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Abstract: Optimization of the ionomer materials in catalyst layers (CLs) which sometimes is over-
looked has been equally crucial as selection of the membranes in membrane electrode assembly
(MEA) for achieving a superior performance in proton exchange membrane fuel cells (PEMFCs).
Four combinations of the MEAs composed of short-side-chain (SSC) and long-side-chain (LSC)
perfluorosulfonic acid (PFSA) polymers as membrane and ionomer materials have been prepared
and tested under various temperatures and humidity conditions, aiming to investigate the effects
of different side chain polymer in membranes and CLs on fuel cell performance. It is discovered
that SSC PFSA polymer used as membrane and ionomer in CL yields better fuel cell performance
than LSC PFSA polymer, especially at high temperature and low RH conditions. The MEA with the
SSC PFSA employed both as a membrane and as an ionomer in cathode CL demonstrates the best
cell performance amongst the investigated MEAs. Furthermore, various electrochemical diagnoses
have been applied to fundamentally understand the contributions of the different resistances to the
overall cell performance. It is illustrated that the charge transfer resistance (Rct) made the greatest
contribution to the overall cell resistance and then membrane resistance (Rm), implying that the use
of the advanced ionomer in CL could lead to more noticeable improvement in cell performance than
only the substitution as the membrane.

Keywords: ionomer; long side chain; membrane; perfluorosulfonic acid; PEM fuel cell; short
side chain

1. Introduction

Proton exchange membrane fuel cells (PEMFCs) have been widely considered to be
a critical conversion technology in a hydrogen-based energy infrastructure due to their
high theoretical energy efficiency and zero-emission [1,2]. The proton exchange membrane
(PEM) functioning as a proton conductor as well as a separator for electrodes and reactant
gas was recognized as one of the most expensive stack component and a key component
to determine the cell performance [3]. On the other hand, the microstructure of electrode
has a profound effect on the utilization of platinum and its durability [4]. Particularly, the
ionomer in the catalyst layer can affect the degree of ionic contact, the connectivity of the
ionic conduction path, the proton conductivity, the gas diffusivity, etc. Therefore, the proton
exchange polymers employed in PEMFC as membrane and as binder/proton conductor in
the catalyst layer (CLs) are equally crucial to the entire cost and performance of a PEMFC.

Perfluorosulfonic acid (PFSA) polymers have been widely used as PEMs and as
ionomers in CLs. Currently, the premiere commercial PFSA used in PEMFCs is Nafion®,
a long-side-chain (LSC) ionomer, produced previously by DuPont and now Chemours,
which is a brand name for a sulfonated tetrafluoroethylene based fluoropolymer discovered
in the late 1960s by Walther Grot of DuPont [5]. The Nafion polymer structure consists of a
hydrophobic polytetrafluoroethylene backbone and perfluorovinyl ether side chains termi-
nated by a triflic acid group (-CF2SO3H) [6]. Although Nafion™ possesses many desirable
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attributes, it has the recognized limitation of insufficient proton conductivity under low
humidity and a limited range of operating temperature (<90 ◦C). Furthermore, the proton
conductivity depends on the ratio and phase separation of hydrophobic backbone and hy-
drophilic side chains [7]. The short-side-chain (SSC) PFSA polymer with a similar structure
as Nafion, but bearing a shorter -OCF2CF2SO3H pendant chain, has been considered as
a promising candidate for PEMFC applications due to the higher crystallinity, the higher
thermal transition temperature, and the higher ion exchange capacity (IEC) compared to
LSC ionomer [8]. SSC polymer was originally synthesized by Dow Chemical [9] and its
superior fuel cell performance was firstly demonstrated by Ballard Power Systems in the
mid-1980s [10]. In 2010, Solvay-Solexis developed a simpler approach to synthesize SSC
PFSA polymers under the trademark “Aquivion®”, reporting higher IEC value, higher
water uptake, similar mechanical properties, higher glass transition temperature, and
comparable price with respect to Nafion [11].

A number of research reports have demonstrated the distinct advantage of SSC PFSA
ionomers in fuel cells [12–22]. It was reported that the SSC PFSA membranes exhibited
higher fuel cell performance than Nafion under low humidity as well as higher power den-
sity, better fuel cell reliability, and settling time upon start-up in self-humidifying PEMFCs
under the optimal operating conditions [14,18]. With the incorporation of the SSC PFSA
ionomer only in CLs, an increase in cell voltage was observed compared to the cell with
Nafion as ionomer [12,13,19–21]. Arico’s group [15] compared the fuel cell performance
between Aquivion® E79-03S SSC (130 ◦C) and LSC Nafion® PFSA membranes as base-
lines at a high temperature and found the Aquivion-based membrane electrode assembly
(MEA) showed better performance due to their intrinsic properties of SSC such as the
larger crystallinity, higher glass transition temperature, and higher IEC. Shahgaldi et al. [7]
experimentally investigated the impact of different catalyst-SSC ionomer ratios and cat-
alyst loadings on PEMFC performance and durability with an accelerated stress test.
Ren et al. [21] reported that the electrode composed of SSC ionomer has better proton
conductivity but higher mass transport resistance than Nafion, which is still superior in the
ultimate performance. Although considerable efforts have been devoted to investigating
SSC PFSA polymer either as a membrane or as a binder in CLs, reporting the comparative
studies on the combination of SSC and LSC PFSA as a membrane and as an ionomer in
CLs to achieve the best PEMFC performance are not-so-well documented. More recently,
Talukdar’s group [17] compared performance and durability between LSC and SSC PFSA
polymers as a membrane and as an ionomer-additive in the electrodes, whereas they were
focused on the short-term and long-term durability test. In their short-term test, they
found SSC has better performance but higher degradation rate than LSC. In the long-term
test, the cell durability was improved by increasing the membrane thickness with double
SSC membranes. Furthermore, it is commonly agreed that the SSC polymer as either a
membrane or ionomer in CL can usually deliver higher performance than the LSC polymer
does. The question of whether the SSC membrane or the SSC ionomer impacts more on
fuel cell performance than the LSC polymer has not been addressed.

In our present work, a comprehensive study is carried out to compare the fuel cell
performance between the MEAs with a combination of both SSC and LSC polymers in the
membranes as well as the ionomers in CL under various operation conditions in order
to understand the correlations between the MEA composition and fuel cell performance.
The complicated influence of polymers with different side chain lengths on PEMFC perfor-
mance was addressed by means of in-situ EIS and the analysis of the relative contribution
of individual resistance, including membrane resistance, charge transfer resistance and
mass transfer resistance, to the overall resistance generated during fuel cell testing. The
understanding of the role of each component in MEAs from this work is essential to opti-
mize and improve fuel cell performance and could provide deep insight regarding polymer
material selection and MEA design for PEMFC applications.
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2. Materials and Methods
2.1. Materials

Nafion® NR211 membrane (NRE211, 25 µm LSC PFSA, DuPont, DE, USA) and
Aquivion® E79-03S membrane (AQ(E79), 30 µm, SSC PFSA, Solvay-Solexis) were used as-
received. The Nafion® LSC ionomer dispersion (D-520, 5 wt% solution, EW1100, DuPont)
and the Aquivion® SSC ionomer dispersion (D83-15C, 15 wt% solution, EW 830, Solvay
Solexis) were used as the ionomers in CLs.

2.2. Fabrication of Membrane-Electrode-Assemblies (MEAs)

Catalyst inks were prepared by dispersing 46 wt% Pt/C (Tanaka Kikinzoku Kogyo,
Tokyo, Japan) with ionomer into the mix solvent of 1:1 methanol/water. The solid content
of the inks was ~1 wt%. The Nafion® D-520 ionomer content in the cathode CL was 30 wt%
while the Aquivion® D83-15C ionomer content in the CL was 20 wt%. The anode CL for all
MEAs contained 30 wt% Nafion® D-520 ionomer. An automated spray coater (EFD Ultra
TT series) was employed to fabricate the anode CL (0.2 mg Pt cm−2) and the cathode CL
(0.4 mg Pt cm−2). The active area of CCMs is 25 cm2. Detailed fabrication procedures have
been reported [14,23]. The investigated MEAs are listed in Table 1.

Table 1. List of the investigated MEAs.

Name of MEAs * Membrane
Cathode CL

Ionomer Content

NRE211/NF30 Nafion® NR211 Nafion® D-520 30%

NRE211/AQ20 Nafion® NR211 Aquivion® D83-15C 20%

AQ(E79)/NF30 Aquivion® E79-03S Nafion® D-520 30%

AQ(E79)/AQ20 Aquivion® E79-03S Aquivion® D83-15C 20%

* 30 wt% Nafion® D-520 ionomer in all anode CLs.

2.3. MEAs and Single Cells

CCMs were inserted between two 24BC-type gas diffusion layers (SGL Group) to fabri-
cate MEAs (see Figure S1) and assembled into single cells (Scribner Associates Inc. Southern
Pines, NC, US). The uniformity of the cell compression was validated by the pressure-
sensitive films (Pressurex-Super Low, Sensor Products Inc. Madison, WI, USA). Single cells
were evaluated in a fuel cell test station (100 W, Scribner 850C, Scribner Associates Inc.
Southern Pines, NC, USA).

2.4. Fuel Cell Testing Protocol

The MEAs were conditioned at 1.0 A cm−2, 100% relative humidity (RH), 80 ◦C for at
least 10 h. Air and H2 (purity 99.999%) were used as the cathode and anode reactants with
5 standard liter per minute (SLPM) and 2 SLPM of flow rate, respectively. The humidifiers
are dual sparger-type with 360 W heaters per bottle. The membrane resistance (RMembr.)
was measured by current interrupt method.

Electrochemical surface area (ECSA) was measured by cyclic voltammetry (CV) using
a potentiostat (1287A, Solartron Analytical). The cathode were purged with humidified N2
(0.5 SLPM) for 30 min. The N2 flow was then set to zero and H2 flow rate keeps 0.5 SLPM,
and voltammograms were then recorded with a scan rate of 50 mV·s−1 between 0.04 V and
0.90 V versus the anode. The final cycle of a set of 10 cycles was used for data analysis.
The ECSAs of the MEAs were calculated from the integrated charge corresponding to the
Pt-H desorption and adsorption peaks. The double-layer capacitances of the CLs were also
obtained from CV.

The H2 cross-over current density was measured by linear sweep voltammetry (LSV)
with a scan rate of 2 mV s−1 between 0.1 V and 0.6 V versus the anode under 0.5/0.5 SLPM
H2/N2 (anode/cathode) gas flow rates.
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The ionic resistance in the CLs was evaluated by ex-situ EIS using a Solartron 1287A
potentiostat and a 1260 frequency response analyzer. The testing was conducted with the
flow rates of 0.5 SLPM/0.5 SLPM for H2 and N2, respectively, at 100% RH, and 80 ◦C. The
amplitude of the sinusoidal current signal for the AC impedance was set at 10 mV over a
frequency range of 20 kHz to 0.1 Hz.

The ORR kinetics of these CLs were determined by acquiring H2/O2 polarization
curves at gas flow rates of 2 SLPM H2 and 5 SLPM O2 without back pressure. The current
load was gradually decreased in controlled steps from 1 A cm−2 to 0.008 A cm−2. Each
point was held for 10 min. The cell voltage at each current was obtained by averaging the
data recorded in the last 2 min. The iR-corrected cell potentials were plotted against the log
of compensated current density, and the Tafel slope was extracted.

The cell performances of these MEAs were evaluated at 80 ◦C and 95 ◦C under different
RHs (100%, 70%, 50%, and 30%) for both anode and cathode without back pressure. The
H2/air polarization curves were obtained galvanostatically. Each point was held for 10 min.
The cell potential was obtained by averaging the data from the last 2 min.

The iR correction to voltages were calculated by the Equation (1):

EiR correction = EMeasured + iRMembr. (1)

where EiR correction and EMeasured represent iR correction cell voltage and the cell voltage
measured in H2/air polarization curve, respectively. i is the current and RMembr. is the
membrane resistance collected by the current interrupt method.

In-situ EIS was conducted during polarization curve collections (under constant direct
current (DC)) by imposing an amplitude alternating current (AC) signal to the fuel cell
via a load bank. The perturbation amplitude for the AC impedance was 5% of the direct
current over a frequency range of 10 kHz to 0.1 Hz. The voltage responses were recorded
and decoupled by a built-in frequency response analyzer (FRA, Scribner 880).

3. Results
3.1. Electrochemical Surface Area (ECSA)

The ECSA of Pt catalyst in the cathode was evaluated by cyclic voltammetry (CV).
Figure 1 shows the CVs of different CLs in MEAs at 80 ◦C and 100% RH. The Nafion®-based
CLs (NRE211/NF30 and AQ(E79)/NF30) exhibit characteristic features of hydrogen adsorp-
tion/desorption and oxide formation/reduction that are similar to the Aquivion®-based
CLs (NRE211/AQ20 and AQ(E79)/AQ20). ECSA data and double layer capacitances (Cdl)
for the selected four MEAs are also presented in Table 2. The ECSA from desorption
peaks (voltage range from 0.11 V to 0.40 V) and Cdl values were close for all the samples,
between 37.5 and 39.6 m2 g−1 and 19.0 and 20.3 mF cm−2, respectively, indicating that
the availabilities and coverage of Pt nanoparticles by the LSC ionomer and SSC ionomer
are similar.

3.2. Hydrogen Crossover Current

Hydrogen crossover currents (iHX) through the MEAs were detected by LSV. The
oxidation current densities at 80 ◦C and 100% RH were found to be less than 1.6 mA cm−2

for all the MEAs (see Table 2). These low crossover currents attributed to less than 2%
of the current density of a fuel cell operating, e.g., 0.8–0.3 V, 0.1–1.8 A cm−2, (see po-
larization curves below), suggesting that the efficiency loss is negligible due to the H2
crossover from anode to cathode in these MEAs. In addition, the crossover currents are
nearly the same for the two SSC membrane-based MEAs (~1.2 mA cm−2), while they
are slightly lower than that of LSC Nafion based MEAs (~1.6 mA cm−2), indicating that
the differences between these MEAs in H2 crossover are dictated only by the membrane,
and thus SSC AQ(E79) has a lower hydrogen crossover than LSC NRE-211. The lower
H2 crossover for SSC AQ(E79) could possibly be elucidated by the free volume theory
from Sodaye and Mohamed et al. [24,25]. SSC AQ(E79) has higher crystallinity, greater
IEC (1.26 vs. 0.9 meq kg−1) and better water uptake than Nafion [11,26], leading to the
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greater volume of the hydrophilic cluster in the hydrated AQ(E79) than that in NRE211, as
a consequence, the less free volume for the hydrogen crossover [27].
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Table 2. Electrochemical performance of the four investigated MEAs measured at 80 ◦C and
100% of RH.

MEAs

Electrochemical
Surface Area ECSA

(Desorption)
(m2 g−1)

Double Layer
Capacitances

Cdl
(mF cm−2)

H2
Crossover
Current

iHX
(mA cm−2)

Proton
Resistance

Rp
(MEA)

(mΩ cm2)

Tafel Slope
(mV dec−1)

NRE211/NF30 38.0 20.3 1.60 99 67

NRE211/AQ20 37.5 19.6 1.58 163 65

AQ (E79)/NF30 39.6 19.0 1.24 109 70

AQ (E79)/AQ20 38.0 20.1 1.20 174 67

3.3. Protonic Resistance in the CL

The proton conductivities of the CLs were measured by EIS at 80 ◦C and 100% RH.
Impedance spectra of four MEA samples under this test condition are presented as Nyquist
plots in Figure 2, respectively. In order to make clear, the spectra are shifted to the origin
by removing the high-frequency resistance from the real axis. The protonic and electronic
resistances inside the CLs were calculated by fitting the experimental data by a transmission
line equivalent circuit [23]. The proton resistance (Rp) values are also summarized in Table 2.

As a result, there are no obvious differences in protonic resistance (or conductivity)
between either Nafion®-electrodes (NF30) or Aquivion®-electrodes (AQ20) due to the
similar coverage of carbon surface with fully hydrated ionomers at 100% RH. However,
in comparison between NF30 based MEAs and AQ20 based MEAs, AQ20 exhibited a
greater proton transport resistance (lower proton conductivity) of the CLs due to their
relatively lower ionomer content, while at the same ionomer loading (30%), AQ30 was
reported to have a lower proton resistance (higher proton conductivity) of the CL in a
previous report [12]. Generally, the ionomer loading in the CLs has a conflict between
the proton conductivity and the porosity for reactant transport (e.g., gas, water) since
overloaded ionomer in the CLs reduces the porosity while inadequate ionomer lowers the
proton conductivity, respectively [7]. Shahgaldi et al. reported that the SSC ionomer is less
sensitive to its loading with the ionomer ratios in the range between 17% and 30% due
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to the high uniformity coverage of Pt nanoparticles [28]. It was reported that 20 wt% of
SSC Aquivion® D83-15C ionomer content in CLs exhibited the best performance under
operating conditions at 95 ◦C and RH values of 30%, 50%, and 70% [12]. Therefore, 20% of
the SSC ionomer loading was selected in this work. In addition, the studies revealed that
the optimal Nafion® loading in the CL was ∼30 wt% [29,30].
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3.4. ORR Kinetics

H2/O2 polarization curves (PLs) of the four MEAs were recorded at 80 ◦C and 100%
RH with excessive gas flow rates to elusive the losses associated with mass transport in the
ORR kinetic range. Figure 3 shows the Tafel plots extracted from PLs using the iR-corrected
electrode potentials (defined as the measured potential plus the iR) against the logarithm
of the H2-crossover compensated current density (defined as the measured current density
plus the iHX). In the kinetic region (E > 0.80 V), the average Tafel slope for the MEAs with
30 wt% of Nafion® (NF30) (~68.5 mv dec−1) were almost the same as the average Tafel
slope of the MEAs with 20 wt% Aquivion® D83-15C (AQ20) (65.5 mv dec−1). This similarity
implied that these four different MEAs demonstrated the similar inherent Pt/C electrode
kinetics towards ORR because the Pt catalyst coverage is uniform with sufficiently hydrated
ionomer at 100% RH [31]. The slightly higher Tafel slope of AQ(E79)/NF30 (70 mVdec−1)
probably can be attributed to the incompatibility of Nafion® ionomer with Aquivion®

membrane [16].
The H2/air polarization curves (PLs) collected at 80 ◦C and various RHs, as well

as the membrane’s ionic resistance (RMembr., predominate contribution to the cell ohmic
resistance), are plotted in Figure 4. Three pieces of NRE211/NF30 were tested and used
to establish the reproducibility of the MEA fabrication and testing procedures and their
average PLs are shown in Figure 4. In the kinetic region (current densities < 0.1 A cm−2), the
cell performances for all MEAs under various operation conditions were close (a difference
in potential of <10 mV at 0.1 A cm−2), which is in agreement with the Tafel slope analysis
shown in Figure 3.
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In-situ EIS could provide some valuable insights into transport processes occurring
in the MEAs. Figure 5 shows the in-situ EIS at 0.05 A cm−2 for the selected MEAs under
various RH. At low current densities (e.g., 0.05 A cm−2), it is assumed that there are
negligible losses associated with the transport of reactant gases to the electrode reactive
sites since the oxygen consumption rate is small. For better comparison, the high-frequency
intercepts are offset to zero. In Figure 5, each spectrum contains one small high-frequency
(HF) capacitive arc and one big capacitive arc (1000–1 Hz). The small HF loop is almost
negligible with respect to the big single semicircle (kinetic loop) [32]. Thus, only the kinetic
loop was analyzed and fitted by a charge transfer resistance (Rct) in parallel with a constant
phase element (CPE). The fitting curves (black solid lines) are shown in Figure 5.
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The difference in Rct for these four MEAs at each operation condition is slight, match-
ing with the trend of PL curves in Figure 4. It implies that the similar ORR kinetics in these
four samples can be associated with a comparable resistance, Rct. Moreover, as the RH
changes from 100% to 30%, the Rct in Figure 5 for all the samples gradually increased from
1.04 ± 0.02 Ω cm2 to 1.37 ± 0.06 Ω cm2, along with the cell voltage drop from 806 ± 3 mV
to 770 ± 6 mV in Figure 4, indicating that the reduced ORR kinetics (cell performance) at
“dry” condition (RH 30%) is associated to the larger resistance, Rct. With decreasing RH, the
Rct increases due to the dehydration of ionomer in both the membrane and catalyst layers,
leading to proton conductivity losses and inferior catalyst-ionomer reactive interphase [16].

3.5. Mass Transfer Losses

By contrast, in the mass transport region (current densities ≥1.0 A cm−2) of the PL
curves shown in Figure 4, the cell performances for the MEAs containing Aquivion®

ionomer (AQ20) were consistently greater than that of MEAs containing Nafion® ionomer
(NF30) and the voltage gap between them becomes even broader when either the current
density increases from 1.0 A/cm2 to 1.8 A/cm2 or RH decreases from 100% to 30%. For
example, comparing between NRE211/NF30 and NRE211/AQ20 at 80 ◦C and 70% RH,
the difference in cell voltage increased from ~30 mV at 1.0 A cm−2 to ~100 mV 1.6 A cm−2.
Furthermore, in comparison to NF30 based MEAs, the performance improvement of AQ20
based MEAs, was more pronounced at low RH.

Figure 6a shows the cell voltage at a current density of 1.0 A cm−2 at 80 ◦C and various
RH. The maximum cell voltage differences between these four samples increased from
46 mV to 118 mV after RH was reduced from 70% to 30%, indicating the advantage of SSC
membrane/ionomer was more prominent under low RH.
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In order to count out the effect of the membrane resistance (RMembr.) on the PLs,
iR-compensated H2/air polarization curves were calculated using RMembr., as shown in
Figure S2. The iR-compensated cell voltages at a current density of 1.0 A cm−2 are displayed
in Figure 6b. After subtracting RMembr., the MEAs containing 20% of SSC AQ ionomer
(AQ20) exhibited higher cell performance than the MEAs containing 30% of LSC Nafion
ionomer (NF30), which is more pronounced under low RH (30%) (Figure 6b). For example,
the difference in cell voltage at 1.0 A cm−2 between AQ (E79)/NF30 and AQ (E79)/AQ20
increased from 35 mV to 55 mV when RH decreased from 70% to 30%, revealing that the
higher performance of AQ20 ionomer based MEAs over NF30 ionomer based MEAs can
partially be attributed to the advantage of SSC ionomer in the catalyst layer.
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Moreover, when comparing the cell voltage with and without iR correction at 1.0 A cm−2

shown in Figure 6, the contribution of SSC membrane to the superior cell performance is
distinguishable, especially at low RH. For example, under conditions of 30% RH, the cell
voltages with iR correction for AQ(E79)/AQ20 and NRE211/AQ20 are almost identical
while the cell voltage without iR correction for AQ(E79)/AQ20 is over 60 mV higher than
that for NRE211/AQ20.

The same trend at high temperature (95 ◦C) was remarkably observed as above:
increasingly higher relative performance for AQ20 based cells as RH was decreased (see
Figure 7). This is more apparent when the RH was <50%. For example, under 30% RH
a potential of 433 mV was generated for AQ(E79)/AQ20 at 1.0 A cm−2 in comparison to
277 mV for NRE211/NF30, representing a 56% increment in power output. Of the four
investigated MEAs under 30% RH, AQ (E79)/AQ20 displayed the highest power density
(0.43 W cm−2, see Figure 7d), followed by NRE211/AQ20 (0.36 W cm−2), and then AQ
(E79)/NF30 (0.31 W cm−2) and NRE211/NF30 (0.30 W cm−2).
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3.6. Cell Resistance

In order to further understand the observed behaviors of these four MEAs at vari-
ous operating conditions, in-situ EIS were obtained for the MEAs at 1.0 A cm−2 shown in
Figure 8. The Nyquist plots of the tested MEAs contains one high-frequency (HF) capacitive
loop, one medium-frequency (MF) capacitive loop, and one low-frequency (LF) capacitive
loop. For comparison, the high-frequency intercepts are offset to zero. The charge trans-
fer resistance (Rct), membrane resistance (Rm), and mass transfer resistance (Rmt) were
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fitted using the equivalent circuit [33] shown in Figure 8, and the experimental section in
supporting materials. The fitting curves (solid line) and fitting results are presented in
Figures 8 and 9, respectively.
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3.6.1. Membrane Resistance

Membrane resistance primarily contributes to the cell ohmic resistance. The trend
for Rm from EIS fitting in Figure 9a is well-matched to the membrane resistance (Rmembr.)
collected by the current interrupt technique in Figure 4: SSC AQ(E79) membrane-based cells
yielded lower membrane resistances (Rmembr./Rm) and higher conductivities compared to
LSC NRE-211membrane-based cells under all fuel cell operating conditions. Among the
four samples, AQ(E79)/AQ20 exhibits a minimum membrane resistance (Rmembr./Rm) and
a corresponding maximum conductivity (See Table 3). This trend is more significant when
RH is reduced, which is linked to the inherent properties of the SSC polymer such as high
IEC, high crystallinity and high water content.
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Table 3. Membrane resistances and relative conductivities calculated from both RMembr. and in-situ
EIS at 1.0 A cm−2 at 80 ◦C under 70% RH vs. 30% RH.

MEAs NRE-211/NF30 NRE-211/AQ20 AQ (E79)/NF30 AQ (E79)/AQ20

80 ◦C, 70% RH

RMembr. (mΩ) 3.27 ± 0.03 3.15 ± 0.05 3.47 ± 0.02 2.94 ± 0.02

σR
(mS cm−1) 34.25 ± 0.31 35.56 ± 0.56 38.04 ± 0.22 44.90 ± 0.31

Rm (mΩ) 2.42 2.48 2.11 1.95

σRm
(mS cm−1) 46.28 45.16 62.56 67.69

80 ◦C, 30% RH

RMembr. (mΩ) 10.14 ± 0.07 8.62 ± 0.03 7.73 ± 0.02 5.90 ± 0.02

σR
(mS cm−1) 11.05 ± 0.07 12.99 ± 0.05 17.08 ± 0.05 22.37 ± 0.07

Rm (mΩ) 5.86 5.76 4.00 3.68

σRm
(mS cm−1) 19.11 19.44 33.00 35.87
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3.6.2. Charge Transfer Resistance

The effective charge transfer resistance (Rct) represents in the medium frequency do-
main in EIS associated with the ORR kinetics of the CL. AQ20 ionomer in CLs presents
lower Rct than NF30 ionomer under both 70% RH and 30% RH that led to the superior
performance of the SSC AQ ionomer in CLs over that of the LSC Nafion ionomer. The
improvement in the cell performance for the MEAs with SSC ionomer in CLs could be
on account of better ionomer coverage in the CLs, superior proton conductivity, less
equivalent weight, and greater porosity [7]. It is worth mentioning that AQ(E79)/AQ20
shows the best performance amongst the four samples, while the Rct of this sample is
still slightly higher than NRE211/AQ20, indicating that the outstanding performance of
AQ(E79)/AQ20 benefits from the advantages of better compatibility of SSC membranes and
SSC ionomer in CLs. We hypothesized that the marginally greater Rct for AQ(E79)/AQ20
than NRE211/AQ20 (0.323 Ω cm2 vs. 0.279 Ω cm2 under 30% RH) is due to some possible
deleterious effects from the combination of the high water content of the Aquivion® mem-
brane and ionomer: (i) dilution of the local proton concentration associated with swollen
membrane and ionomer, (ii) decline of the oxygen solubility in the ionomer because of the
high hydrophilicity of SSC ionomer, and (iii) relative high interfacial resistance between
membrane and CL due to considerable SSC membrane dimensional change under fuel cell
operation conditions.

3.6.3. Mass Transfer Resistance

Mass transfer resistance (Rmt) displays in the low frequency domain in EIS that
mainly responses for the mass transfer resistance of the gas phase within the backing
and the CL. The Rmt trend for the different MEA combinations is AQ(E79)/AQ20 <
AQ(E79)/NF30 < NRE211/AQ20 < NRE211/NF30 under relative high humidity (70% RH)
while AQ(E79)/AQ20 < NRE211/AQ20 < AQ(E79)/NF30 < NRE211/NF30 under dry con-
dition (30% RH). It suggested that AQ(E79)/AQ20 has less mass transport problems, due
to greater water management. The configuration of SSC membrane and SSC ionomer in CL
has adequate water retention capability to prevent flooding issues under fully humidified
conditions as well as effective water trapping in both membrane and CLs (excellent water
uptake) to avoid MEA dehydration under dry conditions. As a result, either SSC membrane
or SSC ionomer in CLs could reduce mass transport diffusion compared to its alternative
LSC Nafion [34,35].

3.6.4. Overall Resistance and Individual Contribution

The overall cell resistance is the sum of the membrane resistance (Rm), the charge
resistance (Rct), and the mass transfer (Rmt). The Rm is mainly contributed to the cell
ohmic resistance, the Rct represents the charge transfer resistance (kinetic resistance)
and the Rmt is more related to gas transport and water management. The individual
resistance (∆Ri) as well as the overall resistances (Σ∆Ri) of each MEA show a clear
increase as RH decreased from 70% to 30%. The overall resistance ranking at 80 ◦C
is AQ(E79)/AQ20 ≈ NRE211/AQ20 < AQ(E79)/NF30 ≈ NRE211/NF30 under wet condi-
tion (100%, 70%, and 50% RH, while AQ(E79)/AQ20 < NRE211/AQ20 < NRE211/NF30
≈ AQ(E79)/NF30 under dry condition (30% RH), which could explain the performance
difference of PLs in Figure 4.

Studying the relative contribution of each resistance to the overall resistance increase
could further elucidate the performance differences between these MEAs and provide
some valuable insights for MEA design. Each component of this breakdown can be defined
as ∆Ri/Σ∆Ri, in which Ri represents Rm, Rct, or Rmt. In Figure 10, the contribution of
individual resistance is graphed under 70% and 30% RH, showing that Rct comprises the
majority of the total resistance and then followed by Rm and the least Rmt. It suggests that
the utilization of SSC ionomer as an alternative ionomer in CLs could bring more benefit
than the substitution of LSC membrane with SSC membrane for the better cell performance.
Moreover, when RH was reduced to 30%, the contribution of Rm for AQ (E79) based MEA
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went down, however for NRE211 based MEA, the portion of Rm in the total resistance
increased by ~4%, indicating NRE211 experiences some dehydration under dry condition
comparing to SSC membrane.
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4. Conclusions

The fuel cell performance was evaluated and compared between the four MEAs
with the combinations of SSC PFSA and LSC PFSA polymers as ionomers in CL and as
membrane materials in MEAs, named as NRE211/NF30, NRE211/AQ20, AQ(E79)/NF30,
and AQ(E79)/AQ20. According to the results of various electrochemical diagnoses such
as ECSA, protonic resistance in CLs, H2 crossover, PLs, cell resistance through in-situ EIS
measured at different RH% at 80 ◦C and 95 ◦C, it was found that SSC PFSA polymer used as
membrane and ionomer in CL yields better fuel cell performance than LSC PFSA polymer,
especially at high temperature and low RH conditions. Among the four investigated MEAs,
AQ(E79)/AQ20 demonstrated the best cell performance at 80 ◦C and 95 ◦C especially under
30% of RH benefiting from the concurrence of both SSC membranes and SSC ionomer
in CLs and the better compatibility effects using the same polymer material. The less
mass transfer resistance of this MEA in EIS indicates a better water management with
SSC polymer, which could avoid dehydration in either the membrane or catalyst layer
under “dry” conditions (e.g., 30% RH) as well as mitigate catalyst layer flooding under
“wet” conditions (e.g., 100% RH). Moreover, it suggests that SSC polymer as an ionomer in
CLs could result in a more noticeable improvement in cell performance than SSC polymer
as a membrane material in MEA, since the charge transfer resistance in the kinetic range
contributed more to the overall cell resistance than the membrane resistance did.
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Figure S2: iR-compensated PLs for all the MEAs at 80 ◦C and various RH. Method: In-situ EIS.
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