the genetic algorithm are reliable.
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5. Conclusions

The SLS powder spreading process was numerically simulated based on the DEM.
The effects of the powder’s physical properties and operating conditions on the bed quality
were investigated, characterized by the density characteristics, density uniformity, and
flatness of the powder layer. The main results from the present study are summarized
as follows:

(1) Statistical analysis and curve fitting of the DEM simulation data from the powder
laying process were conducted based on the central composite experimental design
method. ANOVA was used to modify the fitting model. A regression model of the
powdering quality was established based on the RSM. The relationship between the
proposed powdering quality index and the research variables was expressed well;

(2) An improved multi-objective optimization algorithm based on NSGA-II was used to
optimize the powder laying quality of nylon powder in the SLS. The solutions in the
optimized Pareto solution set were evenly distributed in the target space. An optimal
compromise solution can be selected from Pareto optimal solution set according to
the product requirements;



Materials 2022, 15, 3849 18 of 20

(3) The apparent density and standard deviation of the powder under different conditions
were determined experimentally. The translation speed of the roller has a great
influence on the powder laying quality, and the apparent powder density in the
formation area decreases with the increase in roller speed. The experimental results
agreed well with the selected optimization results and the maximum error was less
than 4.6%. The reliability of the numerical simulation study on the SLS powder laying
process of nylon powder was verified.

At present, it is difficult to accurately measure the force and deformation of the particle
contacts using experimental equipment, and the inexact mechanical parameters are not
conducive to modeling simulations and for improvement of the adhesion collision model.
In addition, on the basis of improving the measurement method used for the particle
electrostatic transfer characteristics, the particle band charge and electrification mechanism
in this model need to be further refined. The model simulation system is smaller than the
actual system, so the parallel calculation of the DEM may increase the simulation system
and improve the computational efficiency.
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