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Abstract: In this paper, a stainless steel fiber coated electropolymerized aniline, without and with
carbon nanotubes (SS/PANI and SS/PANI/CNT), along with CNTs modified carbon paste electrodes
(CPEs), were prepared. The electrodes were characterized by differential pulse voltammetry (DPV)
and applied for the detection of 4-chlorophenol (4-CP). For all the electrodes, the oxidative peak
current showed a linear dependence on the 4-CP concentration in the range of 0.05–0.5 mmol/L with
R2 ≥ 0.991. SS/PANI/CNT electrodes showed greater sensitivity for the detection of the 4-CP than
the SS/PANI and CPEs. For all of the aniline-based stainless steel electrodes, both the LOD and
LOQ decreased with the increase in the number of electropolymerization cycles. The lowest LOD
(0.38 µmol/L) and LOQ (1.26 µmol/L) were observed for the SS/PANI/CNT electrode modified in
aniline solution during 30 cycles. The methods were successfully applied to the analysis of 4-CP
in real samples (tap water and river water). The results demonstrated the good agreement of the
added and found concentrations of the 4-CP. The recovery and precision were from 95.12% to 102.24%
and from 1.53% to 6.79%, respectively. The proposed electrodes exhibited acceptable reproducibility,
admirable stability, and adequate repeatability and showed potential for the analysis of 4-CP in water.

Keywords: electropolymerization; polyaniline; multi-walled carbon nanotubes; differential pulse
voltammetry; 4-chlorophenol

1. Introduction

Polar compounds are some of the most problematic pollutants found in the aquatic en-
vironment. Among the polar compounds that have a significant impact on the environment,
phenolic compounds are an important group. These compounds enter the environment
either directly, as industrial effluents, or indirectly, as transformation products of natural
and synthetic chemicals, including pesticides. The U.S. Environmental Protection Agency
has compiled a list of 11 phenolic compounds considered to be major pollutants, among
which chlorophenols are the most toxic and carcinogenic. Among the many removal meth-
ods, electrochemical hydrodehalogenation (ECH) was regarded as a promising approach,
owing to its easy operations, wild reaction conditions, and high efficiency.

Polyaniline (PANI) is one of the conducting polymers; it attracts great attention due
to its low cost, ease of synthesis, good environmental stability, reversible redox activity,
and potential applications in sensing, energy conversion, and storage [1–5]. Due to its
high conductivity and good environmental stability [6], as well as its ease of preparation,
polyaniline is a very popular coating material for various applications [6–11]. The first
paper on this subject was published in 1962 by Mohilner et al. [12], who studied the kinetics
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of the electrochemical oxidation of aniline in sulfuric acid. They found that initial oxidation
requires the formation of an aniline radical. Since then, the nature of intermediates in
PANI synthesis have been proposed based on cyclic voltammetry. The first stage of PANI
synthesis was found to be comprised by the formation of the C6H5-NH2

+ cation radical
through the transfer of an electron from an sp3 orbital of a nitrogen atom to the electrode
during electrochemical oxidation. Electropolymerization was carried out by voltammetry
methods in a three-electrode system using a potentiostat/galvanostat. Sorptive coatings
were prepared from aqueous solutions of aniline, containing added electrolyte, with H2SO4
used as the acid. Stainless steel fibers applied as stationary phases served as working
electrodes. The saturated calomel electrode was used as a reference electrode, and the
platinum electrode served as an auxiliary electrode. Constant potential, constant current,
and potential sweep methods were usually used for the electropolymerization of PANI and
its derivatives [12]. Since polymerization can only proceed when the monomer is oxidized
on the electrode, these procedures are advantageous from the standpoint of controlling
the amount of product. Standard electrochemical techniques using a split cell containing
a working electrode, a counter electrode, and a reference electrode usually produce the
required films. The most commonly used working electrodes are conductive materials
such as gold-, carbon-, platinum-, and indium tin oxide-coated glass plates. Intrinsically
conducting organic polymers, such as polyaniline, polythiophene, or polypyrrole, have
been studied intensively during the last two decades [12].

Multi-walled carbon nanotubes (CNTs) have unique physicochemical properties, such
as high surface area, ordered structure with high aspect ratio, high mechanical strength,
and ultralightweight, as well as high electrical and thermal conductivity [13,14]. The
combination of all these features makes CNTs very interesting materials with potential for a
variety of applications. Due to their low resistivity, good electronic properties, high stability,
and large available surface area, CNTs seem to be excellent fillers for polymers in regard to
improving their electric conductivity, as well as their mechanical properties [15–17].

In this paper, the application of multi-walled carbon nanotubes in the preparation
of stainless steel fiber coated with PANI subsequently used as electrodes or carbon paste
electrodes was investigated. The prepared SS/PANI and SS/PANI/CNT electrodes were
applied for the detection of 4-CP by differential pulse voltammetry (DPV). The capability
of these newly modified stainless steel electrodes to detect chlorophenol was compared
to the carbon paste electrodes modified with CNTs. To the best of our knowledge, the
electrochemical determination of 4-CP at the stainless steel electrode site has not been
reported so far. The electrodeposited films of polyaniline on stainless steel wires as the
working electrode were investigated and characterized using a simple cyclic voltammetry
method to obtain new information about the electrochemical properties of the deposited
films. For potential new applications in electroanalysis, polyaniline, as well as composites
of carbon nanotubes–polyaniline, have been studied. It can be expected that such electrodes
can find many applications in electroanalysis for the determination of many other analytes.

2. Materials and Methods
2.1. Reagents and Materials

The 4-chlorophenol (4-CP) was obtained from Sigma-Aldrich (St. Louis, MO, USA).
The hydrochloric acid, sulfuric acid, sodium sulfate, and aniline were obtained from
Chempur (Piekary Śląskie, Poland). Stock standard solution of 4-CP (0.5 mmol/L) was
prepared in 0.1 mol/L Na2SO4. Working solutions were prepared as required by dilution
with sodium sulfate of the same concentration. The multi-walled carbon nanotubes CNTs
(CNT Co., Ltd., Incheon, Korea) and graphite (<45 µm) from Sigma-Aldrich (St. Louis, MO,
USA) were used. Paraffin oil was received from Fluka (Buchs, Switzerland).

2.2. Characterization of the CNTs

As reported elsewhere [18–22], the electrochemical oxidation of 4-chlorophenol at
the CPEs was controlled by adsorption, and the electrode peak currents were positively
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correlated with the physicochemical properties of the modifier used—peak currents were
increased with the specific surface area and the adsorption capacity of the modifier. Thus,
the textural, as well as the adsorptive properties of the CNTs toward 4-CP, were determined.

The pore structure of the CNTs was characterized by N2 adsorption-desorption at
77 K using a ASAP 2020 (Micromeritics, Norcross, GA, USA) surface analyzer, while the
adsorptive properties of the CNT were studied as a function of time in batch adsorption
experiments.

The adsorption experiments were carried out at 25 ◦C in Erlenmeyer flasks contain-
ing 5 mL of the 4-CP aqueous solution (0.5 mmol/L) and 5 mg of CNTs. The samples
were shaken, withdrawn at appropriate time intervals, filtered, and analyzed by UV-
spectrophotometry. The amount of adsorption at the time t, qt (mmol/g), was calculated by
the Equation (1):

qt =
(C0 − Ct)V

m
(1)

where C0 and Ct are the initial and the concentration of 4-CP at the time t (mmol/L), V is
the volume of the solution (L), and m is the mass of the CNTs (g).

All the experiments were carried out in duplicate and the averaged values were used
for further calculations.

2.3. Preparation of the PANI Coated Stainless Steel Fibers

In a flask of 250 mL, a 0.2 mol/L aniline solution in 0.5 mol/L sulfuric acid was
prepared. A total of 20 mL of this solution was placed in a measuring cell and then formed
into a conventional three-electrode system. That system was used for all electrochemical
experiments, with a stainless steel fiber (SS/PANI or SS/PANI/CNT) as a working elec-
trode, a platinum (Pt) wire as an auxiliary electrode, and a saturated calomel electrode
as a reference electrode. Stainless steel fibers of 6 cm in length were thoroughly washed
following the method suggested by Masoumi et al. [23]. According to this method, the
fibers were purified with acetone by placing them in an ultrasound bath for 30 min. Then
they were subsequently washed twice with distilled water. Prepared fibers were stored in a
desiccator at room temperature.

The fiber coatings containing polyaniline (PANI) and polyaniline with carbon nan-
otubes (PANI/CNT) were electrodeposited on the prepared fiber’s surface using the cyclic
voltammetry technique. Before electrochemical polymerization, the 1.5 cm piece of stain-
less steel wire was immersed in an aqueous solution containing 0.2 mol/L of aniline and
0.5 mol/L of sulfuric acid, then deoxidized by passing through nitrogen gas for 10 min. The
potential scan was cycled 10, 20, or 30 times between 0.1 V and 1.0 V vs. SCE at a scan rate
of 25 mV/s. For the preparation of the PANI/CNT fiber, the same method was used; the
only difference was the addition of 0.02% of multi-walled carbon nanotubes to the aqueous
solution of aniline. This optimum amount of carbon nanotubes was chosen based on the
literature data [13]. Then, 6 mg CNT was added, and the obtained suspension was mixed
using ultrasound. The obtained fiber coatings were washed with deionized water and kept
in a desiccator for 24 h at room temperature.

2.4. Carbon Paste Electrodes Preparation

The carbon paste electrode was prepared by thoroughly mixing graphite powder
and paraffin oil (9:1 m/m) in a mortar with a pestle. The carbon paste was modified by
adding 2.5, 5, or 10% (m/m) of CNTs. The modified CPEs were prepared using the same
methods by precisely mixing weighed amounts of multi-walled carbon tubes with graphite
powder and paraffin oil. The prepared mixtures were stored for three days in a desiccator
at 25 ◦C. The pastes were then packed into a 3 mm diameter electrode cavity (2 mm). Before
each use, the electrode’s surface was rubbed with a piece of paper until a smooth surface
was obtained.
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2.5. Voltammetry

The cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements
were performed with a three-electrode system, including the SS/PANI or SS/PANI/CNT
fiber as the working electrode, or—for the sake of comparison—the carbon paste electrodes
modified with CNT (CPE/CNT), a platinum wire as a counter electrode, and saturated
calomel electrode as a reference electrode. Electrochemical experiments were carried out
with an Autolab PGSTAT 20 potentiostat (Eco Chemie) controlled by GPES 4.9 software.

DPV tests were performed for various concentrations of 4-CP solution (in the range of
0.05 to 0.5 mmol/L) in 0.1 mol/L sodium sulfate, and the voltammograms were registered
from 0 to +1.0 V at a scan rate of 50 mV/s. The pulse height and width were set as 50 mV
and 50 ms, respectively, and the sampling time was 50 ms. These electrochemical conditions
were applied based on the previously described results [18–22].

3. Results
3.1. Textural and Adsorptive Properties of the CNTs

The nitrogen adsorption/desorption isotherm for the CNTs was determined at 77 K,
and the results are presented in Figure 1. The specific surface area of the CNTs was
calculated using the Brunauer–Emmett–Teller equation and was found to be 195 m2/g. The
total pore volume (Vt), the micropore volume (Vmi), and the mesopore volume (Vme) were
0.75, 0.09, and 0.74 cm3/g, respectively.
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Figure 1. Nitrogen adsorption-desorption isotherm of CNTs at 77.4 K.

The adsorption kinetic curve of the 4-chlorophenol (the plot of qt = f (t)) is shown in
Figure 2a. The adsorption equilibrium was achieved after 60–90 min. After this period,
approximately 60% of the 4-CP was adsorbed on the CNTs (qe = 0.235 mmol/g).
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For the description of the experimental data, the pseudo first-order (PFO) (Equation (2)),
pseudo second-order (PSO) (Equation (3)), as well as the Weber–Morris intraparticle diffu-
sion models (Equation (4)) [23] were considered:

log(qe − qt) = log qe −
k1

2.303
t (2)

t
qt

=
1

k2q2
e
+

1
qe

t (3)

qt = kit1/2 + Ci (4)

where: qe is the equilibrium amount of 4-CP adsorbed per unit mass of the CNTs (mmol/g);
k1 is the rate constant of the PFO adsorption model (1/min); k2 is the rate constant of
the PSO adsorption model (g/mmol·min); ki is the intraparticle diffusion rate constant
(mmol/g·min1/2); and Ci is the thickness of the boundary layer.

The PFO and PSO rate constants were 0.006 1/min and 0.946 g/mmol·min, respectively.
The correlation coefficient for the PFO kinetic model was relatively low, whereas the PSO
model gives a better fitting with the high R2 value (0.892 vs. 0.999). This indicates that the
adsorption system belongs to the second-order kinetic model. The plot of qt vs. t1/2 for the
intraparticle diffusion is shown in Figure 2b. As can be seen, the plot was not linear over
the whole time range, and the curves do not pass through the origin. This suggests that the
adsorption mechanism of the 4-CP on CNTs is complex, and both the surface adsorption,
as well as the intraparticle diffusion, contribute to the adsorption process.

3.2. Electropolymerization of PANI Fiber Coating

The voltammetric curves obtained by electropolymerization of aniline with a wire
made of stainless steel in an aqueous solution of aniline and sulfuric acid carried out at
30 cycles are shown in Figure 3.
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stainless steel wire electrodes after 1–30 cycles (a) and chosen for - - - - 1, - - - - 5, - - - - 10, - - - - 20, - - - -
30 cycles (b).

While analyzing the voltammograms and peak currents, it can be concluded that the
polymer layer formed during the first cycle affects the autocatalytic process of electropoly-
merization, which means that the further development of the polymer is faster than on a
clean electrode. Further cyclization leads to an increase in the polymerization process. SEM
images of the stainless steel fiber before and after electropolymerization were recorded
using a scanning electron microscope QUANTA 3D FEG at a magnification of 100× to
estimate the thickness of the layer. The resulting images are shown in Figure 4.
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Figure 4. The SEM image of the stainless steel fiber before the electropolymerization (a) and after
10 (b), 20 (c), and 30 (d) cycles.

The obtained cover border wire polymers have an irregular structure and uneven
coverage. A further coverage area is uniformly covered with a layer of polyaniline. Based
on these images, the coating thickness of the produced polymer was estimated. The
thickness of the clean fiber (uncoated with the polymer) was measured, and the thickness
of the fiber was measured where the layer thickness appeared to be constant. The fiber
diameters were then estimated using a scale, and the film thickness was calculated. The
results presented in Table 1 show that as the subsequent cycles are carried out, the thickness
and volume of the resulting polymer increase. In Figure 5, the SEM images of the surface
of the stainless steel fiber covered with PANI/CNT layers at 10,000-fold magnification
are presented.

Table 1. Physical properties of fibers based on SEM measurements.

Fiber Diameter [µm] Polymer Layer
Thickness [µm]

Polymer Volume
[mm3]

SS 247 - -
SS/PANI/CNT 10 cycles 280 16.5 0.205
SS/PANI/CNT 20 cycles 300 26.5 0.342
SS/PANI/CNT 30 cycles 313 33.0 0.435
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and 30 (c) CV cycles.

In addition to the structure repeated in all photos, the presence of carbon nanotubes
can be seen (Figure 5a). In the case of more cycles (Figure 5b,c), the carbon nanotubes were
probably covered by successive layers of polyaniline. All PANI/CNT layers show a similar
surface morphology. Some repeating dendrite-shaped structures are noticeable.

More detailed studies on the physicochemical, as well as the mechanistic, properties
of aniline-based fiber coatings have been conducted by other authors and are reported
elsewhere [8,24,25].
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3.3. Electrochemical Studies

In the first step, the effect of accumulation time on the peak current value was de-
termined. The accumulation time varied from 1 min to 15 min, and the corresponding
current value was measured using a 0.5 mmol/L 4-CP solution. The effect of accumulation
time on the 4-CP peak current is presented in Figure 6. As can be seen, the peak current
increased with increasing accumulation time until about 6 min, and then stabilized. Further
increasing the accumulation time did not improve the amount of 4-CP on the electrode
surface, due to surface saturation. The results show that the accumulation time is not
correlated with the adsorption kinetics of 4-CP on the materials used as CPE modifiers. For
further experiments, an accumulation time of 7 min was chosen as the optimum for all
electrodes.
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Figure 6. The effect of accumulation time on the peak current of the 0.5 mmol/L 4-CP in 0.1 mol/L
Na2SO4 solutions.

Figure 7 shows the cyclic voltammograms (CV) and Figure 8 shows the differential
pulse voltammograms (DPV) of 0.5 mmol/L 4-CP in 0.1 mol/L solutions of Na2SO4
obtained for SS/PANI and SS/PANI/CNT after 10, 20, and 30 electropolymerization cycles,
as well as for CPEs modified by the addition of 2.5, 5, and 10% (m/m) of CNTs. For all
the DPV curves, the peak currents and the peak potentials were determined. The peak
potentials reveal similar values of 0.76 ± 0.01 V for all the electrodes. The peak currents
in the case of each scan are about 50% higher when the number of scans increases. The
increase in the modifier content yields an increase in the peak current. The results obtained
indicate that the modification of the electrodes improves the performance of chlorophenol
electroanalysis. It was also found that the addition of carbon nanotubes to PANI in layers
applied by electropolymerization, e.g., on a wire made of stainless steel, significantly
increased the possibility of using electrodes coated with the polymer in the analysis of 4-CP.
The presence of the nanotubes, which increases the value of the current peaks in the curves,
results in large differences in the polymer layer thicknesses. This produces a composite
PANI/CNT obtained by the synergistic effect of both components: a conductive polymer
and a nano-carbon.
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Figure 7. Cyclic voltammograms registered for 0.5 mmol/L 4-CP in 0.1 mol/L solutions of Na2SO4

on SS/PANI and SS/PANI/CNT electrodes obtained after 10 cycles - - -, 20 cycles - - -, 30 cycles - - -,
as well as on CPEs modified with CNTs content of 2.5% - - -, 5% - - -, and 10% - - -.
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of Na2SO4 on SS/PANI and SS/PANI/CNT electrodes obtained after 1–10 cycles, 2–20 cycles,
3–30 cycles, as well as on CPEs modified with CNTs content of 1–2.5%, 2–5%, and 3–10%.

3.4. Calibration and Validation

The main aim of this study was to develop sensing electrodes using aniline-based
stainless steel fiber coatings, with and without multi-walled carbon nanotubes, for the
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electroanalysis of 4-chlorophenol. The capability of these stainless steel electrodes to
detect 4-CP was compared with the CPEs modified by adding different amounts of CNTs
(2.5–10%, m/m). The calibration curves of 4-CP (0.05–0.5 mmol/L) for all of the electrodes
were constructed by plotting integrated peak area vs. concentration. All the measurements
were carried out in triplicate and outliers were not excluded. The calibration data are
summarized in Table 2.

Table 2. Comparison of linear correlation parameters and detection limits for 4-CP at different
electrodes.

Electrode y = ax + b R2 LOD LOQ

[µmol/L] [µmol/L]

SS/PANI
10 cycles y = 0.37x − 0.001 0.992 7.30 24.3
20 cycles y = 1.18x + 0.004 0.998 2.29 7.43
30 cycles y = 1.57x − 0.005 0.996 1.72 5.73

SS/PANI/CNT
10 cycles y = 2.52x − 0.014 0.997 1.07 3.56
20 cycles y = 4.24x − 0.020 0.999 0.64 2.13
30 cycles y = 7.01x − 0.037 0.994 0.38 1.26

CPE/CNT
2.5% y = 2.38x + 0.004 0.998 1.13 3.76
5% y = 3.94x − 0.013 0.997 0.68 2.26
10% y = 5.94x − 0.040 0.995 0.45 1.50

bare/graphite electrode y = 0.14x − 0.017 0.991 19.3 64.3

The limits of detection (LOD) and quantification (LOQ) were calculated using Equa-
tions (5) and (6), respectively, in which SD is the standard deviation of the blank signal and
a is the analytical curve slope [26].

LOD = SD
3.3
a

(5)

LOQ = SD
10
a

(6)

As can be seen, all the plots were linear in the studied range, with R2 values ≥ 0.991. In
general, SS/PANI electrodes showed lower sensitivity than the CPEs and SS/PANI/CNT
electrodes. For all of the aniline-based stainless steel electrodes, both the LOD and LOQ
decreased with the increase in the number of electropolymerization cycles. Moreover, the
SS/PANI fiber coatings modified by multi-walled carbon nanotubes showed significantly
greater sensitivity for the detection of 4-CP than the CPEs. In the case of CPEs, the signal
response increased with an increase in the amount of the modifier (CNTs) used. The lowest
LOD (0.38 µmol/L) and LOQ (1.26 µmol/L) were observed for the SS/PANI/CNT electrode
modified in aniline solution during 30 cycles. In comparison, the LOD and LOQ values
obtained for the electrode prepared under the same conditions (30 cycles), but without
the addition of carbon nanotubes (SS/PANI), were approximately 4.5 times higher, and
were 1.72 and 5.73 µmol/L, respectively. The LOD of 4-CP obtained by SS/PANI/CNT/30
appears to be comparable, and in some cases, superior to that obtained by the other reported
electrodes, as shown in Table 3.
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Table 3. Comparison of recently reported electrochemical methods for the quantitative analysis
of 4-CP.

Electrode LOD
[µmol/L] Ref.

SS/PANI/CNT/30 0.38 This study
CPE/CNT/10 0.45 This study
SS/PANI/30 1.72 This study
montmorillonite modified CPE 0.02 [27]
blue lanthanide double-decker phthalocyanines modified GCE 0.04 [28]
MWCNT/gold nanoparticles nanocomposites modified GCE 0.11 [29]
molecularly imprinted polymer with PDDA-functionalized graphene 0.30 [30]
Ni(OH)2 nanoparticles-carbon nanotubes modified GCE 0.50 [31]
CPE modified by laccase immobilized on a hybrid nanocomposite 0.70 [32]
GO/NiO nanoparticle composite-ionic liquid modified CPE 0.70 [33]
SBA-15-NH2 modified CPE 1.40 [19]
Activated carbon modified CPE 2.38 [20]
CNT/Pt nanoparticles/rhodamine B modified GCE 3.70 [34]
hazelnut shell modified CPE 5.03 [22]
green lanthanide double-decker phthalocyanines modified GCE 6.14 [28]
halloysite/gelatin modified CPE 6.55 [21]
walnut shell modified CPE 7.90 [22]
expanded graphite-epoxy electrode 20.0 [35]
halloysite modified CPE 29.3 [21]

To assess the quality of the methods (electrodes), accuracy and precision were de-
termined. These validation tests were performed for the best three electrodes from each
type—SS/PANI/30, SS/PANI/CNT/30, and CPE/CNT/10. Accuracy, intraday precision,
and interday precision for 4-CP were determined by adding the standard to 0.1 mol/L
sodium sulfate samples at low (0.1 mmol/L) and high concentration (0.5 mmol/L) levels.
To evaluate intra-assay and inter-assay precision, five replicates for each concentration
of the analyte were measured in a single run and on five consecutive days in a week,
respectively. Intra-assay and inter-assay imprecision were expressed as the coefficient of
variation (CV). Mean accuracies and coefficients of variation of 4-CP were presented in
Table 4. The CVs of the intraday precision were in the range of 1.67–6.25% and 0.16–1.47%,
while the CVs of interday precision were in the range of 5.80–9.90% and 0.82–8.26% for the
initial analyte concentration of 0.1 and 0.5 mmol/L, respectively. Recoveries were within
the range of 97.96% to 101.91% for intraday assay, while in the interday assay, the range of
accuracy was within 97.22% to 104.50% for the initial analyte concentration of 0.1 mmol/L.

Table 4. Intraday and interday assay reproducibility for the determination of 4-CP.

Electrode Added 0.1 mmol/L Added 0.5 mmol/L

Found ± SD
[mmol/L]

CV
[%]

Accuracy
[%]

Found ± SD
mmol/L

CV
[%]

Accuracy
[%]

Intraday
SS/PANI/30 0.102 ± 0.006 6.25 101.91 0.501 ± 0.007 1.47 100.21
SS/PANI/CNT/30 0.101 ± 0.002 1.67 101.01 0.506 ± 0.005 0.59 101.23
CPE/CNT/10 0.098 ± 0.005 5.11 97.96 0.499 ± 0.001 0.16 99.95

Interday
SS/PANI/30 0.097 ± 0.010 9.90 97.22 0.489 ± 0.011 2.97 97.98
SS/PANI/CNT/30 0.101 ± 0.008 8.33 100.84 0.508 ± 0.082 8.26 101.68
CPE/CNT/10 0.104 ± 0.006 5.80 104.50 0.498 ± 0.004 0.82 99.53

3.5. Analytical Application of the Electrodes

The described methods using SS/PANI/30, SS/PANI/CNT/30, and CPE/CNT/10
electrodes have been applied to determine 4-CP in tap water and Vistula River water after
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the addition of 0.1 mol/L sodium sulfate. Since no 4-CP was detected in the samples, the
water samples were spiked with 0.2 mmol/L of the analyte. The obtained results are listed
in Table 5. As can be seen, they demonstrate the good agreement of the added and found
concentrations of the 4-CP. The recoveries were from 95.12% to 102.24%, and the CV was
equal to or below 6.79%. This indicates that the electrodes prepared in this study should be
promising sensors for the efficient determination of 4-CP.

Table 5. Results of 4-CP determination in spiked real samples.

Electrode Tap Water
Concentration Given—0.2 mmo/L

River Water (Vistula)
Concentration Given—0.2 mmo/L

Found ± SD
[mmol/L]

CV
[%] Recovery [%] Found ± SD

[mmol/L]
CV
[%] Recovery [%]

SS/PANI/30 0.195 ± 0.013 6.79 97.66 0.197 ± 0.013 6.45 98.61
SS/PANI/CNT/30 0.204 ± 0.013 6.28 102.24 0.190 ± 0.003 1.53 95.12
CPE/CNT/10 0.195 ± 0.004 1.93 97.72 0.192 ± 0.012 6.32 95.90

4. Conclusions

In this paper, a stainless steel fiber-coated electropolymerized aniline, with and without
carbon nanotubes (SS/PANI and SS/PANI/CNT), was prepared and used for the detection
of 4-chlorophenol based on differential pulse voltammetry. Carbon paste electrodes modi-
fied with the same CNTs were also prepared and used. The sensitivity of the aniline-based
stainless steel electrodes increased with the increase in the number of electropolymerization
cycles. Even a small addition of a modifier (CNTs) to a SS/PANI electrode increases peak
currents. The lowest LOD (0.38 µmol/L) and LOQ (1.26 µmol/L) were observed for the
SS/PANI/CNT electrode modified in aniline solution during 30 cycles. The sensitivity of
these methods is comparable to, or slightly worse, than those of electrochemical methods
for 4-CP detection described by other authors. Finally, the methods were applied to the
analysis of 4-CP in tap water and river water samples. All the electrodes demonstrated
satisfactory results in real samples, showing a potential for the analysis of 4-CP in water.
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