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Abstract: The potential use of graphene in various strain engineering applications requires an ac-

curate characterization of its properties when the material is under different mechanical loads. In 

this work, we present the strain dependence of the geometrical characteristics at the atomic level 

and the Raman active G-band evolution in a uniaxially strained graphene monolayer, using density 

functional theory methods as well as molecular dynamics atomistic simulations for strains that 

extend up to the structural failure. The bond length and bond angle variations with strain, applied 

either along the zigzag or along the armchair direction, are discussed and analytical relations de-

scribing this dependence are provided. The G-mode splitting with strain, as obtained by first prin-

ciples’ methods, is also presented. While for small strains, up to around 1%, the G-band splitting is 

symmetrical in the two perpendicular directions of tension considered here, this is no longer the 

case for larger values of strains where the splitting appears to be larger for strains along the zigzag 

direction. Further, a crossing is observed between the lower frequency split G-mode component 

and the out-of-plane optical mode at the Γ point for large uniaxial strains (>20%) along the zigzag 

direction. 

Keywords: graphene; uniaxial strain; bond lengths; bond angles; G-band splitting;  

density functional theory; molecular dynamics 

 

1. Introduction 

Graphene belongs to the family of atomically thick two-dimensional materials, ex-

hibiting extraordinary electronic, optical, and mechanical properties [1]. Due to its 

enormous mechanical stretchability and strength, graphene provides a platform for the 

implementation of the strain engineering concept, namely, the tuning of its intrinsic 

properties by inducing controlled mechanical macroscopic or microscopic strain fields, 

e.g., uniaxial or biaxial [2,3]. Since pristine graphene exhibits gapless electronic band 

structure, strain engineering has been utilized to open the gap and to induce giant 

pseudomagnetic fields [4]. A combination of shear and uniaxial deformation between 

12% and 17% can open a gap from 0 to 0.9 eV [5], while highly strained nanobubbles that 

form when graphene is grown on top of platinum, present pseudomagnetic fields higher 

than 300 T [6]. Strain-induced pseudo-magnetic fields greater than 300 Tesla appear in 

graphene nanobubbles. It has been also shown that a uniaxial strain either on the zigzag 

or on the armchair direction, can open a band gap in the phonon spectrum of graphene 

[7]. Further, the absorption and diffusion of hydrogen atoms on graphene is also affected 

by mechanical strain [8]. 

Many techniques have been employed to induce mechanical strain into graphene 

lattice, such as bending of flexible substrates, control wrinkling, and piezoelectric 
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straining [2,9]. For example, by transferring graphene on top of uniaxially deformed 

elastomeric substrates and then releasing the strain, buckling induced wrinkles with a 

non-uniform mechanical strain field can be formed [2]. Furthermore, graphene can be 

subjected to tensile biaxial strain by warming up the underlaying substrate, due to the 

negative thermal expansion coefficient of graphene and the significant thermal strain 

mismatch with the substrate [10]. Besides, local strain engineering is a rapidly evolving 

technology enabling the next-generation of electronic and photonic devices [11]. 

Experimental observations indicate that graphene is the strongest material known, 

exhibiting an intrinsic strength of 42 N/m and a Young’s modulus equal to 340 N/m, 

corresponding to effective 3-dimensional values of 130 GPa and 1.0 TPa, respectively 

[12]. The mechanical response and the elastic properties of graphene under uniaxial ten-

sile strain have been extensively studied theoretically [7,13–22]. These works, employing 

methods from first principles [7,19,20], atomistic simulations [15,17,18,20] and even ana-

lytical calculations [22], have successfully predicted Young’s moduli around the experi-

mental value of 1 TPa. The measured value of the intrinsic strength has also been ob-

tained by numerical computations [7,17,20]. The compressive response of graphene un-

der uniaxial strain and the resulting buckling has been investigated too [23–25]. Apart 

from bulk graphene, the mechanical behavior of narrow-width graphene nanoribbons 

has also been examined theoretically [26–31]. 

From the early days of graphene research, Raman spectroscopy in tandem with 

cantilever-beam arrangements was utilized to examine the type (compressive versus 

tensile, biaxial or uniaxial) and the amount of mechanical strain in graphene samples. A 

great effort both experimentally and theoretically has been devoted to investigating the 

response of the main peaks of the Raman spectrum, and especially the doubly degenerate 

G-band, upon strain [32–43]. It was demonstrated that upon uniaxial tensile strain the G 

peak softens, and the degeneracy of G mode is lifted, splitting into two distinct compo-

nents, the so-called G− and G+ [44,45]. The split components possess mode eigenvectors 

parallel (G−) and perpendicular (G+) to the strain direction. The strain rate of softening for 

free-hanging graphene is about −18.6 and −36.4 cm−1/% for the G+ and G− components, 

respectively [45]. Further, the shift rate of the G− and G+ modes is found to be independ-

ent of the direction of strain for strains up to about 1% [45], while their relative intensities 

depend on light polarization, thus providing a useful tool to probe the graphene crys-

tallographic orientation with respect to the strain axis [44,45]. 

Here we theoretically calculate the strain dependence of bond lengths and bond 

angles in monolayer graphene under uniaxial tensile strain up to the regime of structure 

failure. We examine graphene’s mechanical response using methods from first principles 

as well as atomistic molecular dynamics simulations. Results are obtained for uniaxial 

strains applied along either the armchair or the zigzag direction. The numerically ob-

tained variation of the atomic level geometrical characteristics with strain is fitted to 

simple analytical relations for more efficient use in other studies. Further, the optical 

phonons at the center of the Brillouin zone (Γ point) are calculated through density func-

tional theory in order to investigate the softening rate and the splitting of the doubly 

degenerate G band with uniaxial strain along the armchair or the zigzag direction. 

The next section briefly presents the theoretical methods used in this work, the fol-

lowing section discusses our results, and the final section concludes our study. 

2. Methods 

Molecular dynamics (MD) simulations are performed by implementing the previ-

ously computed empirical force fields, especially designed for graphene using results 

from first principles’ methods, which have been derived through appropriate defor-

mations of the structure [20,46,47]. Concerning uniaxial tensile strains, that are of interest 

here, only the in-plane bond stretching and angle bending potentials are used [20]. The 

mechanical response of graphene is obtained by applying constant forces to all atoms 

belonging to the proper edges of graphene. For strains along the armchair direction of 
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graphene, the forces are applied to the atoms of the zigzag edges, while for strains along 

the zigzag direction the forces are applied to the atoms of the armchair edges. Opposite 

tensile forces are applied to the atoms of the opposite edges in each case. More details 

regarding the molecular dynamics simulations that lead to the equilibrium structure of 

graphene under tension can be found in reference [20]. For a particular value of 

force/strain, the bond lengths and bond angles of the uniaxially strained graphene are 

measured at the center of the structure to avoid edge effects. 

For density functional theory (DFT) calculations we used the Quantum Espresso 

suite [48–50]. We performed two sets of calculations with the functionals LDA/PZ [51] 

and GGA/PBE [52]. Regarding the dependence of the geometrical characteristics on strain 

we adopted an 8-atom rectangular unit-cell, shown in Figure 1, in order to eliminate 

possible finite-size effects on the obtained geometrical characteristics. For the perpen-

dicular, out of plane direction we assumed a periodicity of 20 Å. We used the PAW 

pseudopotentials [53] from PSlibrary [54], with plane-wave cutoffs 50 and 400 Ryd for the 

wavefunction and density, respectively. Further, we used Gaussian type smearing and a 

value of the Gaussian spreading 0.02 Ryd, while for the reciprocal space a 24 × 24 × 1 

sampling was considered. 

 

Figure 1. The rectangular 8-atom unit-cell considered for our DFT calculations, where bonds of A 

and Z type and angles of α and ζ type are shown. These bonds and angles are no longer equivalent 

for finite uniaxial strains along either zigzag (horizontal) or armchair (vertical) directions. 

After optimizing all structural parameters for both functionals, the strain was ap-

plied by manually extending the corresponding lattice dimension keeping it frozen and 

performing optimization of all atomic positions as well as the vertical to the strain unit 

cell dimension. For the phonon calculations, we also used the Quantum Espresso code 

with a primitive 2-atom unit cell and all other parameters being the same as above, apart 

from the k-points sampling that was 48 × 48 × 1 and the recommended tighter conver-

gence criteria for phonon calculations. For the primitive unit cell, we also calculated the 

same geometrical characteristics we obtained for the 8-atom unit cell. The results for the 

two unit cells were almost the same, apart from tiny deviations in bond lengths for finite 

strain in the armchair direction when the bond crosses the primitive unit cell border. 

3. Results and Discussion 

In the first part, we present results regarding the deformation of bond lengths and 

bond angles upon uniaxial strain applied along the armchair or along the zigzag direc-

tions and in the second part we discuss the optical phonon frequencies at the Γ point, i.e., 

at the center of the Brillouin zone. 

3.1. Bond Lengths and Bond Angles of Uniaxially Strained Graphene 

Figures 2 and 3 depict the variation with strain of bond lengths [panels (a)] and bond 

angles [panels (b)] when the applied strain is along the armchair and along the zigzag 
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directions, respectively. There are two distinct kinds of bonds (A and Z) as well as of an-

gles (α and ζ), as illustrated in Figure 1. The angles α and ζ are not varied independently 

since they satisfy the condition α + 2ζ = 120°. 

  

(a) (b) 

Figure 2. Strain dependence of (a) bond lengths and (b) bond angles, for uniaxial strain along the 

armchair direction of graphene. A and Z in (a) [α and ζ in (b)] correspond to the different kinds of 

bonds [angles], as shown in Figure 1. Black points show results obtained by MD, while red and 

blue points show data obtained by DFT using LDA and GGA functionals, respectively. Lines rep-

resent fits with quadratic polynomials [see Equations (1) and (2)]. 

  

(a) (b) 

Figure 3. Strain dependence of (a) bond lengths and (b) bond angles, for uniaxial strain along the 

zigzag direction of graphene. A and Z in (a) [α and ζ in (b)] correspond to the different kinds of 

bonds [angles], as shown in Figure 1. Black points show results obtained by MD, while red and 

blue points show data obtained by DFT using LDA and GGA functionals, respectively. Lines rep-

resent fits with quadratic polynomials [see Equations (1) and (2)]. 

As expected, when the strain is along the armchair direction the lengths of both 

bonds A and Z increase, the angle α decreases while the angle ζ increases, as the strain is 

increased (see Figure 2). The results obtained by MD and DFT show similar behavior. The 

angle variation is larger in the MD atomistic simulations. Note that the fracture strain is 

slightly below 15% in MD, while it is around 19% in DFT [20]. 

For strains along the zigzag direction (Figure 3), the bond Z is elongated while the 

bond A is not. In MD the bond A is independent of strain, due to the fact that the force 

field contains solely first neighboring stretching terms [22], while in DFT the bond A 

shrinks. Regarding the strain variation of bond angles, angle α increases and ζ decreases, 
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as expected. In the MD case, the decrease of graphene’s size in the lateral direction is ex-

clusively due to the increase of angle α. The fracture strain in this direction of tension is 

around 28% in MD and around 24% in DFT [20]. 

Comparing our results with the MD data presented in reference [17] we observe 

similar trends, except for the case of A bonds in strains along the zigzag direction, where 

these bonds are found to increase with strain in that work. This behavior is different from 

what we obtain here, as our MD simulations show no variation of this bond length, while 

the DFT computations result in decreasing lengths of these bonds with strain. The bond 

length and bond angle deformations presented in Figure 5 of reference [22], using DFT 

calculations, are in good agreement with the results of this work, even at a quantitative 

level. 

In order to facilitate efficient use of the bond length and bond angle deformations 

with the applied strain in potential strain engineering devices or other applications, we 

provide analytical relations describing these dependencies, which are obtained through 

appropriate fittings of the numerical results presented in Figures 2 and 3. In particular, 

we observed that quadratic functions are able to accurately fit the numerical data shown 

above. 

Thus, the lengths of both types of bonds (A and Z) are changing with the strain ac-

cording to the relation 

2

0 1 2 ,L L C C + +=  (1) 

where L  is the bond length in Å at strain  , 
0L  is the bond length in the absence of 

strain (which is equal to 1.42 Å in MD, 1.424 Å in DFT with GGA/PBE functionals, and 

1.412 Å in DFT with LDA/PZ functionals), 
1C  and 

2C  are coefficients (shown in Tables 

1 and 2 for strains applied along the armchair and the zigzag directions, respectively), 

and   is the percentage strain. 

Table 1. Coefficients 
1C  [in Å/(%strain)] and 

2C  [in Å/(%strain)2] of the strain dependence of the 

lengths [see Equation (1)] for the bond types A and Z, when the strain is applied along the armchair 

direction, as obtained by the results of the different theoretical methods used in this work. 

Bond Type Calculation Method 1C  
2C  

A DFT - GGA/PBE 0.011 0.00035 

A DFT - LDA/PZ 0.010 0.00034 

A MD 0.011 0.00024 

Z DFT - GGA/PBE 0.0035 −0.00013 

Z DFT - LDA/PZ 0.0035 −0.00012 

Z MD 0.0031 −0.000046 

Table 2. Coefficients 
1C  [in Å/(%strain)] and 

2C  [in Å/(%strain)2] of the strain dependence of the 

lengths [see Equation (1)] for the bond types A and Z, when the strain is applied along the zigzag 

direction, as obtained by the results of the different theoretical methods used in this work. 

Bond Type Calculation Method 1C  
2C  

A DFT - GGA/PBE −0.000060 −0.000089 

A DFT - LDA/PZ 0.000082 −0.000083 

A MD 0 0 

Z DFT - GGA/PBE 0.0090 0.000081 

Z DFT - LDA/PZ 0.0087 0.000084 

Z MD 0.0088 0.000080 

Similarly, the strain dependence of both types of bond angles, α and ζ, is described 

by the formula 
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2

1 2120 ,o   += +   (2) 

where   is the bond angle in degrees at strain  , 
1  and 

2  are coefficients (shown in 

Tables 3 and 4 for strains applied along the armchair and the zigzag directions, respec-
tively), and   is the percentage strain. 

Table 3. Coefficients 
1  [in deg/(%strain)] and 

2 [in deg/(%strain)2] of the strain dependence of 

the angles [see Equation (2)] for the bond angles of type α and ζ, when the strain is applied along 

the armchair direction, as obtained by the results of the different theoretical methods used in this 

work. 

Angle Type Calculation Method 1  
2  

α DFT - GGA/PBE −0.80 0.027 

α DFT - LDA/PZ −0.82 0.026 

α MD −0.83 0.020 

ζ DFT - GGA/PBE 0.40 −0.014 

ζ DFT - LDA/PZ 0.41 −0.013 

ζ MD 0.41 −0.010 

Table 4. Coefficients 
1  [in deg/(%strain)] and 

2  [in deg/(%strain)2] of the strain dependence of 

the angles [see Equation (2)] for the bond angles of type α and ζ, when the strain is applied along 

the zigzag direction, as obtained by the results of the different theoretical methods used in this 

work. 

Angle Type Calculation Method 1  
2  

α DFT - GGA/PBE 0.74 −0.014 

α DFT - LDA/PZ 0.77 −0.014 

α MD 0.80 − 0.013 

ζ DFT - GGA/PBE −0.37 0.0069 

ζ DFT - LDA/PZ −0.39 0.0068 

ζ MD −0.40 0.0064 

A very crude approximation of the A bond length variation with the strain along the 

armchair direction can be obtained through the analytical derivation of the extension of a 

single bond, described by the stretching potential used in our MD calculations, under an 

applied force. In particular, the Morse potential used for the carbon-carbon bond 

stretching in graphene is ( )( )
2

0exp 1V a rD r− − − =   , where D = 5.7 eV, a = 1.96 Å−1, 

and 
0r = 1.42 Å is the equilibrium distance [20]. Applying a constant tensile force F at the 

ends of such a bond, one can easily obtain the force extension relationship. Then taking 

into account that ( ) 03 / 2F r= , where   is the corresponding stress and ( ) 03 / 2 r  

is the distance at which tensile forces are applied on the atoms of a zigzag edge in gra-

phene, and by substituting the stress–strain relation 
2DE = with 

2DE = 320 N/m [20], 

one finally obtains that the extension of an A bond is 

 0 0 21(1/ ) ln 0.5 1 3 ./Dr Dara Er  + −


−


=   

This analytical formula deviates by a factor of 2 from the numerical results of the 

strain dependence of the A bond length shown in Figure 2a. In the linear regime, for rel-

atively small strains, the last formula gives 2

0 0 2 / 43 Dr E arr D= + , where by substi-

tuting the values of the parameters mentioned above, we obtain the coefficient multi-
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plying the strain as exactly half of the value of 
1C , which is given in Table 1 for the A 

bond. 

3.2. Optical Phonons of Uniaxially Strained Graphene at the Center of the Brillouin Zone 

We have performed DFT calculations in order to investigate the dependence on 

strain of the long wavelength optical phonons at the Γ point and to quantify the splitting 

of the doubly degenerate E2g mode (G band). LDA and PBE functionals have again been 

used, as previously. The results are presented in Figure 4. Both functionals show the 

same behavior, apart from a small (almost constant) shift of the optical frequencies; the 

PBE functional gives a few percent (2–3%) lower frequencies than LDA. In particular, for 

zero strain the doubly degenerate LO/TO optical frequency at Γ point is found 1598 cm−1 

with LDA and 1557 cm−1 with PBE, while the out-of-plane ZO optical mode is at 896 cm−1 

and 871 cm−1, respectively. 

  

(a) (b) 

Figure 4. Strain dependence of the in-plane optical phonons (G band), that splits into G+ and G– 

bands, and of the out-of-plane optical mode ZO for strain in the (a) armchair and (b) zig-zag di-

rections, as obtained by DFT calculations at the level of LDA/PZ (red) and GGA/PBE (blue) func-

tionals. 

Figure 4a depicts results for strain applied along the armchair direction of graphene 

and Figure 4b for strain along the zigzag direction. All displayed phonons show soften-

ing, i.e., their frequencies decrease with increasing strain. The G− band exhibits the larger 

softening and the ZO mode the smaller one. The softening of the G+ and G− bands has 

been experimentally observed [44,45] because these modes are Raman active. G− corre-

sponds to an eigenmode parallel to the direction of strain, thus bearing higher extension 

and showing larger softening, while G+ corresponds to a perpendicular to strain 

eigenmode. Note that the strong softening of the G− mode leads to a crossing with the 

lower frequency out-of-plane ZO mode when the tension is along the zigzag direction of 

graphene, where larger strains (more than 20%) can be applied (see Figure 4b). 

To quantify the strain dependence of the optical modes at the center of the Brillouin 

zone, we have fitted the DFT obtained numerical data with the quadratic formula 

2

0 1 2 ,     = + +  (3) 

where   is the frequency of the corresponding mode in cm−1, 
0  is the frequency at 

zero strain, and 
1 and 

2  are linear and second order coefficients, respectively, on 

the percentage strain  . The results of these fittings are presented in Tables 5 and 6 for 

the cases where the strain is along the armchair (Figure 4a) and the zigzag (Figure 4b) 

directions, respectively. 
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Table 5. Zero strain values 
0  (in cm−1), and coefficients 

1  [in cm−1/(%strain)] and 
2  [in 

cm−1/(%strain)2] of the strain dependence [see Equation (3)] of the optical in-plane (G+ and G−) and 

out-of-plain ZO phonons at the Γ point, when the strain is applied along the armchair direction, as 

obtained by DFT calculations. 

Optical Mode Calculation Method 0  
1  

2  

G+ GGA/PBE 1557 −16.94 0.16 

G+ LDA/PZ 1598 −17.53 0.18 

G− GGA/PBE 1557 −35.86 0.39 

G– LDA/PZ 1598 −35.53 0.35 

ZO GGA/PBE 871 0.58 –0.24 

ZO LDA/PZ 896 1.29 –0.23 

Table 6. Zero strain values 
0  (in cm−1), and coefficients 

1  [in cm−1/(%strain)] and 
2  [in 

cm−1/(%strain)2] of the strain dependence [see Equation (3)] of the optical in-plane (G+ and G−) and 

out-of-plain ZO phonons at the Γ point, when the strain is applied along the zigzag direction, as 

obtained by DFT calculations. 

Optical Mode Calculation Method 0  
1  

2  

G+ GGA/PBE 1557 −14.66 0.30 

G+ LDA/PZ 1598 −15.10 0.30 

G− GGA/PBE 1557 −35.40 0.012 

G− LDA/PZ 1598 −34.90 −0.035 

ZO GGA/PBE 871 0.41 −0.23 

ZO LDA/PZ 896 1.14 −0.23 

As already noted, the G+ and G− bands are Raman active and their softening rates 

have been experimentally determined. A detailed discussion in reference [45] was able to 

isolate the effect of the substrate on the measured G+ and G– softening, leading to corre-

sponding redshift rate estimates for free standing graphene which are around −18 and 

−36 cm−1/(%strain) for G+ and G−, respectively, for strains up to around 1%. For such a 

small strain the softening rates are provided directly by the coefficient
1 of Equation (3). 

The values of
1 presented in Tables 5 and 6 for the G+ and G− bands are in agreement 

with these experimental observations. 

Finally, we have explicitly calculated the variation with strain of the frequency 

splitting,   + − = − , between the perpendicular (G+) and parallel to strain (G−) 

in-plane eigenmodes, with +and −  being their corresponding frequencies. In Figure 

5 this dependence for strains applied along the armchair or the zigzag directions is 

shown. We see that while for small strains, up to 1–2%, the G-band splitting is inde-

pendent of the direction of strain, for larger strains there is a strong dependence on the 

direction of the applied tension. The higher the strain, the larger this difference, where a 

tension along the zigzag direction exhibits larger G-band splitting than a similar strain in 

the armchair direction. Note that experimental observations in different directions of 

strain, as well as theoretical calculations, have found isotropic behavior regarding the G+ 

and G− softening rates and the resulting G-band splitting [45]. However, both the ex-

perimental data and the theoretical computations were restricted in small strains (up to 

around 1%) in that work [45]. Our results shown in Figure 5 are consistent with these 

reports; for such small values of strain an isotropic behavior of the splitting is revealed. 

However, this behavior is no longer valid for larger strains. 
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Figure 5. Strain dependence of the G-band splitting,   + − = − , for strains along the armchair 

and zigzag directions, as obtained by DFT calculations at the level of LDA/PZ (red) and GGA/PBE 

(blue) functionals. 

A linear fitting of the splittings depicted in Figure 5 at small strains (below 1%) re-

sults in a rate of increase of the splitting with the strain around 17–18 cm−1/%strain, in 

both directions. This is in very good quantitative agreement with the experimental and 

theoretical results discussed in page 4 and page 5, respectively, of reference [45]. A crude 

analytical estimate of the splitting through the second derivative of the Morse stretching 

potential (see the discussion at the end of Section 3.1), when one substitutes the MD de-

rived A and Z bond-length extensions on each direction of strain, leads to splitting 

around 30–35 cm−1/%strain, which are about twice the above mentioned DFT obtained 

values. 

4. Conclusions 

We discuss the strain dependence of the structural characteristics (bond lengths and 

bond angles) as well as of the long wavelength optical phonons (the G+ and G− in-plane 

modes and the ZO out-of-plane mode) of graphene. Strains along the high-symmetry 

armchair and zigzag directions are considered. 

The variation with strain of the lengths of the two distinct types of bonds (A and Z) 

and the two distinct types of angles (α and ζ) is obtained through density functional 

theory, using two different functionals (LDA/PZ and GGA/PBE), and by molecular dy-

namics atomistic simulations. In all these cases, the numerical data of the strain de-

pendence of graphene’s geometrical parameters (bond lengths and bond angles) are fit-

ted to appropriate quadratic analytical formulae. 

Density functional theory computations with the functionals LDA/PZ and GGA/PBE 

were also used to determine the strain response of the optical phonons at the center of the 

Brillouin zone. A softening of the three optical phonons was observed, which is stronger 

for the G− band that corresponds to in-plane eigenmode parallel to the direction of strain. 

Through fitting, analytical relations are presented providing the strain dependence of the 

optical mode frequencies. The G-band splitting and its variation with strain was also 

calculated. For small strains, this splitting is isotropic, while for larger strains there is a 

strong dependence on the direction of tension. In the latter case, larger splitting appears 

for strains along the zigzag direction. Our results are consistent at a quantitative level 

with existing experimental observations as well as other theoretical data for small strains 

up to 1%. 
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