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Abstract: The present study aimed to investigate the tribological behavior of high-temperature
vacuum-brazed WC-Co-NiP functional coatings deposited on 16MnCr5 case hardening steel. Dry
sliding wear resistance was evaluated using a non-conformal ball-on-disk arrangement, at room
temperature against 100Cr6 and WC-Co static partners, respectively. Morphological, microstructural,
and chemical composition analyses showed a complex, phased structure composed of tungsten
carbide, nickel, and hard cobalt-based η-structure. In the testing conditions, the coefficient of friction
against 100Cr6 and WC-Co counterparts entered a steady-state value after approximately 1000 m and
400 m, respectively. The wear track analysis revealed phenomena of particles trapped between the
sliding bodies, as well as gradual removal of asperities. The calculations of the wear rates proved
that the values were strongly influenced by properties of the sliding system, such as crystal structure,
stress discontinuities, hardness, and material homogeneity.

Keywords: WC-Co powder; NiP powder; WC-Co-NiP; vacuum brazing; functional coatings; friction
and wear

1. Introduction

Friction and wear of components can be controlled and partially prevented by means
of films or coatings [1–3]. Friction and wear are not purely phenomena that can be solely
solved by simply selecting a harder material [4,5]. They emerge from the contact interaction
between moving parts that is influenced by many factors, such as contact, load, speed [6–8],
surface and base material hardness, elasticity, toughness, chemical reactions [9], and lubri-
cation [10], and also the dominant environmental factors, including temperature, humidity,
impurities, and radiation [3,11–16]. Some deficiencies causing friction and wear can be
addressed rather easily, while others are more complicated to solve. The lifetime of con-
sumer products can be extended by means of optimal material selection and wear-resistant
coatings [17–20]. Friction and wear in factory conveyors, mineral processing, mixers, ex-
truders, blowers, pumps, and regulating valves can be reduced by efficient lubrication,
anti-friction or low-friction coatings, and the correct selection of materials [21–27]. There
is a continuous aim to develop coatings with superior mechanical properties to combat
wear loss [28–31]. Cermets are generally used in dry sliding wear conditions because of
their relatively high hardness and wear resistance [32]. As mentioned, hardness is very
often not enough to mitigate the wear phenomena but is often accepted as one of the most
important indicators for wear resistance [33]. Pirso et al. successfully demonstrated that
the volumetric wear of Cr3C2-based coatings decreases proportionally with the increase
WC-Co and TiC-NiMo cermets’ content [34]. The WC–Co cermet is also known for its wear
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resistance–strength combination at temperatures up to 600 ◦C [35], fracture resistance, and
high hardness [36–38]. Nevertheless, it is important to keep the Co content low in the alloy,
as Fischer demonstrated, in order to provide a lower wear rate [33]. Besides the material
properties, the testing environment of the reinforced particles is highly important. Kirshna
et al. recently reported that, for reinforced AL7075 metal matrix composites, the wear rate
decreased with the increase of the sliding speed and increased with the increase of applied
load [39]. Although heavily studied, WC-Co particles continue to fascinate the research
community, being recently found also as matrix material in carbon nanotubes [40] or in
TiC-based hot-pressed composites [41]. The cermet particles are commonly incorporated in
a matrix material, being very often deposited through various thermal spraying techniques
such as plasma [40,41], cold gas [42–44], high-velocity oxy-fuel [35,45–47], air-fuel [48–50],
spraying, or even by a process combining the last two [51].

Even though the brazing process is conventionally utilized as a joining method, the
present work aimed to assess the feasibility of using this process as a coating technique for
manufacturing WC-Co-NiP functional composite coatings. This technology is insufficiently
studied since similar coatings are mostly manufactured through other methods such as
electrodeposition, thermal spraying [52–54], or electro-spark deposition [55]. The present
research aimed to be an extension of a previous study, in the direction of wear resistance
assessment for WC-Co-NiP functional coatings, with earlier results being reported in regard
to the corrosion behavior [56]. The obtained coatings are planned to be used in plastic
extruded parts, more specifically, in turning screws and barrels. Corroborating information
concerning microstructure, phase composition, wear, and interacting bodies’ analysis,
this work presents a comprehensive view on the tribological behavior of vacuum-brazed
WC-Co-NiP coatings.

2. Materials and Methods
2.1. Materials and Manufacturing

Manufacturing the currently employed polymer-bonded hardfacing tapes involved
mixing 75 wt.% WC-Co, (recycled cermet powder comprised of 7.5 wt.% Co, 5.7 wt.% C, and
W, as balance) with 25 wt.% NiP (brazing filler metal powder consisting of'11 wt.% P, max.
0.06 wt.% C, and Ni as balance); both materials are produced by the company Höganäs AB,
Höganäs, Sweden. An additional 2 wt.% water-based, non-toxic fugitive organic binder
was added and mixed together until the adhesive fibrillated and anchored the powder
particles, allowing further processing steps. The mixture was subsequently rolled with a
DRM 150 RE, Durston, UK, rolling mill to a predetermined thickness, forming a flexible
cloth. The flexible cloth was laid on a 16MnCr5 hardening steel used as substrate due to
its large availability and importance as structural material. The high-temperature vacuum
brazing process was carried out in a cold-wall vertical vacuum furnace HITERM 80 200,
HITEC Materials, Karlsruhe, Germany, at a stable pressure of around 3.0 × 10−4 mbar and
a brazing temperature of 1000 ◦C, for a soaking time of 30 min. The detailed procedure of
producing hardfacings with a similar chemical composition was presented in a different
study [57].

2.2. Characterisation

The scanning electron microscope (SEM, Philips XL, 30, Eindhoven, The Netherlands)
micrograph shown in Figure 1 presents the structure of the flexible tape comprised of
WC-Co powder with an irregular shape of approximately 100 µm NiP spheroidal alloy
powder bound together by the organic adhesive fibrils. The micrographs were acquired
with the SEM at a 10 mm working distance, at a cathode voltage of 25 kV, while the
chemical composition was assessed using the energy dispersive X-ray spectroscope (EDAX
AMETEK, Mahwah, NJ, USA).
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Figure 1. SE micrograph of WC-Co-NiP tape.

The phase composition of the WC-Co-NiP composite coatings was analyzed using an
X’Pert r-Ray diffractometer, Philips, Eindhoven, The Netherlands. The measurements were
performed in the reflection mode, with a CuKα cathode as radiation source, at 40 kV and
40 mA, an angular resolution of 0.005◦ 2θ, and a scan rate of 0.01◦ 2θ min−1.

Sliding friction and wear investigations of the WC-Co-NiP composite coatings as well
as of 16MnCr5 steel used as substrate (reference sample) were performed with a CSM
Instruments Tribometer, Needham Heights, MA, USA, under a non-conformal ball-on-disk
arrangement, shown in Figure 2, according to DIN 50,324, with the parameters described
in Table 1. The stop condition of 100,000 laps was selected to ensure that the coatings reach
a steady state, ensuring that the coefficient of friction would not present fluctuations. The
selected wear parameters are also typical for dry sliding pin-on-disk testing [58].
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Table 1. Pin-on-disk test parameters.

Static Counterpart Radius (mm) Linear Speed
(cm s−1)

Normal Load
(N) Laps Total Distance

(m)
Test Duration

(s)

WC-Co ball 3 15 10 100,000 1890 12,600
100Cr6 ball 3 15 10 100,000 1890 12,600

The wear tracks and the worn caps of the counter bodies were analyzed with a VK-
X260K confocal laser and a VHX-600 digital microscope, both from the company Keyence,
Osaka, Japan.

3. Results and Discussions

The morphology and microstructure of the coating and coating–substrate interface
are illustrated in the BSE cross-section micrographs in Figure 3. The high-temperature
vacuum-brazed coatings displayed a dense structure, with uniform distribution of the
cermet particles. One can observe that the molten NiP self-fluxing alloy infiltrated between
the WC-Co particles, cementing them together, and, at the same time, bonding the entire
system with the metallic substrate. In Figure 3b,c it can be also seen that the chosen
brazing temperature provided a sufficient time for the brazing filler alloy to melt, gaining
the necessary fluidity to infiltrate and fill the hollow spaces between the WC-Co. The
maximum temperature at which the materials were exposed during the brazing process
was insufficient to melt the tungsten carbide. Nevertheless, diffusion from the metallic
matrix towards the cemented WC and substrate and a dissolution of Co into the matrix
was observed.
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As indicated in the X-ray diffractogram (Figure 4) fitted according to the Rietvield
analysis, the currently investigated WC-Co-NiP coatings were comprised mainly of 51 wt.%
WC, 38 wt.% Ni3P, 7 wt.% Ni17W,3 and 4 wt.% Co2W4C. Considering that the Co2W4C
η-phase is generally structured in small grains, Fischer demonstrated that a low Co content
will reflect in a higher resistance of the material against wear [33], although previous
research showed that the Co2W4C ternary η-phase is a brittle structure [59–61]. Due to the
relatively low process temperature (1000 ◦C), compared to the decomposition temperature
of tungsten carbide ('2850 ◦C) and the lack of oxidizing elements, no decarburization of
WC (normally resulting in the formation of highly brittle W2C or W3C phase) was observed.
Moreover, no thermal decomposition of WC during the deposition process, in comparison
to HVOF technology, was achieved [62].

Tribological characterization offers important information regarding friction, wear, and
lubrication of materials under defined conditions. The wear of WC–Co-based composite
coatings is generally considered to be a function of the WC particle size, WC content, and
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bonding strength of the WC particle with the metallic matrix. The areas of the worn track
cross-section and worn cap diameter, determined by microscopic measurements, were used
to calculate the specific wear applying the Archard Equation [63]. The rotating specimens’
worn volumes Wv (mm3) were calculated as:

Wv = 2πr× h
6× s

(
3·h2 + 4× s2

)
(1)

where h is the average depth (µm) and s is the average width (µm) of the circular segment.
Accordingly, the volumetric wear rate k is defined as:

k =
Wv

FN ·s
(2)

where the wear volume Wv (mm3) is divided by the normal load FN (N) and sliding distance
s (m), usually expressed in mm3 N−1 m−1.
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Prior to the pin-on-disk investigations performed with the parameters presented in
Table 1, all samples were ground with metallographic paper to remove potential oxides and
to ensure as close as possible a Ra 0.03 surface roughness. Before the tests, the samples were
ultrasonically cleaned in acetone to remove fine particle contaminants and/or lubricants.
The coefficient of friction (COF, often symbolized µ) was monitored and registered during
the entire testing period and can be observed in Figure 5, with x axis specifying the
registered time, the distance, and the number of covered laps, and the y axis, the value of µ.

The COF value for both types of samples (WC-Co-NiP and 16MnCr5) observed shortly
after starting the investigation had a low value. However, it quickly increased, up to ap-
proximately 0.55 in the case of the substrate material and around 0.75 for the coated sample.
The abrupt increase of COF was attributed to the increase in contact area between the
sample and the counterbody, due to the surface roughness modification and the asperities
on the sample surface. Simultaneous with the completion of the first couple of laps, a
decrease was observed; however, this event lasted only an extremely short period. During
the next ≈1000 laps, the coefficient of friction remained relatively stable for both samples.
After an additional ≈500 laps, the WC-Co-NiP coating showed an increase in friction, up
to the maximal coefficient of around 0.9, due to formation of wear particles locked between
the sliding surfaces. In the same region, the COF for the 16MnCr5 reached the mean value
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of 0.6 and entered the steady state, which lasted until the end of the test. After the short
rise in the friction value, the coating underwent a considerable decrease in COF, which
subsequently stabilized at around 0.70. This reduction in frictional force was attributed to
the gradual removal of asperities from the hard surface by the softer static partner. Wear
particles could not, therefore, anchor anymore due to the polished surface. The numerical
values of the minimum, maximum, and mean COF are given in Table 2.
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Table 2. Coefficients of friction and wear rates for the POD tests vs. 100Cr6 static partner.

Sample COF Min. COF Max. COF Mean Wear Rate (mm3 N−1 m−1)

16MnCr5 0.17 0.70 0.60 9.1 × 10−2

WC-Co-NiP 0.16 0.95 0.77 5.4 × 10−4

The wear rates assessed after measuring the depth and width of the tracks left behind
by the WC-Co static partner were in good agreement with the materials’ hardness value of
1010 HV10. The coating cross-section hardness values ranged from a minimum of 647 HV1
for the metallic matrix up to a maximum of 1132 HV1 of the cermet particles, respectively.
The wear tracks on 16MnCr5 substrate and WC-Co-NiP functional coating after almost
2000 m and 10 N load are presented in Figure 6.
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The considerably wider and deeper worn track found on the surface of the 16MnCr5
base metal concluded in numerical values for the wear rate of ≈ 9.1 × 10−2 mm3 N 1 m−1,
compared to only ≈ 5.4 × 10−4 mm3 N 1 m−1 in the case of the composite hardfacing.
Digital micrographs of the coated surface (Figure 6) display areas where the pull-out caused
by friction welding (adhesion) between the coating material and the relatively soft static
partner occurred. The presence of adhesion is also denoted by the frequent fluctuations of
COF during the second steady-state region. Furthermore, the formation of an unstable iron
oxide film and galling caused additional friction and adhesion between the static partner
and the sliding WC-Co-NiP specimen, as presented in Figure 7.
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In the case of sliding arrangements involving 100Cr6 against coating, soft asperities
from the two surfaces in contact (metallic matrix for WC-Co-NiP coating) adhered strongly
to each another, resulting in junctions and material transfer. Subsequently, the auto-
lubricating tribo-layer was unstable and repetitively destroyed, the reason for the high
coefficient of friction for the WC-Co-NiP to 100Cr6 combination. The fine plugging out
of materials and subsequent ploughing led to the formation of grooves. The mechanism
of groove formation involved ploughing of the soft surface by the hard WC particles [14].
Even though the wear track for the coated sample was relatively wide, it lacked depth and,
thus, it was only superficial. This feature was attributed to the fact that material removal
took place mostly at the softer 100Cr6 ball. The SEM micrograph and EDX spectrum of
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WC-Co-NiP coating against 100Cr6 static partner confirmed the previous affirmations,
displaying in Figure 8 the presence of iron oxide scales onto the surface of the wear track.
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100Cr6.

Moreover, the 100Cr6 static partner wear rate concluded in numerical values of around
5.3 × 10−6 mm3 N−1 m−1 against 16MnCr5 and a significantly higher value of approxi-
mately 2.4 × 10−5 mm3 N−1 m−1 against WC-Co-NiP. The substantial difference is clearly
noticeable in the digital micrographs corresponding to the worn caps from the 100Cr6 static
partner illustrated in Figure 9.
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In the case of dry sliding against the hard WC-Co-NiP counterface, the specific wear
coefficient of the softer 100Cr6 steel was relatively high. In the case of couplings between
similar hard materials, the wear coefficient was expected to be lower. Therefore, by a proper
selection of a tribological pair taking into account parameters such as elastic modulus,
thermal expansion coefficient, stress discontinuities, or crystal structure, it was possible to
achieve lower wear rates [3].

Because friction is not merely a material property but a system response, tribological
POD investigations were also performed against a WC-Co ball, maintaining the rest of
the testing parameters identically, as in the previous case. Accordingly, the coefficient of
friction was once more monitored and registered during the entire testing period and can
be observed in Figure 10, with the x axis specifying the registered time, the distance, and
the number of covered laps, and on the y axis, the value of µ.

The friction development followed a chronological evolution, with a strong influence
on the frictional behavior. Basically, both tested systems started with a run-in stage followed
by a steady-state stage, which the WC-Co-NiP coating maintained until the end of the test,
and ended in breakdown in the case of the unprotected 16MnCr5 base metal.
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The lowest value for both types of samples coincided with the start of the investigation.
However, it quickly changed when the systems entered kinetic friction, increasing up to
approximately 0.55 for both materials. Concomitant with the completion of the first couple
of laps, a decrease was observed. This phenomenon lasting only a very short period was due
to a reduction in surface roughness, being more visible for the substrate material because
of the lower bulk hardness (substrate hardness of approximately 550 HV1). Subsequently,
after ≈1500 laps, the coefficient of friction rose again for the base metal during the next
≈50000 laps. Contrarily, after ≈1000 laps, the WC-Co-NiP coating showed a lessening in
friction, which reached steady state after ≈40,000 lap and remained generally stable, with a
coefficient of around 0.28 until the end of the test. Friction reached quickly a steady-state
value because the coating surface was easily polished by the hard, static partner (WC-Co
ball) and developed a tribo-layer. When the COF for the uncoated 16MnCr5 sample reached
approximately 0.46 (after ≈1000 laps), it also entered steady state. This lasted up until the
surface degraded and the friction became highly unstable, a behavior that is accordant with
severe wear. In the meantime, the hardfacing showed only a few deviations, attributed to
sporadic pull out of the metallic matrix caused by adhesion (friction welding) [64]. The
transferred material from the softer 100Cr6 ball to the hard coating surface hindered the
self-lubricating nature of the WC-Co-NiP overlay, normally provided by the Ni3P phase.
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counterpart.

Decisively, a maximal friction coefficient of 0.76 was measured during the ball-on-disk
testing of the 16MnCr5 steel substrate, with a mean of 0.50. Significantly lower values were
determined in the case of the WC-Co-NiP functional coating, registering a maximum of
0.57 with an average of 0.33, as displayed in Table 3.

Table 3. Coefficients of friction and wear rates for the POD tests vs. WC-Co static partner.

Sample COF Min. COF Max. COF Mean Wear Rate (mm3 N−1 m−1)

16MnCr5 0.18 0.76 0.50 1.03 × 10−3

WC-Co-NiP 0.21 0.57 0.33 1.55 × 10−4
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The wear rates assessed after measuring the depth and width of the tracks left behind
by the WC-Co static partner were in good agreement with the results of the previous
investigations. One can clearly notice the difference in sliding wear behavior between
16MnCr5 substrate and WC-Co-NiP functional coating in the micrographs of Figure 11.

The considerably wider and deeper worn section found on the 16MnCr5 metallic
surface concluded in numerical values for the wear rate of 1.0 × 10−3 mm3 N−1 m−1, com-
pared to only 1.5× 10−4 mm3 N−1 m−1 in the case of the WC-Co-NiP composite hardfacing.
Furthermore, the formation of an unstable iron oxide film and galling, causing additional
friction and adhesion between the static partner and the sliding (rotating) 16MnCr5 case
hardening steel specimen, can be observed in Figure 12a. The digital micrograph from
Figure 12b of the coated surface wear track displays sporadic areas where the pull-out
occurred.
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The SEM micrograph and EDX spectrum corresponding to the wear track of 16MnCr5
steel against the WC-Co static partner confirmed the formation of an unstable iron oxide
layer. Additionally, the transferred material comprised of WC particles from the WC-Co
ball was found embedded in the wear track of the 16MnCr5 steel sample, as illustrated by
Figure 13.

As already mentioned, wear caused by severe adhesion between the sliding surfaces
in the form of galling was observed on uncoated samples in both testing conditions, specifi-
cally versus 100Cr6 as well as WC-Co static partners. Galling is a type of surface damage
manifesting between sliding objects, distinguished by typically localized macroscopic
roughening, and formation of protrusions above the initial surface; it frequently involves
plastic deformation and/or material transfer [65]. It occurs under transverse motion and
especially if the tribo-system is not or is poorly lubricated. According to J. R. Davis [66], the
propensity of a material to gall is affected by its ductility; thus, harder materials are more
impervious to galling. Correspondingly, plastic deformation behavior plays a key role in
severe adhesive wear. Materials with a face-centered cubic lattice are exceedingly prone
to galling due to effortless cross slip of dislocations. Alloys or elements that crystalize
in systems with lower stacking-fault energy (i.e., body-centered cubic structure) are less
susceptible to galling. To an even greater degree, hexagonal, closely packed materials are
extremely resistant to galling [66]. The damage on the uncoated samples showed char-
acteristic galling patterns, with an uneven surface, caused by severe plastic deformation.
Moreover, large volumes of material are adhesively transferred, indicating the perpetual de-
struction of the surface oxide tribo-layer. This was more easily noticeable for the 16MnCr5
versus WC-Co, where, in the vicinity of the worn caps, transfer material is present. On the
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contrary, due to the high amount of WC with an HCP lattice and Ni3P crystallized in the
body-centered tetragonal (BCT) system, the coated samples showed little to no signs of
severe adhesive degradation. Contrasting other types of wear, galling happens rapidly and
is typically not a progressive process. Accordingly, it is safe to assume that the WC-Co-NiP
coatings will not suffer wear by galling even under prolonged exposure to the testing
conditions employed in the current tribological investigations.
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Figure 13. BSE micrograph (a) and corresponding EDX spectrum (b) from the wear track of 16MnCr5
vs. WC-Co.

Furthermore, the WC-Co static partner wear rate concluded in numerical values
of 6.0 × 10−7 mm3 N 1 m−1 against 16MnCr5 and a considerably lower value of only
3.2 × 10−8 mm3 N 1 m−1 against WC-Co-NiP. This significant difference is clearly notice-
able in the digital micrographs corresponding to the worn caps from the WC-Co static
partner displayed in Figure 14.
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The main mechanisms that govern the surface degradation in the currently inves-
tigated sliding systems were adhesion and tribo-oxidation. If the tribological system
comprises third bodies, namely, hard particles (much harder than the two surfaces in
contact), abrasive wear might also occur [67]. This was found to be the case of the coupling
between 16MnCr5 and WC-Co, which led to the formation of abradable WC particles. Thus,
the wear mechanism changed from an adhesive and tribo-oxidative one to a process that
also encompassed abrasion.

In the case of dry sliding against the 16MnCr5 steel counterface, the specific wear
coefficient, of the WC-Co static partner was quite low. In the case of couplings with the
similarly hard WC-Co-NiP material, it was even lower. Therefore, as already explained, the
optimal selection of a tribological pair led to very low wear rates for both tribo-partners.

4. Conclusions

Successfully brazed WC-Co-NiP samples deposited on a 16MnCr5 structural steel
substrate were obtained at 1000 ◦C in a vacuum furnace at a pressure atmosphere of
3.0 × 10−4 mbar. The microstructural characterization showed a dense structure with a
uniform cermet particle distribution bonded together with the metallic substrate. The
diffractometric analysis combined with Rietvield calculations revealed that the phases were
51 wt.% WC, 38 wt.% Ni3P, 7 wt.% Ni17W3, and 4 wt.% of the brittle Co2W4C η-structure.
Due to the relatively low process temperature, no decarburization of the cermet phase
could be observed.

Non-conformal pin-on-disk coefficient measurements against steel and tungsten car-
bide counter bodies revealed phenomena of wear due to particles locked between the
sliding surface, gradual removal of asperities from the surface, or removal of the unstable
auto-lubricating tribo-layer. Nevertheless, no evident correlation between the coefficient of
friction and the wear rate could be established. The wear rate calculation using the Archard
equation unveiled that, against the 100Cr6 ball, the WC-Co-NiP showed a higher wear rate
than the steel substrate. This evidences that the selection of a proper tribological pair needs
to be made considering parameters such as the thermal expansion, stress discontinuities, or
crystal structure.

Looking at the tests against the much harder WC-Co counter body, a much lower wear
rate of the developed WC-Co-NiP coating was seen. WC particles transferred on the WC-
Co-NiP were found embedded on the wear track. Wear caused by severe adhesion between
the sliding surfaces in the form of galling, causing plastic deformation, was observed on
both samples’ surfaces. A much smaller worn cap area of the WC-Co counter body on the
WC-Co-NiP was as well detected in comparison to the 16MnCr5 sample. Due to the similar
material properties in the sliding tests between the WC-Co static partner and the 100Cr6
substrate that did not comprise third bodies, abrasive wear also occurred. The promising
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results conclude that the coatings can be potentially employed as wear-resistant materials
for plastic extruded parts such as turning screws and barrels.
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