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Abstract: Mechanical metamaterials are of interest to researchers because of their unique mechanical
properties, including a negative Poisson structure. Here, we study a three-dimensional (3D) negative-
Poisson-ratio (NPR) metal metamaterial lattice structure by adding a star structure to the traditional
3D concave structure, thus designing three different angles with a modified NPR structure and control
structure. We further study the mechanical properties via finite element numerical simulations
and show that the stability and stiffness of the modified structures are improved relative to the
control structure; the stability decreases with increasing star body angle. The star angle has the
best relative energy absorption effect at 70.9◦. The experimental model is made by selective laser
melting (SLM) technology (3D printing), and the compression experiment verification used an MTS
universal compressor. The experimental results are consistent with the changing trend in finite
element simulation.

Keywords: metamaterials; negative-Poisson-ratio; lattice structure; numerical simulation

1. Introduction

In the past few decades, lightweight lattice materials have received widespread atten-
tion as engineering materials because they have excellent properties that natural materials
do not have. Lattice structures have light weight, low density, high strength, and strong
specific energy absorption [1–11]. They have widely been used in vehicles, ships, aerospace,
marine engineering [12,13], etc. Their fine microstructure design has been used to create
some unconventional mechanical properties, such as a negative-Poisson-ratio (NPR), neg-
ative compressibility, and negative stiffness. Thus, lattice materials with NPR properties
have widely been used in engineering because of their excellent fracture resistance [14–17],
indentation resistance [18,19], sound absorption [20], and impact resistance [21].

The pioneering work of Lakes [15], Caddock, and Evans sparked interest in NPR ma-
terials. An increasing number of NPR structures are being discovered, manufactured, and
synthesized. In recent years, two-dimensional (2D) metamaterials with simple production
and easy analysis have become popular [22–24]. Designs include a concave structure [25],
star structure [26–30], chiral structure [31,32], hexagonal honeycomb structure [33], digging
structure [17], and reticulated structure [27]. The 2D honeycomb structure proposed by
Gibson is one of the most textbook auxiliary metamaterials.

As 2D metamaterials cannot meet all needs, three-dimensional (3D) metamaterials with
better performance are of interest [34–41]. For example, NPR tubular structures [17,42,43],
tension–torsion coupling structures [44,45], double-arrow energy-absorbing structures [46,47],
torsional structures [44,48,49], and 3D hexagonal reentrant structures [50–53] stand out. Of
the 3D re-entrant structures, Li et al. [54] proposed a new 3D NPR concave lattice based on a
2D NPR structure summarized by predecessors. They performed physical experimental
verification and proposed an enhanced version of the 3D NPR concave lattice with pillars.
They adjusted the performance of the NPR structures by adjusting the pillars and then
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compared the compressive and bending resistance of the 3D concave lattice. The results
were mediocre.

More recently, Li et al. [55,56] considered the direction of energy and studied a 3D
concave lattice using the energy method, which is still used by scholars as a reference for
such research. Subsequently, Xue et al. [57] studied compression performance by designing
four 3D concave lattices and concluded that the structural compression performance was
proportional to the NPR performance of the unit. Shen et al. [58] rotated a single concave
beam structure by 90 degrees on the basis of the classical 3D concave honeycomb lattice.
They then connected four connecting ribs at the concave midpoint and used experiments
and numerical simulations of the four models to show that the mechanical properties
and energy absorption capacity of the structure could be effectively improved. Existing
NPR structures are mostly 2D or 3D due to manufacturing difficulties and many other
factors. They are based on plastics and composite materials, and there is little research on
3D metal structures with an NPR. Structural experiments on NPRs for 3D metal materials
are also lacking.

Therefore, in this paper, a modified 3D re-entrant NPR metamaterial metal lattice
structure, along with a combination method, is proposed. We verified the material through
numerical simulations and experiments. The stability and mechanical properties of the
3D honeycomb structure lattice were changed by adjusting the angle of the 3D concave
structure and the lattice of the star structure by combining the concept of an NPR with a
metal lattice structure. Three different angles of the 3D honeycomb structure and control
structure were designed, and a numerical simulation analysis was performed. One of the
models was made via SLM laser 3D printing technology for experimental verification, and
the results showed that the modified structure can nicely improve stability and energy
absorption capacity. A larger angle of the star structure (∅) implied worse stability of the
honeycomb structure.

2. Design and Manufacture of a Modified 3D NPR Structure
2.1. Modified 3D NPR Structural Design

A modified 3D NPR lattice structure with the advantages of a concave structure
and a star structure was designed. Its cell structure is shown in Figure 1a, and the two
concave structures are placed together. One of the concave structures rotates 90◦ in the
direction of the straight edge midline to form the basic framework. The stellate section
is perpendicular to the straight midline of the concave structure, and its four concaves
are placed in conjunction with the four concaves of the basic framework; the two concave
structures and one stellate are orthogonal and fixed in the concave direction to form a
3D structure.

To highlight the advantages of the modified 3D NPR structure, three corresponding
control models were also designed. These are similar except for the absence of star-shaped
structures, which are consistent with the corresponding structures; the cytomembric compo-
sition is shown in Figure 1b. All lengths of the eight bevel arms of the two-dimensional star
structure in Figure 1c are indicated as “a”, and the four angular sizes are all ∅. Figure 1d
shows that the bottom edge length of the 2D concave structure is L, the length of the four
hypotenuses is “b”, and the angle between the bottom edge and the hypotenuse is ∅2. The
values of the three model plane parameters are shown in Table 1.
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Figure 1. Modified NPR 2D and 3D structure configurations. (a) Modified 3D NPR structure con-
figuration; (b) Schematic diagram of the 3D component unit structure of the control model; (c) 
Geometric structure configuration of 2D star structure components; (d) geometric structure 
configuration of 2D concave structure components. 

Table 1. The three designed model plane parameters. 

Type A (mm) B (mm) ∅ (°) ∅𝟐𝟐 (°) L (mm) 
A 18.82 39.70 38.14 50 70 
B 18.82 36.03 70.90 60 70 
C 18.82 33.88 105.77 70 70 

Figure 1. Modified NPR 2D and 3D structure configurations. (a) Modified 3D NPR structure
configuration; (b) Schematic diagram of the 3D component unit structure of the control model;
(c) Geometric structure configuration of 2D star structure components; (d) geometric structure
configuration of 2D concave structure components.

Table 1. The three designed model plane parameters.

Type A (mm) B (mm) ∅ (◦) ∅2 (◦) L (mm)

A 18.82 39.70 38.14 50 70
B 18.82 36.03 70.90 60 70
C 18.82 33.88 105.77 70 70
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Figure 2 shows a schematic diagram of the structure, which consists of four upper
inclined rods with four lower oblique rods and stellate rods. One upper inclined rod of
a 3D structure overlapped with a 3D structure and one lower inclined rod. The lower
inclined rod overlapped with the upper inclined rod of another 3D structure. According
to the above combination method, the honeycomb combination structure (Figure 3) is
formed by further repeated arrangement via spatial direction expansion. The height of
the 3D honeycomb structure is h in the Y direction, length is Lx in the X direction, width
is the length in the Z direction is Lz, and thickness is in “t”. In this paper, the mechanical
properties of the negative-Poisson-specific metamaterial were studied by taking the three
types of honeycomb types (A, B, and C of 3 × 3 × 3), i.e., ∅2 = 50◦, ∅2 = 60◦, and ∅2 = 70◦.
The 2D plane composition is shown in Figure 4, and the main parameters of the honeycomb
structure of the three types are shown in Table 2.
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Figure 4. Different 2D plane compositions: (a) type A, face-up and overhead composition; (b) type B,
face-up and overhead composition; (c) type C, face-up and overhead composition.

Table 2. Three parameters of the honeycomb structure.

Type ∅2 H (mm) Lx Lz T (mm)

A 50 231.66 154.05 154.05 5
B 60 231.66 168.38 168.38 5
C 70 231.66 180.37 180.37 5

2.2. Manufacture of a Modified 3D NPR Structure

The experimental model in this article was made using a Hanbang laser SLM-280
additive manufacturing 3D printer for 316 L stainless steel honeycomb structure printing,
with a working laser power of 250 W, and a layer thickness of 50 µm, and produced at a
melting temperature of 800 degrees. First, SOLIDWORKS 3D modeling software was used
to model and export the STL file. The 316 L metal powder or fine particles were melted
using a 3D printer with a high-energy laser to make it into the required 3D shape of the
slice. The sintering machine then accumulated these slices layer by layer to obtain the
required parts. The SLM process generally needs to add a support structure due to the
difficulty of the support-removal process, thus resulting in insufficient accuracy. There is a
need for post-reprocessing to improve accuracy, which is a shortcoming of the SLM laser
3D printing technology. The structure support removal process is shown in Figure 5.
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3. Modified 3D Negative-Poisson-Specific Lattice Test

In this experiment, an MTS universal testing machine was used for quasi-static com-
pression experiments, compressing 180 mm at a destructive speed of 5 mm/min (Figure 6).
An MTS universal testing machine with a safety gate was adopted to make experimentation
safe and effective. The lower clamp was a fixture with a “ball kettle”, which would be
tilted according to the change in force. This ensured that the experimental sample would
not “fly” out of the test bench after being forced. Figure 7 shows the local failure cracks
of the lattice after the experiment. It clearly shows that the failure cracks are relatively
“regular” and striped. At the same time, it can be seen that the surface is also relatively
rough. Specifically, at the junction of the two surfaces, the uneven texture is due to the
traces left by surface treatment after the production was completed.
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4. Finite Element Numerical Simulation Analysis
4.1. Performance of 316 L Stainless Steel

A LABSANS-LD26.504 universal material testing machine (Figure 8a) was used for
uniaxial tensile experiments. During this process, the performance parameters of the 316 L
stainless steel material were evaluated. The initial distance of the extensometer was 5 mm,
and the loading speed was 2 mm/min for the sample uniaxial tensile test. The three samples
used for testing were all in accordance with the GBT228-2002 tensile specimen national
standard, which recommended a thickness of 1 mm, using a Hanbang laser SLM-280
additive manufacturing 3D printer. The three samples before and after the destruction are
shown in Figure 8b (1,2,3), and the main experimental parameters are shown in Table 3. The
table indicates that the mechanical properties of stainless steel prepared by SLM 316 L are
different from those of ordinary 316 L stainless steel; the elastic modulus, tensile strength,
density, and Poisson’s ratio performance are close, but the yield limit of ordinary 316 L
stainless steel is much smaller than 316 L prepared via SLM because the SLM process forms
austenite at a high temperature of 800 ◦C while preparing 316 L stainless steel. This, in
turn, improves yield strength and toughness. The measured failure load–displacement
curve is shown in Figure 9.
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Table 3. Comparison of main parameters of SLM process and ordinary 316 L.

Classification Elastic Modulus (GPa) Yield Limit (MPa) Tensile Strength (MPa) Density (Kg/m3) Poisson Ratio

SLM Specimen1 183.99 505 665 8.737 0.317
SLM Specimen2 197.51 500 665 8.791 0.316
SLM Specimen3 200.74 510 665 8.816 0.318
Ordinary 316 L 206 269.17 603.50 8.027 0.3
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4.2. Finite Element Model Establishment

SOLIDWORKS software was used for 3D structure modeling, and three models of
∅2 were established as 50◦, 60◦, and 70◦ (type A; type B; type C) and the corresponding
three control models (control A; control B; control C). These were saved in IGES file format,
imported into Abaqus CAE commercial software, and quasi-static compression simulation
experiments were performed to study the mechanical properties at different angles.

The measured experimental parameters were entered into the Abaqus CAE Material
Manager. The model was set to beam elements, and the material properties were assigned
to the finite element model.

Figure 10 shows that the two plates above and below the structure were assembled
with discrete rigid bodies. The finite element model of the entire structure was defined as
self-contact. Surface-to-surface contact was adopted between the upper and lower steel
plates. The penalty contact method was used, and the friction coefficient was 0.2. As shown
in Figure 11, the lower steel plate was completely fixed, and a displacement load of 180 mm
in the negative Y direction was applied to the upper steel plate. The analysis step was
calculated and analyzed using display dynamics, and the calculation time of the model was
set to 1 s. As shown in Figure 11b, a manual partition was used for seven layers in order to
obtain a higher mesh quality. Each layer of the star structure was then divided separately,
and the global seed distance of the concave structure was 3.2. The global seed distance of
the star structure was 3.2, the curvature control and the minimum size control were 0.1,
and the mesh attribute was a tetrahedral free technical division, with 106,698 tetrahedral
mesh elements; the amplitude was calculated using amplitude-smoothing steps.
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4.3. Analysis and Discussion of Mechanical Responses of Finite Element Models

Figures 12–14 show the crushing patterns of control A, type A, control B, Type B,
control C, and type C, respectively, in the y direction under different strains. The simulation
results show that the stability of the modified honeycomb lattice with the addition of the
star structure is much better than that of the control structure without the star. In this paper,
the strain is considered negative when the structure is compressed, and positive when the
structure is compressed. Figure 12 shows that control structure deformation mainly begins
from the first layer when the ε = −0.175. In Figures 12–14, Arabic numerals 1 to 7 at ε = 0
represent the first-to-seventh layers, respectively. The structure then begins to gradually
deform downwards. The deformations of the second-to-sixth layers are more uniform, and
there is an NPR phenomenon of inward re-entrant.
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Type A materials are observed under the same strain. The deformation trend of the
first layer is similar to the control structure. The difference is that the force deformations of
the second and sixth layers are relative to the deformations of the third-to-fifth layers. The
force situation is more concentrated in the center of the second layer and the sixth layer
because of the structural design: the “arms” connected at both ends are relatively smaller
than the number of intermediate layers.

At ε = −0.35, control A appears slightly to the left convex phenomenon under the
action of displacement load. The single-cell structure appears to undergo varying degrees
of deformation, and the single-cell “arm” is unevenly forced. The honeycomb structure is
“distorted”. The figure shows that the first layer is completely pressed into the second layer,
and the fifth layer of shape variables is second only to the first layer. The first and last ends
of the structure still show an inward re-entrant phenomenon. Type A has a star-shaped
structure, and there is no convexity in control A under the same displacement load; the
stability is improved.

At ε = −0.525, control A shows obvious macroscopic convexity. There is no re-entrant
phenomenon at ε = −0.175. Type A is already in the dense stage, but upon “embedding” in
the first layer, the second and third layers do not show the usual “expansion” phenomenon.
Rather, they show an abnormal concave phenomenon that is quite obvious. This is likely
the cell “oblique arm” in the case of large deformation that pulls the cell horizontal “arm”,
thus leading to inward re-entrant.

Type B and control B in Figure 13 show nearly the same phenomenon as that observed
in type A and control A in Figure 12, except that the NPR phenomenon of control B
at ε = −0.175 is relatively more obvious than that of control A. A “dumbbell”-shaped
phenomenon appears on the macroscopic level. In type B, there is a slight “dumbbell”-
shaped phenomenon at ε = −0.525.

Type C shows a different crushing situation than the first two types (Figure 14) when
ε = −0.35. There is a “distortion” phenomenon toward “convexity” because one side of the
sixth layer is loaded in the previous period due to the influence of the star angle. There is a
tilt effect that results in a concave arm of the sixth layer being deformed from side to side,
thus resulting in distortion, which further leads to subsequent unstable offsets.

In summary, the control structure without a star has a more obvious macroscopic
negative Poisson phenomenon of the honeycomb structure when the strain is small, and
when the increase in the angle of the concave structure is ∅2. The modified structural
stability of the stellar body is better than the structural stability of the non-star body, but the
NPR effect is worse. This is due to the reduction in the stress generated by the deformation
of the star, compared with the stress generated when the concave body is “concave.” In
addition, the ∅ angle of the stellar body is inversely proportional to the stability of the star
honeycomb structure.

Figure 15 shows the load–displacement relationship between the three novel lattices
and the control lattice. The finite element results of Abaqus CAE show that the load
performance of the modified negative-Poisson-specific lattice is greater than that of the
control group, which is due to the addition of star structure to the modified negative
Poisson rather than the honeycomb lattice. This makes the deformation of each layer
of the lattice more uniform under loading conditions. The stability and stiffness of the
structure are improved. The modified lattice curve has obvious fluctuations. There is an
increase in the angle ∅ of the modified structure. There is a greater fluctuation amplitude
because the modified structure can be stabilized and destroyed from end to end until the
second-to-fifth layers begin to contact each other and are relatively uniformly destroyed.
The relative fluctuation of the control lattice is smaller, but the fluctuation also increases
with the increase in the angle of the concave structure ∅2 (but only with a small ε).
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curve of type C.

We studied the angle of the concave structure ∅2 with increasing ε: The curve fluc-
tuates in the plain stage because the control structure does not occur when the ε is small
after load deformation. Furthermore, the “convex” phenomenon does not occur when ε
increases. There is a more obvious, macroscopic “convexity” phenomenon in the structure,
which shows that the control lattice is larger and more stable with increasing ∅2.

Figure 16a–c show the load–displacement variations simulated by the modified
negative-Poisson-specific lattice under the mechanical parameters of three samples. The
simulation results show that the three modified 3D NPR compression load–displacement
curves change similarly and can be roughly divided into the initial stage, the plain stage,
and the dense stage. The initial stage of the force rises sharply until the first peak force
is reached. The first peak forces of types A, B, and C are about 150 (KN),150 (KN), and
200 (KN). At this time, the lattice is destroyed, transitioning from the elastic deformation
stage to the plastic deformation stage. Entering the plain stage, the displacement increases
sharply, but the force changes almost slightly; specifically, in type A, the peak and trough
difference is controlled within 10 (KN), and the maximum difference between the peak
and the trough of type B reaches 30 (KN), which is because of entering the plain stage;
thus, structural buckling is reduced. However, peak and trough difference in type C is
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approximately 100 (KN), because when the size is larger, the structure does not buckle
more easily.
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Buckling after the first peak force also increases with increasing ∅ and ∅2. This
is because the increase in ∅ and ∅2 after the structure is loaded causes the degree of
failure of the lattice to propagate layer by layer. After reaching the densification stage,
the relationship between the load and crushing displacement increases exponentially due
to the increasingly smaller pores between the first and seventh layers of the structure;
thus, the re-displacement change results from an exponential increase in the previous load.
Figure 16d shows the load–displacement change, simulated after fitting by the mechanical
parameters of the three samples. The peak force of type B is better than that of the other
two sets of models, which is sufficient to indicate the superiority of the type B structure.

4.4. Finite Element Poisson’s Ratio Analysis and Discussion

In order to measure the Poisson ratio of the structure, the lateral strain of the structure
was calculated by taking 15 spatial points shown in Figure 17 (x, y, and z represent the
coordinate axes.), and the Poisson ratio calculation results are shown in Figure 18. The
results show that the lateral deformation of the improved structure is much smaller than
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that of the control structure. As can be derived from Figure 18, the minimum value of the
Poisson ratio is about −0.25, and the maximum value is above −0.85, which is caused by
the addition of the star structure that makes deformation less difficult. Interestingly, the
negative-Poisson-ratio effects of control A, control B, and control C sequentially increase, all
of which occur due to an increase in the angle of the concave, which results in an increase
in transverse strain. However, the improvements in types A, B, and C do not show this
phenomenon, which is due to the influence of the star body angle ∅, making the negative
Poisson-ratio-effect of type B secondary to that of types A and B.
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4.5. Energy Absorption

The specific energy absorption calculation adopts the total mass of the structure on
the load–displacement curve integration ratio. The energy efficiency ESA, Ec

s, and the
theoretical calculation formula is proposed by Li [59] et al. as follows:

Ec
s =

∫ ∆x
0 P(x)d(x)

mg
,

where ∆x is the crushing distance, P(x) is the load–displacement curve equation, and mg is
the structural mass, respectively.

The specific energy absorption case is calculated by theoretical calculation [60] similar
to that obtained by the finite element calculation in this paper (Figure 19). The specific
energy absorption (SEA, energy absorption per unit mass) of the modified structure and
the control structure is shown in Figure 19. Here, the abscissa represents the type (i.e.,
A represents type A and control A; B represents type B and control B; C stands for type
C and control C). It can be clearly seen from Figure 19 that type B has the best energy
absorption effect, with a specific energy absorption of 16 (KJ/Kg), while type C is slightly
inferior, with a SEA value of about 15 (KJ/Kg), and type A has the worst effect in the new,
modified structure.
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Figure 19. Specific energy absorption (SEA) under modified and control structures.

The modified structure can also effectively improve the energy absorption effect
relative to the control group structure. When compared with the traditional structure,
type B is the best, as the change in the level of increase in SEA is nearly 7 (KJ/Kg). This
is because the addition of the star shape results in improved rigidity of the structure, as
well as the improved capacity of energy absorption. Clearly, the star body angle ∅ has the
best energy absorption effect, at 70.9◦. The performance effect decreases as the ∅ increases
or decreases.

5. Finite Element Model Comparison between Experiments

Figure 20 shows that the simulation differs slightly from the experiment with macro-
scopic crushing under uniaxial compression. In Figure 20, Arabic numerals 1 to 7 at ε = 0
represent the first-to-seventh layers, respectively.The first-layer change is basically the
same at ε = 0.175. Changes in the sixth and seventh layers are also highly consistent when
ε = 0.35. However, the difference is that the test model has a “convex” phenomenon during
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the crushing process, which occurs because the clamp under the MTS universal testing
machine used has a “kettle-ball” design. The initial placement is uneven, or the force
imbalance causes the lower clamp to tilt, thus resulting in the tilt of the entire test model. In
addition, the 3D printing technique used to make models can damage accuracy, especially
while removing supports; thus, the deformation of the experimental model is uneven after
loading. The ball kettle tilts, but the deformation mode of the experimental model is highly
consistent with the deformation mode of the simulation.

Materials 2022, 15, x FOR PEER REVIEW 16 of 20 
 

 

the crushing process, which occurs because the clamp under the MTS universal testing 
machine used has a “kettle-ball” design. The initial placement is uneven, or the force im-
balance causes the lower clamp to tilt, thus resulting in the tilt of the entire test model. In 
addition, the 3D printing technique used to make models can damage accuracy, especially 
while removing supports; thus, the deformation of the experimental model is uneven after 
loading. The ball kettle tilts, but the deformation mode of the experimental model is highly 
consistent with the deformation mode of the simulation. 

 
Figure 20. Comparison of simulation experiments in the x direction. 

Figure 21 shows a load–displacement curve plot under the uniaxial compression ex-
periment of the experimental model and the simulation model. All show the initial stage, 
the plain stage, and the compact stage. The initial phase and first peak force show highly 
consistent trends, both around 150 (KN), while peak forces in the plain phase and densi-
fication phase are smaller than those in the simulation model. In the plain stage, the min-
imum load difference is almost 0 (KN), while the maximum load difference reaches 30 
(KN), which is due to the error resulting from the convexity of the model during the ex-
periment. The removal of support during the production process results in the same 
crushing displacement. Thus, the load is smaller than that in the simulation model. The 
trend is highly consistent because of the convexity of the model in the experimental pro-
cess. 

 
Figure 21. Comparison of load–displacement curves in simulation and experiment (type B). 
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Figure 21 shows a load–displacement curve plot under the uniaxial compression
experiment of the experimental model and the simulation model. All show the initial
stage, the plain stage, and the compact stage. The initial phase and first peak force show
highly consistent trends, both around 150 (KN), while peak forces in the plain phase and
densification phase are smaller than those in the simulation model. In the plain stage, the
minimum load difference is almost 0 (KN), while the maximum load difference reaches
30 (KN), which is due to the error resulting from the convexity of the model during the
experiment. The removal of support during the production process results in the same
crushing displacement. Thus, the load is smaller than that in the simulation model. The
trend is highly consistent because of the convexity of the model in the experimental process.
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In order to measure the Poisson’s ratio of the experimental specimen, a camera was
used to detect the transverse strain of 16 points in the sample in Figure 20, and then the
Poisson’s ratio was calculated via image processing. The 16 points calculated with Poisson’s
ratio of the simulated specimen were taken in different directions from Figure 17, but the
calculation results are highly consistent, and the error range is around −0.01.

Poisson’s ratio–strain curves in Figure 22 show that the experiment and simulation
results are roughly similar. The Poisson ratio is the smallest at ε = −0.375, and the difference
is only about −0.01. When ε is less than 0.375, the Poisson ratio differs relatively widely,
reaching around −0.04. The reason for this phenomenon is that, during the production of
experimental samples, especially when the support is removed by hand, the thickness of
some arms is inconsistent, which is worse than the ideal model of simulation. Interestingly,
the experiment shows that the Poisson ratio is smaller than the simulated Poisson ratio,
which is due to the generation of convexity during the experiment process, resulting in a
greater lateral displacement of the experimental model than that of the simulation model
under the same strain, thus making the Poisson ratio relatively small.
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6. Conclusions

In this paper, a modified 3D NPR lattice structure was presented based on the tradi-
tional concave structure and the star structure. Mechanical analyses of the models were
undertaken at different angles through a quasi-static compression experiment and nu-
merical simulation using Abaqus CAE commercial software. In addition, three control
structures without star bodies were also designed. The fragmentation load–displacement
curves were obtained via finite element simulations. Structural energy absorption was then
obtained by integrating the load–displacement curves to obtain the mass-to-area ratio; the
following conclusions can then be drawn:

1. The modified NPR structure designed here can effectively improve the stiffness of
the structure and make up for the low stiffness of the negative Poisson relative to the
metamaterial model;

2. Increasing the modified NPR structure of the star can effectively improve the stability
of the structure and can avoid the phenomenon of “convexity” during destruction.
The macroscopic stability of the structure is worse with increasing the ∅ angle of the
star structure;
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3. The energy absorption effect of the modified structure depends on the ∅ angle of the
star structure rather than the concave angle ∅2. The energy absorption effect of the
modified NPR structure is the best when ∅ = 70.9◦.
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