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Abstract: Damping performance of the plates with constrained layer damping (CLD) treatment
mainly depends on the layout of CLD material and the material physical properties of the viscoelastic
damping layer. This paper develops a concurrent topology optimization methodology for maximiz-
ing the modal loss factor (MLF) of plates with CLD treatment. At the macro scale, the damping layer
is composed of 3D periodic unit cells (PUC) of cellular viscoelastic damping materials. At the micro
scale, due to the deformation of viscoelastic damping material affected by the base and constrained
layers, the representative volume element (RVE) considering a rigid skin effect is used to improve the
accuracy of the effective constitutive matrix of the viscoelastic damping material. Maximizing the
MLFs of CLD plates is employed as the design objectives in optimization procedure. The sensitiv-
ities with respect to macrodesign variables are formulated using the adjoint vector method while
considering the contribution of eigenvectors, while the influence of macroeigenvectors is ignored to
improve the computational efficiency in the mesosensitivity analysis. The macro and meso scales
design variables are simultaneously updated using the Method of Moving Asymptotes (MMA) to find
concurrently optimal configurations of constrained and viscoelastic damping layers at the macro scale
and viscoelastic damping materials at the micro scale. Two rectangular plates with different boundary
conditions are presented to validate the optimization procedure and demonstrate the effectiveness
of the proposed concurrent topology optimization approach. The effects of optimization objectives
and volume fractions on the design results are investigated. The results indicate that the optimized
layouts of the macrostructure are dependent on the objective mode and the volume fraction on the
meso scale. The optimized designs on the meso scale are mainly related to the objective mode. By
varying the volume fraction on the macro scale, the optimized designs on the meso scale are different
only in their detailed size, which is reflected in the values of the equivalent constitutive matrices.

Keywords: topology optimization; concurrent design; constrained layer damping; modal loss factor;
sensitivity analysis; representative volume element

1. Introduction

Viscoelastic damping materials are often used to reduce the vibration and noise
radiation of plate and shell structures. In particular, constrained layer damping (CLD)
treatment has the advantages of simple implementation, low cost and high damping
capability, and it has been widely used in the automobile, aviation, aerospace and naval
industries [1]. To design lightweight structures with high damping performance, it is
desirable to optimize the layout of the viscoelastic damping material in order to improve
damping efficiency.

The topology optimization method was originally developed to find the optimized
structural layout under given constraints [2]. The modal loss factor (MLF) is always
used to evaluate the damping characteristics of the structure with viscoelastic damping
treatment, and it can be defined as an objective function to optimize the layout of the
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viscoelastic damping material. Zheng et al. [3] utilized the Method of Moving Asymptotes
(MMA) for maximizing the MLF to optimize the distribution of the viscoelastic damping
material in a plate with CLD treatment. Kim et al. [4] compared the optimization results
obtained via topology optimization to the strain energy distribution method and the
mode shape method and pointed out that topology optimization is the most effective way
to design the optimal damping layout in a viscoelastic damping structure. Yamamoto
et al. [5] optimized the layout of damping material to maximize MLFs, which is expressed
approximately by using the corresponding real eigenvalue. Madeira et al. [6,7] presented a
multiobjective optimization approach to find the distribution of CLD material to minimize
weight and maximize MLF simultaneously. Delgado and Hamdaoui [8] used the level set
method (LSM) to perform the topology optimization of frequency-dependent viscoelastic
structures to maximize MLF. Zhang et al. [9] proposed an improved Evolutionary Structural
Optimization (ESO) to optimize the layout of CLD material for the vibration suppression
of an aircraft panel. Zhang et al. [10] presented a two-level optimization method to design
position layouts and thickness configurations of CLD materials to reduce the sound power
of vibrating structures.

Meanwhile, optimizing the distribution of viscoelastic damping materials to minimize
vibration response and sound radiation has received attention from many scholars. Zhang
and Kang [11] optimized the layout of damping layers in plate and shell structures to mini-
mize sound radiation under harmonic excitations. Zheng et al. [12] presented the topology
optimization of CLD treatment attached to thin plates to reduce sound radiation at low
frequency resonance, and the effectiveness of the method was verified through numerical
examples and experiments. Based on complex dynamic compliance, Takezawa et al. [13]
developed an optimization methodology for damping material distribution to reduce the
resonance peak response. Ma and Cheng [14] proposed a general methodology to find the
optimal layout of viscoelastic damping layer for reducing the sound radiation of an acoustic
black hole structure through topological optimization. Zhang and Chen [15] investigated
the topology optimization of a damping layer under harmonic excitations and discussed
the influences of the excitation frequency and the damping coefficients of the damping
material on the distribution of the damping layer.

Since the physical properties of the viscoelastic damping layer have a great influence
on the damping performance, there is a great desire to optimize the microstructures of
the damping layer with desirable properties [16]. Sigmund [17,18] first presented the
inverse homogenization method to design materials with prescribed constitutive parame-
ters. Huang et al. [19] used the bi-directional evolutionary structural optimization (BESO)
method to design microstructures of two-phase material, which is composed of elastic ma-
terial with high stiffness and viscoelastic material with high damping. Chen and Liu [20]
proposed a multi-scale optimization method for the design of the microstructures of a
viscoelastic damping layer to maximize MLFs. Asadpoure et al. [21] proposed a topology
optimization framework to design multiphase cellular materials for improving damping
characteristics under wave propagation. Yun and Youn [22] studied the optimal microstruc-
ture of viscoelastic damping material in sandwich structures subject to impact loads by
using a microstructural topology optimization method. Liu et al. [23] utilized the BESO
method to optimize the microstructure of viscoelastic materials with the aim of improving
the MLF and frequency of macrostructures. Giraldo-Londoo and Paulino [24] presented a
microstructural topology optimization approach to design the microstructure of multiphase
viscoelastic composites to enhance energy dissipation characteristics. Zhang et al. [25]
proposed a topology optimization method to find the optimal two-phase damping mate-
rial layout in micro scales to make the composite materials with high stiffness and high
broadband damping.

However, the above works concerning the topology optimization of viscoelastic damp-
ing material are concentrated on a one-scale design problem. With the development of
optimization algorithms dealing with large-scale optimization problems [26], the idea of
concurrent design was introduced into topology optimization while considering both the
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macro and micro scale to pursue a higher structural performance. Niu et al. [27] and
Zuo et al. [28] presented a multi-scale design approach to maximize the natural frequency
of the structure. Coelho et al. [29] presented a hierarchical structural optimization method
for the simultaneous optimization of the structure and material of bi-material composite
laminates, in order to minimize the structural compliance. Based on the ordered Solid
Isotropic Material with Penalization (SIMP) interpolation, Zhang et al. [30] proposed a
multiscale topology optimization method to simultaneously optimize the macrostructural
topology and configurations of microstructures. Gao et al. [31] developed dynamic multi-
scale topology optimization for the concurrent design of composite macrostructures and
multiple microstructures to improve structural performance. Hoang [32] developed a
multiscale topology optimization approach for lattice structures using adaptive geometric
components, which consist of macromoving bars and the microbar. Zhang et al. [33] pro-
posed a multiscale topology optimization method to minimize the frequency response of a
two-scale cellular composite with spatially varying connectable graded microstructures.

At present, the concurrent topology optimization of viscoelastic damping structures is
still limited. Zhang et al. [34] presented a concurrent topology optimization method for the
optimal layout on both macro and micro scales of the free-layer damping structures with
damping composite materials. The damping layer is composed of 2D periodic damping ma-
terial, which consists of a stiff damping material and a soft damping. The effective complex
constitutive matrix of the damping composite materials are obtained using the classical
homogenization method. In the above works, the viscoelastic material was seen as ‘free’
material when the equivalent constitutive matrix was calculated using the homogenization
method. However, the viscoelastic damping layer in the CLD structure is constrained by
the base and the constrained layers. The deformation of the viscoelastic damping layer
is affected by the skins, which will lead to larger out-of-plane shear moduli than those
obtained by neglecting the skin effect [35]. Hence, it is necessity to consider the skin effect
when the effective material properties of the viscoelastic damping layer are estimated.

The purpose of this work is to develop a concurrent topology optimization method for
maximizing MLF of plates with CLD treatment. The plates with CLD treatment dissipate
vibration energy through transverse shear strains induced in the viscoelastic damping layer,
and the effective transverse shear moduli are the main focus. Therefore, it is assumed that
the macrostructure of the damping layer is composed of the 3D periodic unit cells (PUC).
The representative volume element (RVE) considering a rigid skin effect is used to improve
the accuracy of the effective constitutive matrix of the viscoelastic damping material. A
mathematical optimization model is established while maximizing MLF as the design
objective. The sensitivities with respect to macrodesign variables are formulated using
the adjoint vector method while considering the contribution of eigenvectors, while the
influence of macroeigenvectors is ignored to improve the computational efficiency in the
mesosensitivity analysis. The macro and meso scales design variables are simultaneously
updated using the Method of Moving Asymptotes (MMA) to find concurrently optimal
configurations of constrained and viscoelastic damping layers at the macro scale and
viscoelastic damping materials at the micro scale. Two numerical examples are given to
demonstrate the effectiveness of the proposed approach.

2. Multiscale CLD Structure and Its Damping Property
2.1. Effective Properties of Viscoelastic Damping Material

The diagrammatic drawing in Figure 1 illustrates the multiscale CLD structure. The
macrostructure, as shown in Figure 1a, whose viscoelastic damping layer is shown in
Figure 1b, is represented by the mesostructure shown in Figure 1c. The analysis of the
multiscale CLD structure can be divided into two sequential problems. In the first problem
(meso scale), the global behavior of a so-called RVE is determined. The effective properties
of the viscoelastic damping materials are derived by solving the mesoproblem. These
effective properties are then used in the second problem (macro scale) in order to analyze
the behavior of the macro scale CLD structure. The reliability of the finite element model
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of the CLD structure strongly depends on the accuracy of the effective properties of the
viscoelastic damping materials. The prediction of the effective properties of the viscoelastic
damping materials must be performed as accurately as possible [36]. Due to the warping
effect, the deformation of the viscoelastic damping core is complex. For a relatively thin
core, the deformation is greatly affected by the skins. Thus, in this paper, the effective
constitutive matrix of the viscoelastic damping materials was calculated using the RVE
with rigid skin effect [35,37].
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where DH
αβ(α, β = 1, 2, . . . , 6) represents the components of the effective constitutive ma-

trix DH. σα and εβ are the volume average stress tensor and volume average strain
tensor, respectively.

An eight-node hexahedron element was used to establish the finite element model of
the RVE. The nine components of the equivalent elasticity matrix were obtained by solving
nine different static analyses for the finite element model of the RVE. Boundary conditions
of the RVE can influence the effective constitutive matrix [39]. According to [36,37], the
corresponding boundary conditions considering the rigid skin effect for each static analysis
are shown in Table 1.

The arbitrarily imposed averaged strains are expressed as follows:

ε01 =
u
a

, ε02 =
u
b

, ε03 =
u
c

, ε04 =
u
c

, ε05 =
u
c

, ε06 =
u
b

(2)

where u is the arbitrarily imposed displacement. a, b and c are the length, width, and height
of the RVE, respectively.

The total strain density energy corresponding to the i-th load case can be obtained
as follows:

Ui =
1

2VRVE

n

∑
e=1

(ui
e)

T
keui

e =
1

2VRVE

n

∑
e=1

(ui
e)

T
(
∫

Ye
bTDME

e bdYe)ui
e (3)

where VRVE is the volume of the RVE; n is the total number of the elements; ke and DME
e are

the stiffness matrix and constitutive matrix of the e-th element, respectively; ui
e represents

the element displacement solutions corresponding to the i-th load case, and b is the strain
matrix on the meso scale.
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Table 1. Displacement boundary conditions for the nine load cases.

1st Load Case 2nd Load Case 3rd Load Case

Nodes ux uy uz Nodes ux uy uz Nodes ux uy uz

X = 0 0 Free Free X = 0 0 Free Free X = 0 0 Free Free
X = a u Free Free X = a 0 Free Free X = a 0 Free Free
Y = 0 Free 0 Free Y = 0 Free 0 Free Y = 0 Free 0 Free
Y = b Free 0 Free Y = b Free u Free Y = b Free 0 Free
Z = 0 Free Free 0 Z = 0 Free Free 0 Z = 0 Free Free 0
Z = c ε01X 0 0 Z = c 0 ε02Y 0 Z = c 0 0 u

4th load case 5th Load Case 6th Load Case

Nodes ux uy uz Nodes ux uy uz Nodes ux uy uz

X = 0 0 Free Free X = 0 Free 0 0 X = 0 Free 0 0
X = a 0 Free Free X = a Free 0 0 X = a Free 0 0
Y = 0 0 Free 0 Y = 0 Free 0 Free Y = 0 0 Free 0
Y = b 0 Free 0 Y = b Free 0 Free Y = b u Free 0
Z = 0 0 0 Free Z = 0 0 0 Free Z = 0 Free Free 0
Z = c 0 u 0 Z = c u 0 0 Z = c ε06Y 0 0

7th load case 8th load case 9th load case

Nodes ux uy uz Nodes ux uy uz Nodes ux uy uz

X = 0 0 Free Free X = 0 0 Free Free X = 0 0 Free Free
X = a u Free Free X = a u Free Free X = a 0 Free Free
Y = 0 Free 0 Free Y = 0 Free 0 Free Y = 0 Free 0 Free
Y = b Free u Free Y = b Free 0 Free Y = b Free u Free
Z = 0 Free Free 0 Z = 0 Free Free 0 Z = 0 Free Free 0
Z = c ε01X ε02Y 0 Z = c ε01X 0 u Z = c 0 ε02Y u

From the first six load cases in Table 1, only one component of the strain is non-zero.
According to [40], it is obtained as follows:

DH
ii =

2Ui

ε2
0i

; i = 1, 2, 3 · · · , 6 (4)

From the last three load cases in Table 1, for which two components of the strain are
non-zero, the results are as follows:

DH
12 = DH

21 = U7−U1−U2
ε01ε02

DH
13 = DH

31 = U8−U1−U3
ε01ε03

DH
23 = DH

32 = U9−U2−U3
ε02ε03

(5)

The effective density of the RVE was evaluated through the following relationship

ρH =

n
∑

e=1
ρv

e

n
(6)

where ρv
e is the density of the e-th element.

2.2. Damping Property Analysis

It was assumed that the damping characteristic of the viscoelastic damping material is
expressed as follows:

Dv = Dv
′

+ iDv”
= Dv

′

(1 + iη) (7)

where Dv
′

and Dv”
are the real part and imaginary part of the constitutive matrix, respec-

tively; η is the material loss factor; and i is the imaginary unit, i =
√
−1.
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In the analysis of a structure with the CLD treatment by using the finite element
method, the momentum equation for the free vibration of the structure is written as follows:

M
..
X + (KR + iKI)X = 0 (8)

where M is the global mass matrix; KR and KI are the real part and imaginary part of the
global stiffness matrix, respectively; and X is the nodal displacement vector.

The global mass and stiffness matrices can be expressed as follows

M =
Nm
∑

i=1
(Mb

i + Mv
i + Mc

i )

KR =
Nm
∑

i=1
(Kb

i + Re(Kv
i ) + Kc

i )

KI =
Nm
∑

i=1
Im(Kv

i )

(9)

where Kb
i , Kv

i and Kc
i are the i-th element stiffness matrices; Mb

i , Mv
i and Mc

i are the i-
th element mass matrices; the superscripts b, v and c represent the base structure, the
constrained layer and the viscoelastic damping layer, respectively; and ‘Re’ represents for
‘Real part of’, while ‘Im’ denotes the ‘Imaginary part of’. Kv

i and Mv
i were determined by

using the effective properties of viscoelastic damping material.
According to the Modal Strain Energy (MSE) method, the MLF ηr is expressed

as follows:

ηr =
ΦT

r KIΦr

ΦT
r KRΦr

(10)

where Φr is the eigenvector, in which only the real part of the stiffness matrix participates
in the modal analysis.

3. Multiscale Topology Optimization
3.1. Problem Statement and Material Interpolation Scheme

The objective of the CLD treatment is to dissipate the vibrational energy, which can be
improved by maximizing the MLF. The concurrent optimization problem regarding the
macro and meso scales can be formulated as follows:

Find : X(ρMA
i , ρME

j )

Minimize : f =
m
∑

r=1

αr
ηr

Subjec tto : VMA
f ≥ 1

VMA

Nm
∑

i=0
Viρ

MA
i

VME
f ≥ 1

VME

n
∑

j=0
Vjρ

ME
j

0 < ρMA
min ≤ ρMA

i ≤ 1, i = 1, 2, · · · , Nm
0 < ρME

min ≤ ρME
j ≤ 1, j = 1, 2, · · · , n

(11)

where X consists of the subsets of the design variables for both domains, the macro relative
density ρMA

i and the meso relative density ρME
j . ρMA

i describes the layouts of the macro

scale of the constrained layer and viscoelastic damping layer, and ρME
j describes the layouts

of the meso scale of viscoelastic damping layer. αr is the weight coefficient. VMA
f and VME

f
are the volume fractions on the macro and meso scales, respectively.Vi is the volume of the
element i on the macro scale and Vj is the volume of the element j on the meso scale. ρMA

min
and ρME

min are the small positive values for the lower bound of the design variables to avoid
the singularity of the stiffness matrix. Nm is the total number of the design variables on the
macro scale.
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In order to achieve a clear design layout, the penalization method was applied. Based
on the Rational Approximation of Material Properties (RAMP) model [41], the mass density
and elasticity matrix of the i-th element in the RVE can be written as follows:

ρv
j = ρME

j ρv

DME
j =

ρME
j

1+p(1−ρME
j )

Dv (12)

where ρv
j and DME

j are the mass density and the elasticity matrix, respectively, of the j-th
element in the RVE. ρv and Dv are the mass density and the elasticity matrix, respectively,
of the viscoelastic damping material. p is the exponent of penalization.

On the macro scale, the design region is composed of a constrained layer and a
viscoelastic damping layer. Using the same interpolation scheme, the mass and stiffness
matrices can be interpolated as follows:

Mv
i = ρMA

i
∫

Ωi
ρHNTNdΩi

Mc
i = ρMA

i
∫

Ωi
ρcNTNdΩi

Kv
i =

ρMA
i

1+p(1−ρMA
i )

∫
Ωi

BTDHBdΩi

Kc
i =

ρMA
i

1+p(1−ρMA
i )

∫
Ωi

BTDcBdΩi

(13)

where Db and Dc are constitutive matrices; ρb and ρc represent mass density; and B and N
are the strain matrix and the shape function matrix on the macro scale, respectively.

3.2. Sensitivity Analysis on the Macro Scale

The sensitivity of the objective function in Equation (11) with respect to the design
variables in the macrostructure can be expressed as follows:

∂ f
∂ρMA

i
=

m

∑
r=1

αr
∂

∂ρMA
i

(
1
ηr
) (14)

The sensitivity of the objective function with respect to the design variables ρMA
i

was determined by considering the contribution of the sensitivity of the eigenvectors
with respect to the design. The sensitivity analysis scheme for the reciprocal of MLF was
derived by using the adjoint variable method (AVM), which eliminated the unknown
expression involving the sensitivities of the eigenvectors and eigenvalues with respect to
the design [42]. The adjoint variables µ1 and µ2 were introduced and the reciprocal of MLF
1/ηr was rewritten as follows:

1
ηr

=
ΦT

r KRΦr

ΦT
r KIΦr

+ µT
1 (KR − λ2

r M)Φr + µ2(Φ
T
r MΦr − 1) (15)

where λ2
r is the eigenvalue at the r-th mode.

The sensitivity of 1/ηr with respect to the design variables in the macrostructure was
taken from Equation (15) as follows:

∂
∂ρMA

i
( 1

ηr
) = ( (Φ

T
r KI Φr)(2ΦT

r KR)−(ΦT
r KRΦr)(2ΦT

r KI)

(ΦT
r KI Φr)

2 + µT
1 (KR − λ2

r M) + 2µ2ΦT
r M) ∂Φr

∂ρMA
i

+
(ΦT

r KI Φr)(ΦT
r

∂KR
∂ρMA

i
Φr)−(ΦT

r KRΦr)(ΦT
r

∂KI
∂ρMA

i
Φr)

(ΦT
r KI Φr)

2

+µT
1 (

∂KR
∂ρMA

i
− λ2

r
∂M

∂ρMA
i

)Φr − µT
1

∂λ2
r

∂ρMA
i

MΦr + µ2ΦT
r

∂M
∂ρMA

i
Φr

(16)
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To remove the implicit derivatives of the eigenvectors and eigenvalues, the adjoint
variables should satisfy the following equations

(ΦT
r KI Φr)(2ΦT

r KR)−(ΦT
r KRΦr)(2ΦT

r KI)

(ΦT
r KI Φr)

2 + µT
1 (KR − λ2

r M) + 2µ2ΦT
r M = 0

µT
1 MΦr = 0

(17)

The adjoint variables µ1 and µ2 were found by solving Equation (17). The sensitivity
of 1/ηr with respect to the design variables on the macro scale was reformulated from
Equation (16) as follows:

∂
∂ρMA

i
( 1

ηr
) =

(ΦT
r KI Φr)(ΦT

r
∂KR

∂ρMA
i

Φr)−(ΦT
r KRΦr)(ΦT

r
∂KI

∂ρMA
i

Φr)

(ΦT
r KI Φr)

2

+µT
1 (

∂KR
∂ρMA

i
− λ2

r
∂M

∂ρMA
i

)Φr + µ2ΦT
r

∂M
∂ρMA

i
Φr

(18)

The derivatives of the global stiffness and mass matrices with respect to the design
variables ρMA

i can be expressed as follows:

∂KR
∂ρMA

i
= 1+p

(1+p(1−ρMA
i ))

2 (Re(
∫

Ωi
BTDHBdΩi) +

∫
Ωi

BTDcBdΩi)

∂KI
∂ρMA

i
= 1+p

(1+p(1−ρMA
i ))

2 Im(
∫

Ωi
BTDHBdΩi)

∂M
∂ρMA

i
=

∫
Ωi

ρHNTNdΩi +
∫

Ωi
ρcNTNdΩi

(19)

3.3. Sensitivity Analysis on the Meso scale

For sensitivity analysis on the meso scale, the sensitivity of the eigenvectors with
respect to design variables ρME

j was ignored to improve the computational efficiency. The
sensitivity of 1/ηr with respect to the design variables in the mesostructure was taken from
Equation (10) as follows:

∂

∂ρME
j

(
1
ηr
) =

(ΦT
r KIΦr)(ΦT

r
∂KR
∂ρME

j
Φr)− (ΦT

r KRΦr)(ΦT
r

∂KI
∂ρME

j
Φr)

(ΦT
r KIΦr)

2 (20)

The sensitivities of the global stiffness matrices with respect to the design variables
ρME

j can be derived as follows:

∂KR
∂ρME

j
=

Nm
∑

i=1

ρMA
i

1+p(1−ρMA
i )

∫
Ωi

BTRe( ∂DH

ρME
j

)BdΩi

∂KI
∂ρME

j
=

Nm
∑

i=1

ρMA
i

1+p(1−ρMA
i )

∫
Ωi

BTIm( ∂DH

ρM
j
)BdΩi

(21)

Considering the components of the equivalent constitutive matrix expressed as Equa-
tions (4) and (5), the total strain density energy defined in Equation (3) and the material
interpolation proposed in Equation (12), the sensitivity of the components of the equivalent
constitutive matrix with respect to the design variables on the meso scale can be formulated
as follows

∂DH
ii

∂ρME
j

=

1+p

(1+p(1−ρME
j ))

2 (ui
j)

T
(
∫

Yj
bTDvbdYj)ui

j

VRVEε2
0i

; i = 1, 2, 3 · · · , 6 (22)
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∂DH
12

∂ρME
j

=
∂DH

21
∂ρME

j
=

1+p

(1+p(1−ρME
j ))

2 ((u
7
j )

T
(
∫

Yj
bTDvbdYj)u7

j−(u
1
j )

T
(
∫

Yj
bTDvbdYj)u1

j−(u
2
j )

T
(
∫

Yj
bTDvbdYj)u2

j )

2VRVEε01ε02

∂DH
13

∂ρME
j

=
∂DH

31
∂ρME

j
=

1+p

(1+p(1−ρME
j ))

2 ((u
8
j )

T
(
∫

Yj
bTDvbdYj)u8

j−(u
1
j )

T
(
∫

Yj
bTDvbdYj)u1

j−(u
3
j )

T
(
∫

Yj
bTDvbdYj)u3

j )

2VRVEε01ε03

∂DH
23

∂ρME
j

=
∂DH

32
∂ρME

j
=

1+p

(1+p(1−ρME
j ))

2 ((u
9
j )

T
(
∫

Yj
bTDvbdYj)u9

j−(u
2
j )

T
(
∫

Yj
bTDvbdYj)u2

j−(u
3
j )

T
(
∫

Yj
bTDvbdYj)u3

j )

2VRVEε02ε03

(23)

3.4. Optimization Procedure

Once the sensitivity information was obtained, the MMA was used to update the
design variables on both the macro and meso scales. The proposed concurrent topology
optimization process for maximizing the MLF of PCLD structures is shown in Figure 2.
The main steps are summarized as follows:

(1) Define the design domain and initialize the design variables on both scales;
(2) Establish the finite element model of the RVE and calculate the effective complex

matrix and density of the viscoelastic damping materials by using the RVE with a
rigid skin effect;

(3) Establish the finite element model on the macro scale and obtain the MLFs based on
the Modal Strain Energy Method;

(4) Calculate the sensitivities of the objective function with respect to the design variables
on both the macro and meso scales. To circumvent the checkerboard and mesh-
dependency problems, a mesh-independence filter scheme [43] was employed to
smooth the element sensitivities;

(5) Update the design variables on both scales by using MMA; and
(6) Check the convergence of the result. If the change in the objective function of twenty

successive iterations is less than 10−3, or the number of iterations reaches the preset it-
eration number Nt, the iteration process terminates; otherwise, steps 2–6 are repeated.
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4. Numerical Examples
4.1. The Effective Material Property Analysis

The unit cell of the viscoelastic damping material is shown in Figure 3, which is
a cuboid with a square through hole in the center. The geometry of the unit cell was
considered as follows: l = 0.4 mm; l1 = 0.3 mm; cell height variable from h = 0.2 mm
to h = 4 mm. The real part of the complex elastic modulus and Poisson’s ratio of the
viscoelastic damping material were 20 MPa and 0.495. The equivalent constitutive matrices
were obtained by using the RVE with a rigid skin effect and the classical homogenization
method in [20]. The CLD structures dissipate vibration energy through transverse shear
strains induced in the viscoelastic damping layer, so the effective transverse shear modulus
was the main focus. For the unit cell shown in Figure 3, the effective transverse shear
moduli DH

44 and DH
55 are the same [44], and Figure 4 shows the comparison of the real part

of the effective transverse shear modulus. It can be seen that the real part of the effective
transverse shear modulus obtained by the RVE with a rigid skin effect converge to the
constant obtained using the classical homogenization method when h tended to infinity.
However, the result calculated using the RVE with rigid skin effect was obviously bigger
than that calculated using the classical homogenization method when h/l = 1; this is
because, in contrast to the deformation of the free material, the deformation of the core
in the sandwich structure close to the skins follow the skins deformation [36]. Hence, the
RVE with rigid skin effect was used to calculate the effective material properties of the
viscoelastic damping material in the CLD structure to improve the calculation accuracy.
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4.2. A rectangular Plate with Four Edges Clamped

A rectangular plate with four edges clamped is shown in Figure 5. The length and
width of the rectangular plate were 0.4 and 0.3 m, respectively. The thickness of the base
plate, viscoelastic damping layer and constrained layer were 0.001, 0.0004 and 0.0001 m,
respectively. The material properties are documented in Table 2. The viscoelastic damping
layer consisted of a periodic material, which is represented by the RVE. The size of the RVE
was 0.4× 0.4× 0.4 mm. A mesh with 20× 20× 20 elements was applied to discretize the
RVE. The macrostructure of the CLD plate was discretized with 32× 24 elements. All of
the above parameters also apply to Section 4.3.
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Table 2. Material properties of the plate with constrained layer damping treatment.

Layer Density (kg/m3) Young’s Modulus (MPa) Poisson’s Ratio Material Loss Factor

Base plate, 7900 2.06× 105 0.3 ——
Viscoelastic layer 1200 20 0.495 0.5
Constrained layer 2800 7× 104 0.3 ——

The initial designs for RVE had a uniform distribution with a given volume fraction
VME

f , except the elements at the center or the corners. Figure 6 shows the initial designs
of the RVE, in which the first initial guess shown in Figure 6a is that the density of the
mesodesign variables at the center is set to 1, while the second initial guess shown in
Figure 6b is that the density of the mesodesign variables at the corners is set to 1. It means
that all the parameters of initial guess design 1 and initial guess design 2 were the same
except the mesodesign variables of the elements at the center or corner. The initial designs
of the macrostructure had a uniform distribution with a given volume fraction VMA

f .
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4.2.1. The Effect of Penalty Factor and Initial Guess Design on the Optimal Topologies

The penalty factor p in the RAMP model had a great influence on the optimization
result. Therefore, it was necessary to select the appropriate penalty factor. The design
objective is to maximize the MLF of Mode 1 (Objective 1). The volume constraints are
VMA

f = 0.8 and VME
f = 0.4. A filter radius of 1.5 times the element size was applied

on two scales. The initial design of the RVE is shown in Figure 6a. By choosing five
different p values, the optimization results, iteration histories and the first MLF of the
optimization results are, respectively, shown in Figures 7–9. On the macro scale, the black
domain represents CLD material on the base plate. On the meso scale, the red elements
represent the viscoelastic damping material, and the brown elements denote intermediate
density elements. From Figure 9, it is not difficult to see that the MLFs decreased with
the increase of penalty factor. When p = 0, almost all elements in the mesostructure were
intermediate density elements. When p = 1, the mesostructure had many intermediate
density elements and the optimization efficiency was the lowest. Therefore, p was set to 2
in the following examples.
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Figure 7. Optimization results obtained by varying the penalty factor: (a) p = 0; (b) p = 1; (c) p = 2;
(d) p = 3; (e) p = 5.

Materials 2022, 15, x FOR PEER REVIEW 14 of 29 
 

 

  

6.43 2.97 3.30 0 0 0

2.97 6.98 4.31 0 0 0

3.30 4.31 7.28 0 0 0

0 0 0 2.27 0 0

0 0 0 0 1.48 0

0 0 0 0 0 1.08

(1 0.5i)

 
 
 
 

+  
 
 
 
 

 

(e) 

Figure 7. Optimization results obtained by varying the penalty factor: (a) 0p = ; (b) 1p = ; (c) 
2p = ; (d) 3p = ; (e) 5p = . 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 8. Iteration histories for different penalty factors: (a) 0p = ; (b) 1p = ; (c) 2p = ; (d) 
3p = ; (e) 5p = . 

0 10 20 30 40
0.02

0.021

0.022

0.023

0.024

0.025

0.026

0.027

Iteration number

M
od

al
 lo

ss
 fa

ct
or

0 20 40 60 80 100
0.015

0.02

0.025

Iteration number

M
od

al
 lo

ss
 fa

ct
or

0 10 20 30 40 50 60 70

0.015

0.02

0.025

Iteration number

M
od

al
 lo

ss
 fa

ct
or

0 10 20 30 40 50 60 70
0.012

0.014

0.016

0.018

0.02

0.022

0.024

Iteration number

M
od

al
 lo

ss
 fa

ct
or

0 10 20 30 40 50 60
0.005

0.01

0.015

0.02

0.0245

Iteration number

M
od

al
 lo

ss
 fa

ct
or

Figure 8. Iteration histories for different penalty factors: (a) p = 0; (b) p = 1; (c) p = 2; (d) p = 3;
(e) p = 5.
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Figure 9. The first modal loss factor of the optimization results obtained by varying the penalty factor.

Figure 10 shows the optimization results designed from the initial guess design 2
(shown in Figure 6b), and Figure 11 shows the iteration histories. Compared with Figure 7c,
as argued in [45], different initial guess designs may lead to different mesostructures and
equivalent constitutive matrices. However, the optimized macrostructures were almost
unchanged and the design objective of optimized structure is 0.240. Therefore, in the
following sections, all optimized structures were designed from initial guess design 1.
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Figure 11. Iteration histories for initial guess design 2.

4.2.2. Different Optimization Objectives

Two other optimization objectives are discussed here, namely, maximizing the second
MLF (Objective 2) and maximizing the sum of the first two MLFs (Objective 3). The volume
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fractions were also VMA
f = 0.8 and VME

f = 0.4. The optimization results and iteration
histories are shown in Figures 12 and 13, respectively. From Figures 7c and 12, it can be seen
that the optimized layouts in both scales were different with variation in the optimization
objective, and the equivalent constitutive matrices of the first three mesostructures were
obviously different. As shown in Figures 8c and 13, the MLF generally increased during the
optimization process, and the MLF of the optimized structures were much bigger than those
of initial structures. Table 3 is the comparison of the MLFs between optimized structure
and full coverage structure. In Table 3, the optimized layouts of Objective 1 are shown
in Figure 7c. For the single mode design, the MLFs of optimal designs were increased by
4.35% and 8.33% compared to the full coverage structure in Modes 1 and 2, respectively.
Considering the sum of the first two MLFs, the MLFs of optimal design were increased
by 4.26% compared to that of the traditional design. When maximization of the first MLF
was the design objective (Objective 1), the first MLF of the optimized structure was the
maximum. Objective 2 and 3 have the same tendency with Objective 1.
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Figure 12. Design results for different optimization objectives: (a) Objective 2: maximizing the second
modal loss factor; (b) Objective 3: Maximizing the sum of the first two modal loss factors.
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Figure 13. Iteration histories for different optimization objectives: (a) Objective 2: maximizing the
second modal loss factor; (b) Objective 3: Maximizing the sum of the first two modal loss factors.
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Table 3. Comparison of the modal loss factors between optimized structure and full coverage
structure (bold italics denote the modal loss factor of objective mode).

Objective 1 Objective 2 Objective 3 Full Coverage Structure

The first modal loss factor 0.024 0.019 0.023 0.023
The second modal loss factor 0.022 0.026 0.026 0.024

The sum of the first two modal loss factors 0.046 0.045 0.049 0.047

A harmonic excitation force f with the amplitude F = 1 N was applied to the rectangu-
lar plate with four edges clamped. The response point and the excitation point were in the
same place. A comparison of the frequency response curves of the full coverage structure
and optimal designs is shown in Figure 14, in which Figure 14b,c shows a detailed descrip-
tion in Modes 1 and 2. It can be seen that Objective 1 had the smallest resonance peak at the
first eigenmode and Objective 2 had the smallest resonance peak at the second eigenmode,
while Objective 3 obtained a better equilibrium in the first two modes. Compared with the
full coverage structure, the optimized structures still have good vibration characteristics
while reducing the consumption of the CLD material.
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Figure 14. Comparison of the frequency response curves of full coverage structure and optimal
designs: (a) The frequency response curves from 50 Hz to 150 Hz; (b) the detailed description in
Mode 1; (c) the detailed description in Mode 2.

4.2.3. Different Volume Fraction

In this section, the effect of the volume fraction on the optimization results is investi-
gated. Two optimization objectives were maximizing the first MLF and the second MLF,
respectively. For each optimization objective, three combinations of VMA

f and VME
f were

tested. The optimum designs are shown in Figures 15 and 16. Iteration histories are shown
in Figures 17 and 18. The MLFs of the optimum designs are shown in Table 4. As shown in
Figures 15 and 16, the optimized layouts of the macrostructure were not only affected by the
objective mode but also by the volume fraction on the meso scale. The optimized designs on
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the meso scale are mainly related to the objective mode. When varying the volume fraction
on the macro scale, the optimized designs on the meso scale were different only in terms of
their detailed sizes, which are reflected in the values of the equivalent constitutive matrices.
From Figures 17 and 18 and Table 4, it can be seen that the MLF generally increased during
the optimization process, and the MLFs of the optimized structures were much bigger than
those of the initial structures.

Materials 2022, 15, x FOR PEER REVIEW 18 of 29 
 

 

In this section, the effect of the volume fraction on the optimization results is inves-
tigated. Two optimization objectives were maximizing the first MLF and the second 
MLF, respectively. For each optimization objective, three combinations of MA

fV and ME
fV  

were tested. The optimum designs are shown in Figures 15 and 16. Iteration histories are 
shown in Figures 17 and 18. The MLFs of the optimum designs are shown in Table 4. As 
shown in Figures 15 and 16, the optimized layouts of the macrostructure were not only 
affected by the objective mode but also by the volume fraction on the meso scale. The 
optimized designs on the meso scale are mainly related to the objective mode. When 
varying the volume fraction on the macro scale, the optimized designs on the meso scale 
were different only in terms of their detailed sizes, which are reflected in the values of the 
equivalent constitutive matrices. From Figures 17 and 18 and Table 4, it can be seen that 
the MLF generally increased during the optimization process, and the MLFs of the opti-
mized structures were much bigger than those of the initial structures. 

Macrostructure Mesostructure HD (MPa) 

  

17.14 10.10 11.47 0 0 0

10.10 16.39 11.81 0 0 0

11.47 11.81 18.94 0 0 0

0 0 0 3.65 0 0

0 0 0 0 3.21 0

0 0 0 0 0 2.47

(1 0.5i)

 
 
 
 

+  
 
 
 
 

 

(a) 

  

19.01 10.66 12.11 0 0 0

10.66 16.06 11.66 0 0 0

12.11 11.66 18.66 0 0 0

0 0 0 3.67 0 0

0 0 0 0 3.13 0

0 0 0 0 0 2.51

(1 0.5i)

 
 
 
 

+  
 
 
 
 

 

(b) 

  

7.92 3.60 3.92 0 0 0

3.60 7.42 4.62 0 0 0

3.92 4.62 7.47 0 0 0

0 0 0 2.35 0 0

0 0 0 0 1.61 0

0 0 0 0 0 1.20

(1 0.5i)

 
 
 
 

+  
 
 
 
 

 

(c) 

Figure 15. Design results for maximizing the first modal loss factor: (a) Case 1: MA 0.8fV =  and 
MI 0.6fV = ; (b) Case 2: MA 0.6fV =  and 

MI 0.6fV = ; (c) Case 3: MA 0.6fV =  and 
MI 0.4fV = . 

  

Figure 15. Design results for maximizing the first modal loss factor: (a) Case 1: VMA
f = 0.8 and

VMI
f = 0.6; (b) Case 2: VMA

f = 0.6 and VMI
f = 0.6; (c) Case 3: VMA

f = 0.6 and VMI
f = 0.4.

Table 4. The modal loss factors of the optimal designs (bold italics represent the modal loss factor of
objective mode).

The Optimum Design for Maximizing the
First Modal Loss Factor

The Optimum Design for Maximizing the
Second Modal Loss Factor

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

The first modal loss factor 0.025 0.023 0.022 0.019 0.012 0.013
The second modal loss factor 0.021 0.018 0.019 0.026 0.023 0.023
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f = 0.6; (c) Case 6: VMA

f = 0.6 and VMI
f = 0.4.
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Figure 17. Iteration histories for maximizing the first modal loss factor: (a) Case 1: VMA
f = 0.8 and

VMI
f = 0.6; (b) Case 2: VMA

f = 0.6 and VMI
f = 0.6; (c) Case 3: VMA

f = 0.6 and VMI
f = 0.4.
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Figure 18. Iteration histories for maximizing the second modal loss factor: (a) Case 4: VMA
f = 0.8 and

VMI
f = 0.6; (b) Case 5: VMA

f = 0.6 and VMI
f = 0.6; (c) Case 6: VMA

f = 0.6 and VMI
f = 0.4.

4.3. A Rectangular Plate with Two Short Edges Clamped
4.3.1. Different Optimization Objectives

In order to further verify the effectiveness of the proposed concurrent topology opti-
mization method, another rectangular plate with a different boundary condition is studied
in this section. The rectangular plate with two short edges clamped is shown in Figure 19.
Three optimization objectives are discussed here, namely, maximizing the first MLF (Ob-
jective 1), maximizing the second MLF (Objective 2) and the sum of the first two MLFs
(Objective 3). The volume fractions are the same as the cases in Section 4.2.1. A filter
radius of 4 times the element size was used on the macro scale. The filter radius on the
meso scale was 1.5 times the element size. The design results and iteration histories are
shown in Figures 20 and 21, respectively. Figure 22a shows the comparison of the frequency
response curves of full coverage structure and optimal designs, and Figure 22b,c provides
a detailed description of Modes 1 and 2. From Figure 20, the similar conclusions can be
obtained that the optimized designs in both scales are dependent on the objective mode.
Therefore, the equivalent constitutive matrices of the three designs on the meso scale
are obviously different. As shown in Figure 21, the MLF generally increased during the
optimization process, and the MLFs of the optimized structures were much bigger than
those of initial structures. The comparison of the MLFs between the design results and full
coverage structure is shown in Table 5. For the single mode design, the MLFs of optimal
designs were increased by 17.39% and 31.58% compared to the full coverage structure
in Modes 1 and 2, respectively. Considering the sum of the first two MLFs, the MLFs of
optimal design was increased by 19.05% compared to those of the traditional design. From
Table 5 and Figure 22, it can be seen that when maximizing the k-th (k = 1, 2) MLF, the k-th
MLF is maximum and the resonance peak at the k-th eigenmode was the minimum. In the
case of maximizing the sum of the first two MLFs, though the MLF and resonance peak in
the k-th eigenmode showed inferior results which maximized the k-th MLF, the optimized
design obtained a better equilibrium in the first two modes.
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Figure 20. Design results for different optimization objectives: (a) Objective 1: maximizing the
first modal loss factor; (b) Objective 2: maximizing the second modal loss factor; (c) Objective 3:
maximizing the sum of the first two modal loss factors.

Table 5. Comparison of the modal loss factors between optimized structure and full coverage
structure (bold italics denote the modal loss factor of objective mode).

Objective 1 Objective 2 Objective 3 Full Coverage Structure

The first modal loss factor 0.027 0.021 0.027 0.023
The second modal loss factor 0.021 0.025 0.023 0.019

The sum of the first two modal loss factors 0.048 0.046 0.050 0.042
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Figure 21. Iteration histories for different optimization objectives: (a) Objective 1: maximizing the
first modal loss factor; (b) Objective 2: maximizing the second modal loss factor; (c) Objective 3:
maximizing the sum of the first two modal loss factors.
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Figure 22. Comparison of the frequency response curves of full coverage structure and optimal
designs: (a) The frequency response curves from 20 Hz to 70 Hz; (b) the detailed description in
Mode 1; (c) the detailed description in Mode 2.

4.3.2. Different Volume Fraction

In this section, the optimization objectives and volume fractions were the same as
the cases in Section 4.2.3 and the filter radii in both scales were the same as the cases in
Section 4.3.1. The optimum designs are shown in Figures 23 and 24. Iteration histories are
shown in Figures 25 and 26. The MLFs of the optimum designs are shown in Table 6. From
the above figures and table, similar conclusions can be obtained as in Section 4.2.3.
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Figure 23. Design results for maximizing the first modal loss factor: (a) Case 1: VMA
f = 0.8 and

VMI
f = 0.6; (b) Case 2: VMA

f = 0.6 and VMI
f = 0.6; (c) Case 3: VMA

f = 0.6 and VMI
f = 0.4.
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Figure 24. Design results for maximizing the second modal loss factor: (a) Case 4: VMA
f = 0.8 and

VMI
f = 0.6; (b) Case 5: VMA

f = 0.6 and VMI
f = 0.6; (c) Case 6: VMA

f = 0.6 and VMI
f = 0.4.
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Figure 25. Iteration histories for maximizing the first modal loss factor: (a) Case 1: VMA
f = 0.8 and

VMI
f = 0.6; (b) Case 2: VMA

f = 0.6 and VMI
f = 0.6; (c) Case 3: VMA

f = 0.6 and VMI
f = 0.4.
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Figure 26. Iteration histories for maximizing the second modal loss factor: (a) Case 4: VMA
f = 0.8 and

VMI
f = 0.6; (b) Case 5: VMA

f = 0.6 and VMI
f = 0.6; (c) Case 6: VMA
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Table 6. The modal loss factors of the optimal designs (bold italics denote the modal loss factor of
objective mode).

The Optimum Design for Maximizing the
First Modal Loss Factor

The Optimum Design for Maximizing the Second Modal
Loss Factor

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

The first modal loss factor 0.027 0.026 0.024 0.021 0.019 0.017
The second modal loss factor 0.023 0.019 0.017 0.024 0.022 0.022

5. Conclusions

A concurrent topology optimization approach is proposed here for the multi-scale de-
sign of a CLD plate to maximize the MLF. The equivalent constitutive matrix of viscoelastic
damping material was calculated using the RVE with a rigid skin effect and was taken
into account in the finite element analysis of the macrostructure of the CLD plate. The
sensitivity calculation was performed on both macro and meso scales. The MMA was used
to update the design variables on two scales and the optimized design was obtained. The
numerical examples are presented using the proposed concurrent topology optimization
approach to multiscale systems.

By analyzing the influence of the penalty factor in the RAMP model on optimization
results, an appropriate penalty factor was chosen. The effects of optimization objectives
and volume fractions on the design results were investigated. The results indicated that
the optimized layouts of the macrostructure were dependent on the objective mode and
volume fraction on the meso scale. The optimized designs on the meso scale were mainly
related to the objective mode. When varying the volume fraction on the macro scale, the
optimized designs on the meso scale were different only in their detailed size, which were
reflected in the values of the equivalent constitutive matrices. When maximizing the k-th
MLF, the k-th MLF is maximum and the resonance peak at the k-th eigenmode was the
minimum. In the case of maximizing the sum of the first two MLFs, the optimized design
obtained a better equilibrium in the first two modes. The proposed concurrent topology
optimization method can provide an effective means to optimize the structural damping of
the CLD structure and produce optimal layouts on both the macro and meso scales. The
proposed concurrent topology optimization method is a good choice for the optimization
of the structural damping of CLD structure and producing optimal layout on both scales.
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