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Abstract: The electrical characterization ofa La0.9Sr0.1MnO3 compound sintered at 800, 1000 and
1200 ◦C was investigated by means of the impedance-spectroscopy technique. As the results, the
experimental conductivity spectra were explained in terms of the power law. The AC-conductivity
study reveals the contributions of different conduction mechanisms. Indeed, the variation in the
frequency exponents (‘s1’ and ‘s2’) as a function of the temperature confirms the thermal activation of
the conduction process in the system. It proves, equally, that the transport properties are governed
by the non-small-polaron-tunneling and the correlated-barrier-hopping mechanisms. Moreover, the
values of the frequency exponents increase under the sintering-temperature (TS) effect. Such an
evolution may be explained energetically. The jump relaxation model was used to explain the electrical
conductivity in the dispersive region, as well as the frequency-exponent values by ionic conductivity.
Under electrical polarization with applied DC biases of Vp = 0.1 and 2 V at room temperature, the
results show the significant enhancement of the electrical conductivity. In addition, the dielectric
study reveals the evident presence of dielectric relaxation. Under the sintering-temperature effect,
the dielectric constant increases enormously. Indeed, the temperature dependence of the dielectric
constant is well fitted by the modified Curie–Weiss law. Thus, the deduced values of the parameter
(γ) confirm the relaxor character and prove the diffuse phase transition of our material. Of note
is the high dielectric-permittivity magnitude, which indicates that the material is promising for
microelectronic devices.

Keywords: La0.9Sr0.1MnO3; sintering temperature; electrical conductivity; hopping; tunneling;
polarization and dielectric properties

1. Introduction

The physical properties of manganites have been extensively studied for the last
several years [1–8]. These rich properties allow us to exploit these types of materials in
several applications [1,2]. Furthermore, the feature that makes this material more useful
is the ability to control their structure and their electrical and magnetic properties by
many ways. Indeed, the doping, whether in the A or B sites or both, and the sintering
temperature (TS), with all of their circumstances, as well as the elaboration process, are
the most influential parameters for the enhancement of the behavior of these materials.
These treatments influence the Mn3+–O2

−–Mn4+ network, which is responsible for the
electrical conduction in manganites. As mentioned above, the sintering temperature can
affect this network, in which the rise in the TS causes an increase in the grain size, which,
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in turn, affects the double-exchange (DE) interactions [2] between the Mn3+ and Mn4+

ions that reach the grain-boundary region. In the literature [1], this thermal excitation
modifies the metal–semiconductor-transition temperature. In addition, it improves the
homogeneity and the crystallinity of the samples, and it provides a better connectivity of
the grains. In this context, lanthanum manganite systems are widely studied by using the
effects of the previously noted parameters [2]. Assoudi et al. [9] report that the existence of
electric polarizations can be identified by the permittivity spectrum. In addition, from this
spectrum, the colossal static dielectric constant makes the doped lanthanum manganite
act as a good candidate for different applications in electronic industrial fields. For the
La0.6Sr0.2Na0.2MnO3 compound, the behavior of the dielectric constant is governed by the
Maxwell–Wagner theory of interfacial polarization [10].

Out of all the doped lanthanum manganites, numerous research groups are inter-
ested in the assessment of the physical properties of lanthanum strontiummanganites
(LSMO) [11–21]. In fact, LSMO systems can act as a cathode in solid oxide fuel cells be-
cause of their good electrical conductivity [18]. Moreover, they are used in medicine and
in electronic industrial fields [19–21], owing to their colossal magnetoresistance [22] and
magnetocaloric [23] effects. Different technological applications are based on the high
dielectric permittivity of this material (in the order of 105 [2]). Since the dielectric properties
are related to the electrical ones, it is necessary to comprehend the conduction process that
is present in the investigated material. However, the partial substitution of the divalent
ion Sr2+ in the parent compound LaMnO3 on the lanthanum site produces the creation
of the mixed valence for the manganese that leads to mobile charge carriers. Usually, the
movement of these charge carriers can be manifested by the hopping and tunneling pro-
cesses. In this context, different theoretical models can be used to explain the conductivity
spectrum [2,24–28].

The magnetic study on our material, La0.9Sr0.1MnO3, sintered at 800, 1000 and 1200 ◦C
was investigated as reported in [23,29,30]. A paramagnetic–ferromagnetic phase transition
at the Curie temperature (TC) was observed for all the sintered samples. Moreover, this
Curie temperature was found to increase with the reduction in the particle size. Otherwise,
the magnetocaloric properties reveal the possibility of extending the application of a
random magnetic anisotropy model, which was initially developed for amorphous alloys,
to nanocrystalline materials. Moreover, our studied compound can act as a candidate for
magnetic refrigeration because of itsrelative cooling-power values, which are close to those
of commercial magnetic refrigerant materials [30]. To complete the electrical side of the
whole study, we started the exploration of the transport properties of the La0.9Sr0.1MnO3
system [31]. To the best of our knowledge, the dielectric properties of the LSMO system
have not been well studied. In this paper, we present the effects of the sintering temperature
and polarization on the dielectric and electrical properties of the La0.9Sr0.1MnO3 system by
using the impedance-spectroscopy technique.

2. Experimental Details

The La0.9Sr0.1MnO3material was synthesized by using the citrate–gel method. In fact,
stoichiometric amounts of the nitrate precurs orreagents La(NO3)3 6H2O, Mn (NO3)2 4H2O
and Sr(NO3)2 were dissolved in water and were mixed with ethylene glycol and citricacid,
which formed a stable solution. The molar ratio of metal: citricacid was 1:1. The solution
was then heated on a thermal plate under constant sintering at 80 ◦C to eliminate the excess
water and to obtain a viscous gel. The gel wasdried at 130 ◦C, and it was then calcinated at
600 ◦C for 12 h, and was sintered at 800, 1000 and 1200 ◦C, as detailed in [29]. The structure
and phase purity of the powders were verified by X-ray diffraction (XRD) by using Cu–Kα1
radiation at room temperature [29]. The XRD patterns reveal that all samples are single
phase, with no detectable secondary phases. Indeed, the samples thatannealed at 800 and
1000 ◦C were found to be crystallized in the rhombohedral structure, which is attributed to
the R3c space group, whereas two distinct phases were observed for the sample sintered at
1200 ◦C, in which it was crystallized in the rhombohedral and orthorhombic structures that
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belong, respectively, to the R3c and Pbnm space groups. From the X-ray-peak width and by
using Scherrer’s relation, the average particle sizes of the samples were assessed [29]. The
TEM (transmission electron microscopy, JEOL 2010F-TEM, Santa Rosa, CA, USA) imaging
confirms the obtained particle-size values from the XRD patterns (see Table 1 in [29]).

The powders obtained were ground and then pressed into pellets that were a few
millimeter sthick (~2 mm), and with a diameter of around 1 cm under 10 tonnes/cm2.
These pellets weresintered at 1000 ◦C for 24 h. In order to obtain the pure crystalline
phases, the obtained pellets that were finely ground, and the resulting powders, underwent
some further cycles of grinding, pelleting and sintering at 1100 ◦C. Then, on both sides
of each pellet, thin silver films were evaporated by Joule heating through a circular mask.
These silver films act as electrodes. The obtained electrodes were used to conduct the
electrical characterization. Indeed, the capacitance (C), the dissipation factor (D) and the
conductance (G) were measured by using an Agilent 4294 A impedance analyzer (Santa
Clara, CA, USA) at various temperatures over a large frequency range (40 Hz–10 MHz).
The electrical conductivity is deduced from the conductance and the geometric factors
of the pellets, and the dielectric permittivity is determined from the capacitance (C), the
dissipation factor (D) and the geometric factors. The samples were mounted onto aJanis
VPF 800-cryostat (Strasbourg, France) to vary the temperature between 80 and 700 K by
using liquid-nitrogen cooling. All measurements were investigated in darkness and under
vacuum to avoid the impact of the illumination and the ambient atmosphere.

3. Results and Discussion
3.1. Frequency-Dependent AC-Conductivity Study

Figure 1a–c shows the electrical-AC-conductivity (σAC) spectra at various tempera-
tures for the La0.9Sr0.1MnO3 compound sintered at 800, 1000 and 1200 ◦C. As can be seen,
the clear effect of the temperature is observed over the entire frequency range for each
conductivity spectrum. This result proves that the conduction process in the investigated
samples was thermally activated. These spectra are composed of two distinctive frequency
regions, according to their behaviors. In fact, a plateau appears for each spectrum at low
frequencies, in which the conductivity is practically frequency independent and thermally
activated. This region is associated with the long-range translational motion of the charge
carriers [32]. In the second frequency region, the electrical conductivity rises with the rise
in the frequency, which shows the imprints of the semiconductor behavior and reflects the
potential interventions of different conduction mechanisms. Such behavior is due to the
creation of new conduction sites, and to the release of the trapped charge carriers under
the frequency effect. This evolution confirms that the hopping and the tunneling processes
are the most likelyexplanations to describe the electrical conductivity. In fact, the basic
idea of AC conductivity is manifested by the fact that it is an increasing function, with
the frequency for any type of hopping or tunneling process taken into account. However,
this rise presents two linear variations, which are separated by a transition region, as is
shown in Figure 1d. This is attributed to the presence of two frequency exponents for all
the samples. The frequency-exponent values are determined from the slopes of these linear
variations. Thus, different kinds of transport processes take place in the compound, and
they depend on the frequency and the temperature. Such an observation leads to the fact
that the AC conductivity follow to the Jonscher’s power law given by [32,33]:

σAC = σ0 + Aωs1 + Bωs2 (1)

where Aωs1 and Bωs2 are, respectively, the high and the intermediate AC-conductivity
responses (σ0); A and B are constants;ω is the angular frequency; and ‘s1’ and ‘s’ are the
frequency exponents that indicate the degree of the interaction between the charge carriers
in motion and the surrounding lattices [34]. This agreement between the experimental
results and the theory is detected at temperature ranges of 80–500, 80–50 and 80–280 K,
respectively, for the samples annealed at 800, 1000 and 1200 ◦C. Such behavior has been
observed in manganite compounds [2].
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 Figure 1. Frequency dependences of the electrical conductivity (σAC) at various temperatures for
the La0.9Sr0.1MnO3 system sintered at (a) 800, (b) 1000 and (c) 1200 ◦C. (d) Evolution of σAC as
a function of frequency fitted and performed at 120 K for the La0.9Sr0.1MnO3 system sintered at
different temperatures (TS).

For the sample annealed at 1200 ◦C, the conductivity can be governed by the universal
“Jonscher Power Law” (σAC ∝ ωs) [35,36] in the temperature range of 300–600 K, where
“s” is temperature dependent. Indeed, as the frequency increases, the σAC increases with a
single linear variation beyond the observed plateau. The change in the slope, at which the
σAC increases, is marked at a specific frequency that is known as the “hopping frequency”.
The conductivity spectra obey the following expression [35,36]:

σAC = σ0 + Aωs1 (2)
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Then, for the 600 and 700 K temperatures, the samples that were sintered at 800
and 1000 ◦C exhibit conductivity decreases with the increase in the frequency beyond the
detected plateau. Such a result informs us about a metallic behavior that is governed by
the classical Drude model [37], whereas, for TS = 1200 ◦C, this metallic behavior appears
only for 700 K. Thus, the semiconductor behavior extends from 80 to 600 K. Additionally,
this sample is also specialized by the appearance of a peak at high frequencies in its AC-
conductivity spectrum. This peak is detected at a specific frequency that is known as the
“relaxation frequency”. Then, as the frequency increases, the conductivity decreases, and
all the temperature curves merge, which are temperature independent.

The temperature dependences of the frequency exponents (‘s1’ and ‘s2’) for all the
sintered samples are depicted in Figure 2a–f. The observed variation in the ‘s’ values in
this figure with the temperature confirms the thermal activation of the electrical-transport
mechanism. It also proves that the fact hopping is the potential mechanism that governs the
transport properties [37]. Indeed, the frequency exponent ‘s1’ was deduced from the disper-
sive part of the high-frequency region (Figure 1d). In Figure 2a,b, the ‘s1’ increases with the
temperature increase in the first region of temperature. This proves that non-overlapping
small polaron tunneling (NSPT) [38–41] is the most suitable model to characterize the
conduction for TS = 800 and 1000 ◦C. This increase in ‘s1’ with the rise in the temperature is
in good agreement with the theory that is described by the following expression [38–41]:

s = 1 + (4kBT/WH) (3)

where WH is the polaronhopping energy and kB is the Boltzmann constant. Then, ‘s1’
continuously decreases with the risein the temperature. Such a variation confirms the
contribution of the correlated-barrier-hopping (CBH) mechanism in conduction [38–41].
However, this model (CBH) is marked, equally, from the variation in the exponent ‘s2’
with the temperature, which decreases in the entire temperature range (Figure 2d–f). This
is obtained from the intermediate frequency ranges for all the samples (Figure 1d). The
decrease in ‘s2’with the temperature increase for the CBH model is explained by the
following relation [38–41]:

s = 1 − (6kBT/WM) (4)

where WM is the binding energy, which is the energy that is required to remove an electron
from one site to the conduction band. Accordingly, the variation in the frequency exponent
(‘s’) with the temperature comes from the fact that the effective frequency of the phonon
that is involved in the polaron formation depends on the temperature [42]. An agreement
with the literature of the found ‘s1’ behavior is reported by Moualhi et al. [2] for an LCAM
compound. The authors observed the NSPT process from 80 to 170 K. Beyond 170 K, the
conduction was governed by the CBH model [2].

For the sample that was sintered at TS = 1200 ◦C, the exponent ‘s1’ values, which
are represented in Figure 2c, exceed the unity. This indicates that the classic previous
models cannot explain the charge-carrier transport in this temperature range. For this
reason, the jump relaxation model (JRM) was used to explain this evolution in perovskites
and amorphous materials [43–45]. This model tries to describe andvisualize the dynamics
of the jumping motion as a function of space and time, where two opposing relaxation
processes occur, which are successful jumps and unsuccessful jumps [46–51]. The physical
significance of the JRM originated from the jumping motion of the ions in the atomic scale
(ionic conductivity) [46–51]. According to the JR model, the displacement of the mobilized
ions is explained in terms of the frequency effect. Furthermore, this model takes into
consideration the interactions between a mobile ion and the neighboring defects. This
model was proposed by Funke [46]. Indeed, Funke [46] explains the observed plateau,
at low frequencies, by the successful jump to a vacant adjacent site that is thanks to the
long period of available time. As the frequency increases, the ion is temporarily out of
equilibrium with respect to the distribution of the neighbors. In this case, two concurrent
relaxation processes can be visualized (successful and unsuccessful jumps) [43–51]. Indeed,
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for the successful jumps, when an ion jumps to a new site, its neighboring ions relax and
redistribute to establish a new equilibrium condition around the new site. This generates
the increase in the ACconductivity in the first dispersive region (the intermediate frequency
range). Such an increase is associated with the short-range translational motion that results
in the term Bωs2, where 0 < s2 ≤ 1. At high frequencies, the ion is forced to hop back to its
initial position (since it is unable to stabilize energetically, and the available time is very
short), and it performs a sequence of correlated forward–backward jumps [44,46]. This is
the unsuccessful jump. The term Aωs1 characterizes, then, the dispersive region of high
frequencies, which corresponds to the localized jumping or the reorientation movement of
ions, where 0 < s1 ≤ 2. There is a greater probability that more jumps are unsuccessful in
high frequencies (the second dispersive region) [44]. The dispersive conductivity is then
generated by the increase in the ratio of successful to unsuccessful jumps.
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′ with temperature for the

La0.9Sr0.1MnO3 system sintered at (a,d) 800, (b,e) 1000 and (c,f) 1200 ◦C.
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According to Funke [46], if s ≤ 1, the hopping includes a translation motion that is
accompanied by sudden hopping, while, in the case of s > 1, the hopping motion includes
localized hopping between neighboring sites. In this context, it is observed that ‘s1’ and ‘s2’
increase with the rise in the TS (Figure 3a,b). As can be seen from Figure 2a–f, the impact of
this heat treatment is shown in the ‘s1’ and ‘s2’ values. It is also observed that the deduced
energies decrease with the increase in the sintering temperature. Indeed, WH values were
obtained that were equal to 0.118 and 0.088 eV for TS = 800 and 1000 ◦C, respectively. The
energy value for TS = 800 ◦C (0.118 eV) is in good agreement with that of the lanthanum
manganite system (0.115 eV) [2]. The WMis decreased from 0.264 to 0.197 eV with the
increasing TS. The same evolution was also detected for the WM1 and WM2 that were
extracted from the [1-s2] temperature dependence. Such results can be related to the fact
that the hopping motion becomes localized between neighboring sites as ‘s1’ increases, until
it exceeds «1» for Tr = 1200 ◦C (JRM) [46]. Thus, the charges carriers need lower energy
to jump between sites, since the hops occur over shorter distances. In addition, the jumps
become realized towards higher levels [46–51] for TS = 1200 ◦C (JRM), which is in contrast
to the horizontal translational motion in the classic models for TS = 800 and 1000 ◦C. Such
a result shows the sensitivity of the conduction mechanism to the sintering temperature.
Furthermore, the values of ‘s2’ are very low for TS = 800 and 1000 ◦C, which indicates that
a hard hopping process requires high energy (Figure 2d,e), whereas, for TS = 1200 ◦C, the
‘s2’ values increase and vary between 0 and 1, and the energy values decrease, as is shown
in Figure 2f. Thus, the sintering temperature promotes the hopping process.
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 Figure 3. Temperature dependences of (a) ‘s1’ and (b) ‘s2’ at different sintering temperatures.

The WH, WM, WM1 and WM2 were calculated by using Equation (3) (for WH), Equa-
tion (4) (for WM, WM1 and WM2) and the obtained slopes from the linear fit of [1-s1] (for
WH and WM) and [1-s2] (for WM1 and WM2) against the temperature.

3.2. Polarization Effect

At room temperature, the same measurement was conducted under electrical polariza-
tion with applied DC biases of Vp = 1 and 2 V. Figure 4a–c shows the conductivity spectra of
the La0.9Sr0.1MnO3 material that was sintered at 800, 1000 and 1200 ◦C. All the spectra show
a considerable increase in the conductivity as the Vp increases. Such a result elucidates evi-
dence of the space-charge contribution in the conduction. The applied electrical field helps
with the scattering of the free charge carriers that are emitted by the trap centers across the
space charge, which, in turn, enhances the conductivity [38,52]. This observation describes
the effect of colossal electro-resistance, which makes our material a promising candidate
for technologies of the future. This effect has been observed in perovskite materials [53,54].
According to Prakash et al. [55], the presence of the space-charge concept and the increase
in the conductivity under polarization prove the contribution of the grain-boundary region
to the electrical conduction. The authors report the dependence of the grain boundary
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on the variable DC bias, while the grain is independent. The observed grain-boundary
behavior is explained by the grain-boundary double Schottky barrier [55].
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Figure 4. Frequency dependences of the electrical conductivity (σ) of the La0.9Sr0.1MnO3 material
sintered at (a) 800, (b) 1000 and (c) 1200 ◦C at room temperature under electrical polarization with an
applied DC biases of Vp = 0, 1 and 2 V.

3.3. Dielectric Properties
3.3.1. Frequency Dependence

The dielectric measurements were conducted by the impedance-spectroscopy tech-
nique. The dielectric data are expressed in complex form: ε* = ε′ − jε”, where ε′ and ε”
describe, respectively, the stored and the dissipated energies. The ε′ and ε” were calculated
by using the following relations: ε′ = (C.t)/(ε0.A) and ε” = ε′.D, where ε0 is the permittivity
of the free space, A is the electrode area and t is the thickness of the samples. The fre-
quency dependences of the real (ε′) and imaginary (ε”) parts of the dielectric permittivity
at different temperatures for the La0.9Sr0.1MnO3 compound that was sintered at 800, 1000
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and 1200 ◦C are depicted in Figures 5a–c and 6a–c. Their behavior with the temperature
and frequency have been spotted in perovskite materials [4,5,56–59]. At low frequencies,
the ε′ shows very high values for all the samples, with a good stability for the sample
sintered at 1200 ◦C (Figure 5a–c). Then, it decreases with the frequency increase, and it
shows a dispersive behavior at high frequencies, where the ε′ values coincide with all
of the explored temperatures. Such behavior can be related to the presence of different
types of polarizations in the investigated samples, such as electronic, dipolar, ionic and
interfacial polarizations [4,5,26]. At low frequencies, all four types contribute to the total
polarization. The contributions of the interfacial and the dipolar polarizations dominate in
the low-frequency range [60,61]. These two kinds of polarizations are strongly dependent
on the temperature, which explains the temperature dependence of the ε′ [60,61]. However,
the polarization process tends to follow the applied electric-field direction in this frequency
range. Therefore, the maximum value of the ε′ is reached. Then, the rapid decrease in
the ε′ can be explained by the increase in the free-charge-carrier density, which causes a
reduction in these polarization kinds with the increase in the frequency [4]. Moreover, the
difficulties that are encountered by the dipolar material in following the electrical-field
direction can be an explanation for this decrease. This behavior has been observed for
the La0.7Sr0.3Mn0.8Fe0.2O3 system [62]. At higher frequencies, the electronic and ionic
polarizations contribute, in which the ε′ merges and becomes temperature independent.
This independence arises from the negligible contributions of the interfacial and dipolar
polarizations.

Hence, the high values of the ε′ may partially refer to the existence of space-charge
zones that are produced by a localized accumulation of the charges on the electrode-sample
contact and on the interface between the grains and the grain boundaries [3,4]. This is
attributed to a Maxwell–Wagner (MW) type of interfacial polarization [63,64]. According to
the MW [63,64] theory of interfacial polarization, the high values of the dielectric constant
in the system can be related to the presence of grains and grain boundaries (a heterogeneous
structure). Thus, the dielectric structure of the compound is composed of two phases: the
first one is a conductive layer that consists of grains that are separated by the second layer,
which is composed of poor conductive grain boundaries, as is shown in Figure 5d. Thus,
the drop in the ε′ values was established when the charge-carrier hopping could not follow
the applied field beyond a certain high frequency, which, relatively, prevents the fact that
the electrons reach the grain boundary. Thus, the interfacial polarization is decreased,
which allows us to conclude the decisive role of the grains and the grain boundaries in the
transport properties in both low- and high-frequency ranges.
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Figure 5. Spectra of the real part of the relative dielectric permittivity (ε′) at different temperatures for
the La0.9Sr0.1MnO3 system sintered at (a) 800, (b) 1000 and (c) 1200 ◦C. (d) Schematic representation
of the sample structure.

The frequency dependence of the imaginary part of the dielectric permittivity (ε”) at
different temperatures is characterized by the appearance of a peak at a specific frequency
(“fres”) for all the samples (Figure 6a–c). At this specific frequency, the dielectric material
has the least stored energy in the maximum, which is shown in the ε” spectra. Furthermore,
the appearance of this peak can be explained by the proximity of the frequency hopping of
the charge carriers to that of the applied field. Such behavior is defined by the resonance
phenomenon [4]. For all the ε” spectra, it is well observed that this peak shifts toward the
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higher frequencies as a function of temperature. This shift confirms the presence of the
dielectric relaxation in the material [4,5]. The presence of this phenomenon is also proven
by the shift in the observed drop in the real part of the permittivity to higher frequencies
when the temperature rises. Moreover, a second relaxation peak is observed (Figure 6a–c).
Such a result confirms the presence of a second relaxation process.
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Accordingly, the dielectric behavior of the La0.9Sr0.1MnO3 compound demonstrates
a Debye-like relaxation, which can be explained by Maxwell–Wagner polarization [63,64].
This model explains the synchronization of the dielectric-constant decrease and the AC-
conductivity increase as the frequency increases (Figure 7). At low frequencies, the conduc-
tivity is frequency independent. Beyond the hopping frequency, the conductivity starts to
increase, and it depends strongly on the frequency, following the Double Jonscher Power
Law, whereas, in the frequency range at which the σAC increases, the ε′ shows two sharp
drops, each one of which starts beyond a frequency-independence variation (Figure 7).
Thus, the decrease in the permittivity is related to the conductivity increase that is induced
by the rise in the number of charge carriers hopping. Such behavior underscores the strong
correlation between the conduction and the dielectric permittivity [4,65–67]. This can
be theoretically confirmed by the relations between the real and imaginary parts of the
permittivity, the dielectric loss tangent (tgδ) with the electrical conductivity and the angular
frequency (ω), as is shown in the following equations [4,10,66]:

tgδ =
σAC

ωε0ε′
(5)

ε′′ =
σAC

ε0ω
(6)
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These relations prove that the ε′ and the tgδ are inversely proportional to the ω, since
the ACconductivity is directly proportional to the angular frequency (ω). As a definition,
the dielectric loss tangent (tgδ) quantifies the inherent dissipation of the electromagnetic
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energy for dielectric materials, andit occurs when the polarization shifts behind the applied
electric field. It is also related to the relaxation process and is defined as tgδ = ε”/ε′. The
frequency dependences of the tgδ and the ε” are represented in Figure 7 for the sample
that was sintered at 1200 ◦C, andthey exhibit two dielectric-relaxation peaks. Thanks to the
low values of the loss tangent and the high values of the dielectric constant, our material
may be a promising candidate for tunable capacitors [5]. Similar results are reported by
Rahmouni et al. [4,5].

3.3.2. Temperature Dependence

For all the sintered samples, the evolution of the ε′ as a function of temperature
for some selected frequencies is plotted in Figure 8a–c. The studied samples exhibit
a dielectric permittivity that ranges between 103 and 5×106, which are considered to
be high values. Thesehigh values make our compound, La0.9Sr0.1MnO3, a beneficial
material for technological applications, such as microelectronic devices [62,68]. A focus
on their evolution with the frequency confirms the decrease in the ε′ with the frequency
increase for all of the samples (Figure 8a–c). For TS = 800 and 1000 ◦C, the material
presents two transitions at Td1 and Td2. Usually, Td is designated as the dielectric-transition
temperature [69]. Indeed, the ε′ decreases until reaching Td1. Then, it starts to increase
with the temperature rise. Such behavior is mainly due to the increasesin the dipolar and
interfacial polarizations when the temperature increases, which bring a thermal energy to
the material [60,70,71]. Afterward, it realizes a maximum at a specific temperature (Td2).
At this temperature, the hopping frequency of the electrons between Mn4+ and Mn3+ is
equal to the frequency of the applied field. Beyond this temperature (Td2), the polarization
no longer contributes, and the relative permittivity begins to decrease. Moreover, it is
well observed that these transitions shift to lower temperatures for Td1 and to higher
temperatures for Td2 with the increase in the frequency. These mentioned shifts emphasize
the relaxor behavior. It is also marked that the first dielectric transition that was detected at
Td1 disappears as the frequency rises. For TS = 1200 ◦C, a decrease in the ε′ is observed,
which is followed by the appearance of an anomaly peak that is marked at 400 K (Figure 8c).
An analogous anomaly has been detected for manganite-type perovskite materials [70,71].
This peak may be ascribed to a local polarization, and it indicates the diffuse character of a
phase transition in the material.

Figure 8d shows the temperature dependence of the dielectric constant at different
sintering temperatures. It is observed that the ε′ increases with the sintering-temperature
increase. This can be related to the polarization that is influenced by this thermal treatment.
In perovskites, the elaboration method and the sintering temperature have a significant in-
fluence on the electrical properties. In our case, the samples are prepared by the citrate–gel
method. The sintering temperature at 1200 ◦C is then considered high. This shows thatoxy-
gen deficiencies that are near to the grain boundaries can be created in this sample [72–74].
Various studies have shown that oxygen defects contribute to the dielectric response. This
is manifested in the reorientation of elementary electric dipoles [72,73]. The ionization
of oxygen defects creates conduction electrons that could be trapped by Mn4+ cations,
which leads to the formation of Mn3+ cations [74]. Then, defect dipoles are produced [74].
This causes the increase in the dielectric-constant values. These electrons can become
conductive electrons by thermal activation. The dielectric behavior will be dependent on
oxygen-defect ionization, and it leads to strong dielectric properties that are dependent on
the frequency and the temperature [75]. In summary, the formation of oxygen defects is
electronically compensated by changes in the oxidation state of the manganese (Mn) cations.
This behavior has been observed in the literature for perovskite-type materials [74–78]. In
addition, the increase in the unit cell volume, which is mentioned in the previous structural
study [29] and which is due to the particle-size increase, can reduce the hops throughout
the Mn3+–O2−–Mn4+ network. This minimizes the formation of Mn4+ ions. Therefore, the
possibility of Mn3+ formation is greater, which is responsible for the increase in the polar-
ization. This can also contribute to the increase in the dielectric constant. In fact, several
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studies have correlated this behavior to the particle-size effect [78–80]. Indeed, the Mn3+

concentration is more important for the bigger particles. Thus, the dielectric-permittivity
magnitude is more important as the particle size increases. Equally, such a result can be
due to the appearances of the grain boundary and the electrode effects, which constitute
structural discontinuities. Therefore, the interfacial polarization between the grains and
their boundaries, and between the electrodes and the sample, is a primary factor that
influences the dielectric constant of the material.
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constant (ε′) with temperature at different sintering temperatures (TS).

According to the Curie–Weiss law, the dielectric constant (ε′) above the Curie temper-
ature can be described by the following relation [61]:

1/ε′ = (T − TCW)/CCW (T > TC) (7)

where CCW is the Curie–Weiss constant, and TCW is the Curie–Weiss temperature that
describes the temperature from which the ε′ starts to deviate from this law. The variation
in the 1/ε′ as a function of temperature and performed at 10 kHz is plotted in Figure 9a–c.
As can be seen, the ε′ is fitted by Equation (7) for all the sintered samples. Knowing that
the Tm is the temperature that corresponds to the maximum of the ε′, it is observed that the
TCW value is greater than the Tm for each sample. Such a result suggests the diffuse phase
transition and confirms the relaxor character of the La0.9Sr0.1MnO3 system.
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Figure 9. Evolution of the inverse of the dielectric constant (1/ε′) as a function of temperature for
the La0.9Sr0.1MnO3 system sintered at (a) 800, (b) 1000 and (c) 1200 ◦C. The insets are the plots of
ln((1/ε′) − (1/ε′max)) against ln(T − Tm) for each sample.
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The modified Curie–Weiss law was proposed by Uchino and Nomura [81], and it is
described by the following relation:(

1
ε′

)
−

(
1

ε′m

)
= (T − Tm)

γ/C (8)

where ε′m is the maximum of the ε′, and C is a constant. The parameter γ gives a good idea
about the character of the phase transition. For this reason, the insets of Figure 9a–c show
the plots of ln[(1/ε′) − (1/ε′m)] against ln (T − Tm) at 10 kHz. The linear fit that is depicted
in these insets is used to estimate the γ values. In fact, the classical Curie–Weiss law is
confirmed for γ = 1 and for γ = 2, and it describes a complete diffusephase transition [68].
For each curve, the γ values are found to be γ > 1 and γ ≈ 2 (γ = 1.69, 1.67 and 1.92
for TS = 800, 1000 and 1200 ◦C, respectively). Such values prove that our material has a
diffuse-type phase transition. Moreover, the obtained γ values support the relaxor nature
of the LSMO system. Such an observation has been shown for an LCMO–Ag compound
with γ = 2.09 [5]. The same phenomenon is observed from the temperature dependence
of the imaginary part of the permittivity (ε”) at various frequencies for TS = 1200 ◦C
(Figure 10). Indeed, the examination of this variation confirms the relaxor behavior, in
which the observed peak shifts to higher temperatures as the frequency rises.
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4. Conclusions

The electrical and the dielectric properties of a La0.9Sr0.1MnO3 compound sintered
at 800, 1000 and 1200 ◦C were investigated. The increase in the sintering temperature
affects the electrical behavior of the material. The Double Jonscher power aw explains
the coexistence of two linear regions in the conductivity spectra by the existence of two
frequency exponents. As the temperature rises, the frequency-exponent values change.
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This change indicates that the hopping and the tunneling are the dominating transport
processes in the material. Moreover, the agreement between the temperature dependence
of ‘s1’ and ‘s2’ and the theory proves the contributions of the NSPT and CBH models in the
conduction process. The rise in the TS produces an increase in the values of ‘s1’ and ‘s2’,
whereas they maintain their behavior shape under the effect of this thermal excitation. The
jump relaxation model explains the observed values of ‘s1’ for TS = 1200 ◦C. Such results
show the dependence of the transport properties on the sintering process. Furthermore,
the results show that the σAC increases significantly when the Vp increases from 0 to 1, and
then to 2 V. The dielectric study reveals the suitability of our samples to microelectronic
devices. Their behavior was correlated to the polarization process. All the sintered samples
behave in a similar manner to relaxors. A significant increase in the dielectric constant is
observed when the sintering temperature rises.
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