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Abstract: In order to achieve the dual needs of single-phase vibration reduction and lightweight, a
square honeycomb acoustic metamaterials with local resonant Archimedean spirals (SHAMLRAS) is
proposed. The independent geometry parameters of SHAMLRAS structures are acquired by changing
the spiral control equation. The mechanism of low-frequency bandgap generation and the directional
attenuation mechanism of in-plane elastic waves are both explored through mode shapes, dispersion
surfaces, and group velocities. Meanwhile, the effect of the spiral arrangement and the adjustment
of the equation parameters on the width and position of the low-frequency bandgap are discussed
separately. In addition, a rational period design of the SHAMLRAS plate structure is used to analyze
the filtering performance with transmission loss experiments and numerical simulations. The results
show that the design of acoustic metamaterials with multiple Archimedean spirals has good local
resonance properties, and forms multiple low-frequency bandgaps below 500 Hz by reasonable
parameter control. The spectrograms calculated from the excitation and response data of acceleration
sensors are found to be in good agreement with the band structure. The work provides effective
design ideas and a low-cost solution for low-frequency noise and vibration control in the aeronautic
and astronautic industries.

Keywords: local resonant Archimedean spirals; low-frequency bandgaps; single-phase acoustic
metamaterials; vibration attenuation

1. Introduction

Lightweight periodic honeycomb materials (LPHM) are a typical kind of acoustic
metamaterials [1–6]. With the rational design of sub-wavelength units to control elastic
wave propagation, these structures can be widely used in vibration isolation [7,8], noise
insulators/absorbers [9,10], negative refraction [11,12], and acoustic cloaking [13,14]. As
the Bragg scattering bandgap requires the lattice size to be comparable to the corresponding
wavelength [15–17], the reduction of low-frequency vibrations and noise below 500 Hz
remains a challenging assignment for LPHM design [18–20] when used in engineering
applications in aeronautics [21] and railways [22].

Introducing a local resonant mass block is currently one of the popular ways to
achieve a low-frequency bandgap below 500 Hz for LPHM. Liu et al. [23] used a simple
cubic lattice form to constitute a local resonance unit using a high-density mass block
wrapped in soft rubber material. The artificial periodic structure is formed by periodically
arranged local resonance units in an elastic medium, which successfully exploits the local
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resonance effect of elastic waves to achieve a bandgap of around 400 Hz in a 20 mm
cubic lattice. In contrast, traditional local resonance structures typically allow for a very
narrow resonance bandgap at low frequencies [24]. For the purpose of obtaining a wide
resonant bandgap, Dong et al. [25] proposed a new multiple bandgap phononic crystals
capable of generating lots of flat bandgaps in the low-frequency band, however, the flat
bandgaps generated by this unique local resonant phononic crystal are still all above 500 Hz.
To address the above problem, Li et al. [26] proposed a phonon crystal structure in the
form of a cylinder with a periodic arrangement attached to a thin plate. This cylinder
structure attached to a thin plate corresponds to the formation of a “solid-state Helmholtz
resonator” and succeeds in generating a large number of broadband gaps in the range
256 Hz–855 Hz. In addition, Ning et al. [27] similarly designed a tunable metamaterial
consisting of a frame structure, airbag, and a counterweight by introducing a local resonant
mass block. They modulated the designed acoustic metamaterials by the gauge pressure
and gas temperature inside the airbag, effectively attenuating wave propagation in the
13 Hz to 90 Hz range. Although the low-frequency bandgap of LPHM below 500 Hz can be
obtained by introducing local resonance mass blocks in the above-mentioned references,
the lightweight efficiency of LPHM has severely deteriorated. On the other hand, the
discontinuous distribution of materials with different properties in the complex spatial
structure can bring great challenges to the fabrication [28,29].

To endow the LPHM with the simultaneous advantages of lightweight efficiency and
low-frequency bandgaps, the single-phase lightweight periodic honeycomb materials with sub-
wavelength bandgaps have attracted much attention in the research community [18,30–34].
Chen et al. [35,36] designed a star-assisted metamaterial with a low-frequency bandgap and
double-negative characteristics in a certain frequency range using single-phase materials,
which solved the problem that conventional double-negative acoustic metamaterials are
difficult to be applied due to their complex structure and multi-phase material composition.
The novel lightweight bidirectional re-entrant lattice metamaterials were proposed by
Ren et al. [37], which forms a wide bandgap of about 2 kHz in the range of 2.7 kHz to
4.7 kHz. The single-phase acoustic metamaterials with periodically arranged diverging
star-shaped cells resulting in a “low frequency” bandgap from 1.44 kHz to 1.56 kHz were
proposed by Kumar and Pal [38]. In the above-mentioned, single-phase LPHM, although
the simultaneous advantages of lightweight efficiency and low-frequency bandgaps are
realized, the low-frequency bandgaps are all larger than 500 Hz.

Aiming at the challenging problem of vibration and noise reduction below 500 Hz for
the single-phase LPHM, a new kind of local resonance single-phase lightweight periodic
honeycomb materials, the square honeycomb acoustic metamaterials with locally resonant
Archimedean spirals (SHAMLRAS) are proposed in this paper. The SHAMLRAS consists
of Archimedean spirals of the same material combined in a square honeycomb structure.
These acoustic metamaterials with the introduction of Archimedean spirals have special
resonance characteristics compared to existing single-phase acoustic metamaterials and
have the capacity to form multiple bandgaps below 500 Hz (down to approximately
184.5 Hz) within a lattice size of 40 mm. The research has the potential to provide an
invaluable guide to the engineering suppression of low-frequency noise and vibration.

The paper is organized into six sections including the introduction above. The second
part describes the geometry of SHAMLRAS and illustrates the tools for wave propagation
studies. The low-frequency bandgap characteristics and directional attenuation properties
of elastic waves in the SHAMLRAS periodic structure are thoroughly discussed in Section 3.
For more flexibility in obtaining the low-frequency bandgap width we need, the effect
of the material parameters, the arrangement of spirals, and the variables of parameter
control equations on the bandgap width and position being investigated in Section 4. The
transmission loss experiments and COMSOL verification of the low-frequency bandgap
are demonstrated in Section 5. Finally, the major achievements of this work are presented
in Section 6.
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2. Mechanical Design and FE Modeling of the SHAMLRAS
2.1. Mechanical Design

In this study, a low-frequency single-phase acoustic metamaterials consisting of mul-
tiple spirals is proposed, based on a square honeycomb structure and a circular array of
four spirals. The structural composition and lattice arrangement of acoustic metamaterials
are shown in Figure 1a–c, with a lattice constant of L = 40 mm and a ligament thickness of
p = 1 mm. We can effectively reduce the bandgap frequency by tuning the parameters of
the spiral line equation.
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Figure 1. (a) Description of the square honeycomb acoustic metamaterials with locally resonant
Archimedean spirals (SHAMLRAS); (b) the unit cell of SHAMLRAS; (c) the circular array unit of
Archimedes spiral; (d) the first Brillouin zone and irreducible Brillouin zone (IBZ, black shadow region).

The spiral line control equation is derived from the Archimedean spiral line and is
derived as follows:

r = α + βθ (1)

where θ is the pole angle, α is the pole diameter when θ = 0, i.e., the initial radius, and β is
the increase (or decrease) of the pole diameter per 1 rad of rotation.
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Suppose R2 is the inner diameter, n is the turn number, and d is the circle distance,
then this polar equation can be written in the following form:{

r = (R2 + ndt)
θ = n · 2πt

, t ∈ [0, 1] (2)

Therefore, the corresponding Cartesian coordinate equation for the Archimedean
spiral plane is shown below, which is the parametric control equation for the spiral in
this paper. {

x(t) = (R2 + ndt) cos(n · 2πt)
y(t) = (R2 + ndt) sin(n · 2πt)

, t ∈ [0, 1] (3)

2.2. FE Modeling for the Free Wave Propagation

The unit cell and Brillouin zone of periodic lattices are shown in Figure 1d. In the unit,
ei (i = 1, 2) is the basic lattice vector, which can be expressed by orthogonal Cartesian basic
vector and lattice constant as:

e1 = Li
e2 = Lj

(4)

A reciprocal lattice space is defined according to the direct lattice space. In general
terms, the relationship between the basis vectors of the direct and reciprocal lattices is
satisfied as follows:

ei · e∗j = 2πδij (5)

where ei denote the basis vectors of the direct lattice, e∗j denote the basis of reciprocal lattice,
and the subscripts i and j take the integer value 1 and 2. The δij is the Kronecker delta
function, and the expressions are as follows:

δij =

{
1, i = j
0, i 6= j

(6)

The coordinate positions of the lattice points in the reciprocal lattice can be represented
by the reciprocal lattice vector G, which is a linear combination of the reciprocal lattice
basis vectors:

G = ro + n1e1 + n2e2 (7)

where n1 and n2 are integers, and ro is the displacement of Point O.
Additionally, the reciprocal lattice vectors of the SHAMLRAS can be expressed as:

e∗1 =
( 2π

L , 0
)

e∗2 =
(
0, 2π

L
) (8)

Thus, the entire SHAMLRAS periodic structure can be constructed by shifting the unit
cell along the basic lattice vector (e1,e2) in a two-dimensional space. The Brillouin zone of
the basic lattice can also be obtained, as shown in Figure 1d, in which the black shadow
region is the irreducible Brillouin zone (IBZ). The coordinates of the boundary points of the
IBZ are shown in Table 1.

Table 1. Coordinates of the boundary points of the IBZ.

Boundary Points Cartesian Basis Reciprocal Basis

O (0, 0) (0, 0)
A (π/L , 0) (1, 0)
B (π/L , π/L) (1, 1)
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According to Bloch’s theorem, the part u(r) of the eigenwave field volume associated
with the spatial position r can be expressed in the form of a spatial plane wave

u(r) = Uk(r)e−ik·r (9)

where r = (x, y, z) is the position vector, k = (kx, ky, kz) is the wave vector in the first
Brillouin zone, i is the imaginary unit, and Uk(r) is eigenwave amplitude.

The boundary displacement of the periodic structure can be controlled by Bloch
boundary conditions (Floquet periodicity), so there is

u(r + R) = e−ik·ru(r) (10)

where r is the position vector of the node on the boundary, and R is the basis vector of
the lattice.

Determine the form function according to the general finite element procedure and
establish the stiffness and mass matrices within the unit to obtain the generalized eigenequa-
tions of the unit: (

ks −ω2Ms

)
u(ν) = f (11)

where ks is the unit stiffness matrix, Ms is the mass matrix, u(ν) and f are the vectors of
generalized nodal displacements and forces.

The SHAMLRAS periodic structure can be reduced to a series of cells using Equa-
tion (10) for the whole calculation. Two edges in x- and y-directions are selected as source
boundaries in COMSOL Multiphysics 5.5, and the two edges selected for the destination
boundary correspond to the two edges of the source boundary. The Floquet periodicity
conditions at the corresponding boundaries of the periodicity cell are expressed as:

udestination = e−ik f (rdestination−rsource)usource (12)

where u is a vector of dependent variables, and the vector k f represents the spatial period-
icity of the excitation.

The wave vector k is parametrically swept along the path O→ A→ B→ O according
to the first Brillouin zone of the SHAMLRAS structure given in Figure 1d. With Equa-
tions (11) and (12), the structural eigenfrequencies can be found for a given k. Thus, the
dispersion curve is finally plotted with the wave vector k as the horizontal coordinate and
the eigenfrequency as the vertical coordinate to obtain the energy band diagram of the
SHAMLRAS, and the forbidden band between the dispersion curves is the band structure.
Moreover, the eigenfrequencies on the dispersion branches all correspond to the mode
shape the structure has. The complete surface ω = ω(k) is the dispersion surface mentioned
in Section 3.2. In this case, the corresponding dispersion surfaces of the different dispersion
branches represent a class of modes at the corresponding eigenfrequencies. Hence, the n-th
(n = 1, 2, 3, . . .) dispersion surface can also be called the n-th (n = 1, 2, 3, . . .) mode. In this
case, there are as many orders of eigenfrequency as there are dispersion surfaces.

3. Bandgap and Directional Propagation Characteristics of Elastic Waves for
the SHAMLRAS
3.1. Bandgap Characteristics

In this section, the in-plane dynamical properties of SHAMLRAS based on Figure 1
are investigated. The geometrical parameters of the SHMLRAS and the parameters of the
photosensitive resin used are shown in Table 2.
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Table 2. Geometry and material parameters of the structure.

Lattice Parameters Material Parameters of Photosensitive Resin

Radius of tangent circle R1 = 9.5 mm Young’s modulus 2.642 GPa
Inner diameter R2 = 2.0 mm Density 1150 kg/m3

Circle distance d = 4.25 mm Poisson’s ratio 0.42
Ligament thickness p = 1.0 mm

Turn number n = 2
Start value t0 = 0
End value t1 = 1

Based on the material and geometrical parameters provided, the calculated bandgap
structure of the SHMLRAS in the low-frequency range is shown in Figure 2a, where the
pink shaded area is the bandgap in the calculated frequency range. For ease of discussion
and analysis, a detailed schematic of the first bandgap is shown in Figure 2b. Clearly, there
are a total of five complete bandgaps in the 0–500 Hz range. These five bandgaps are located
between the third and fourth dispersion curves, between the sixth and seventh dispersion
curves, between the eighth and ninth dispersion curves, between the tenth and eleventh
dispersion curves, and between the twelfth and thirteenth dispersion curves respectively.
The corresponding frequency ranges are [184.42, 184.69] Hz, [237.18, 249.80] Hz, [252.98,
272.13] Hz, [339.70, 368.00] Hz, and [368.60, 425.75] Hz respectively. For single-phase
cellular metamaterials, this bandgap result is very promising and shows that lightweight
SHMLRAS has excellent elastic wave attenuation properties in the low-frequency region as
well as favorable prospects for engineering applications.
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Figure 2. (a) Band structure of the SHMLRAS and (b) detailed schematic of the first bandgap.

The application of point group theory, which is used extensively in physics and
molecular chemistry, to analyze and predict the electromagnetic response of complex
structures is a highly rewarding endeavor [39]. However, the mode analysis approach
used in these works [38,40] more easily helps us to understand the mechanism of bandgap
generation. The vibrational modes at Points O, A, and B are analyzed below for the upper
(green circles) and lower (red circles) dispersion curves corresponding to the former three
bandgaps in Figure 2a. The size and direction of the arrows in the mode shape diagrams
represent the displacement distance and direction of the structure relative to its original
position. Figure 3 shows the mode shapes at Points O, A, and B for the upper and lower
boundaries of the first bandgap respectively. It can be seen that the displacement and
direction of the mode shapes at the upper and lower boundaries of the fourth (1st upper)
and third (1st lower) dispersion curves corresponding to the Point O are very similar in the
second and fourth quadrants. In the first and third quadrants, however, the directions of the
modes are opposite. At Point A, we can notice a clear exchange of energy in the structural
vibrations, with the spiral vibrations in the second and fourth quadrants becoming the
spiral vibrations in the first and third quadrants. In the A→ B direction, attenuation
occurs in the vibration modes corresponding to the fourth and third dispersion curves.
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Moreover, the 1st up vibration in the second and fourth quadrants decays significantly,
which leads to the spiral vibration in the first three quadrants. Comparing Figure 2b with
the previous discussion, we can see that the energy exchange occurring at Point A is the
main reason for the creation of the first bandgap.
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Figure 4a–f shows the mode shape diagrams corresponding to the sixth (2nd lower)
and ninth (3rd upper) dispersion branches at the Points O, A, and B. The marked arrows
show that there is a clear difference in the direction of the spiral vibrations in the different
quadrants, i.e., a greater degree of local resonance. For example, at Point B, the sixth
dispersion branch tends to vibrate downwards in the first quadrant, leftwards in the second
quadrant, upwards in the third quadrant, and to the right in the fourth quadrant. The ninth
dispersion branch tends to vibrate in the lower left, lower right, upper right, and upper
left in the four quadrants respectively. The effect of the elastic wave on the structure is
weakened or completely counteracted by the effect of the local resonance spirals on the
structure, i.e., there is a positive correlation between the local resonance stratification of the
spiral and the attenuation performance of the elastic wave.

The local resonant mode of the unit structure is excited as the frequency approaches
the natural frequency of the resonant. At this point, the elastic waves in the structure will
be strongly coupled with the structural local resonant mode. Furthermore, the energy is
localized due to the constant exchange into the resonant unit and the elastic wave will
not propagate further. In the band structure, this is manifested by the truncation of the
energy band starting at Point O by the resonant straight band, resulting in the formation
of the third and fourth bandgaps. The vibration of the spirals on the seventh (2nd upper)
dispersion branch is essentially constant in the third quadrant, as shown in Figure 4g–i. In
the fourth quadrant, however, only the direction of vibration does not change. Meanwhile,
the direction of vibration of the spiral in the second quadrant shows a similar attenuation of
amplitude after reversal as in the third and fourth quadrants. On the O→ A→ B direction,
the eighth (3rd lower) dispersion branch shows marked attenuation of the spiral amplitude
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in the first three quadrants. The spiral vibration only shows a reversal of direction in the
second quadrant, except in the fourth quadrant which remains essentially unchanged.
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Figure 4. Mode shapes of the proposed structure: (a–c) represent the points (O, A, B) of the IBZ on
the sixth branches the lower edge of the second bandgap; (d–f) represent the points (O, A, B) of the
IBZ on the ninth branches the upper edge of the third bandgap; (g–i) represent the points (O, A, B) of
the IBZ on the seventh branches the upper edge of the second bandgap; (j–l) represent the points (O,
A, B) of the IBZ on the eighth branches the lower edge of the third bandgap; the arrows represent the
magnitude and direction of the displacement of the mode.

Comparing Figures 3 and 4, the consumption of elastic wave energy by the structure
in the calculated frequency range originates from the local resonance of the spiral. Fur-
thermore, the degree of local resonance of the spiral increases, the better performance of
designed structure for elastic wave attenuation.

3.2. Dispersion Surfaces

In this paper, the dispersion surfaces of the SHAMLRAS periodic structure are calcu-
lated using the finite element method in the solid mechanics interface of COMSOL. The
four edges of the square honeycomb metamaterials cell are divided by taking mesh = 40,
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i.e., the four edges of the first Brillouin zone in Figure 1d are divided into 1600 points.
Once we have swept the wave vector k for all the points inside and on the boundary of the
first Brillouin zone, the complete eigenfrequency surface ω = ω(k) corresponding to the
different dispersion branches can be calculated using COMSOL. In this case, a complete
eigenfrequency surface ω = ω(k) is also a mode. The corresponding dispersion surfaces of
the different dispersion branches represent a class of modes at the corresponding eigen-
frequencies. Hence, the n-th (n = 1, 2, 3, . . .) dispersion surface can also be called the n-th
(n = 1, 2, 3, . . .) mode. Here we select modes near the first three bandgaps (third to ninth
dispersion branches) for further discussion and analysis.

The dispersion surface method can be used to show the elastic wave propagation
properties in the periodic structure in a three-dimensional and visual way. Figure 5a shows
the dispersion relations of the seven dispersion surfaces of the third to ninth dispersion
branches of the SHAMLRAS periodic structure in three-dimensional space, where the x-
and y-axis coordinates represent the coordinate of the first Brillouin zone point and the
z-axis represents the frequency f. The comparative relationship between the SHAMLRAS
dispersion relation and the bandgap structure in the horizontal view is shown in Figure 5b.
There is a good correspondence between the dispersion curves of the SHAMLRAS structure
and the dispersion curves of the bandgap structure, as well as between the bandgap
positions of the two diagrams. Simultaneously, it proves the correctness of the dispersion
relation calculated by the above method.
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3.3. Directional Propagation Property of Elastic Waves

We can obtain the ISO-frequency contours corresponding to the modes by projecting
the dispersion surfaces in the kx and ky plane in Figure 5a and extracting the eigenfrequen-
cies according to different division intervals.

The group velocity of two-dimensional periodic structures along the x- and y-directions
for a given frequency can be written as:

cgx = ax
∂ω

∂kx
, cgy = ay

∂ω

∂ky
(13)

where ax and ay denote the lattice constants in the x- and y-directions respectively.
The group velocity is defined as the gradient of an ISO-frequency curve when the

dispersion surface is described by a two-dimensional contour. At the same time, the
direction of the outer normal at each point on the contour is the direction of the group
velocity at that point, which represents the direction of energy propagation of the vibration
at that frequency. Therefore, the group velocity can be used to express the speed of energy
propagation as well as the direction and magnitude of the elastic wave propagation. With
the calculation of the gradient at each point on the contour, we can obtain the direction
of propagation and the region of propagation for a given frequency of the vibration. The
values of cgx and cgy are used as the x- and y-coordinates to obtain the group velocity for a
specific frequency.

With increasing frequencies, the SHAMLRAS structure vibration propagation is mostly
concentrated in the kx and ky directions, as shown in Figures 6–12. At the same time,
the vibration propagation generally behaves as follows: it is enhanced, then weakened,
and then enhanced again. In particular, the sixth mode case has the weakest vibration
propagation in the kx and ky directions. On the other hand, we can observe from Figures 6a,
7a, 8a, 9a, 10a, 11a and 12a that there is weak anisotropy in the kx and ky directions for the
fifth and sixth modes at the lower frequencies of the dispersive surface, whereas there are
strong anisotropy in this direction for the fourth, seventh and eighth modes. Furthermore,
only the fifth and ninth modes have strong anisotropy in the direction with the diagonal as
the axis of symmetry.
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Figure 6. (a) Third mode; (b) ISO-frequency contours (the thick black solid lines are the three se-
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velocity of third wave mode at 183.3 Hz, 183.6 Hz, and 184.2 Hz. 

Figure 6. (a) Third mode; (b) ISO-frequency contours (the thick black solid lines are the three selected
frequencies to be analyzed and similar depictions can be seen in Figures 7–12); (c–e) group velocity of
third wave mode at 183.3 Hz, 183.6 Hz, and 184.2 Hz.
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Figure 8. (a) Fifth mode; (b) ISO-frequency contours; (c–e) group velocity of fifth wave mode at 
198.2 Hz, 208.2 Hz, and 223.2 Hz. 

Figure 8. (a) Fifth mode; (b) ISO-frequency contours; (c–e) group velocity of fifth wave mode at
198.2 Hz, 208.2 Hz, and 223.2 Hz.
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Figure 10. (a) Seventh mode; (b) ISO-frequency contours; (c–e) group velocity of seventh wave mode 
at 250.6 Hz, 251.3 Hz, and 252.1 Hz. 
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Figure 10. (a) Seventh mode; (b) ISO-frequency contours; (c–e) group velocity of seventh wave mode 
at 250.6 Hz, 251.3 Hz, and 252.1 Hz. 

Figure 10. (a) Seventh mode; (b) ISO-frequency contours; (c–e) group velocity of seventh wave mode
at 250.6 Hz, 251.3 Hz, and 252.1 Hz.
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Figure 11. (a) Eighth mode; (b) ISO-frequency contours; (c–e) group velocity of eighth wave mode 
at 252.1 Hz, 252.4 Hz, and 252.8 Hz. 
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Figure 12. (a) Ninth mode; (b) ISO-frequency contours; (c–e) group velocity of ninth wave mode at 
277.6 Hz, 294.3 Hz, and 311 Hz. 
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Figure 11. (a) Eighth mode; (b) ISO-frequency contours; (c–e) group velocity of eighth wave mode 
at 252.1 Hz, 252.4 Hz, and 252.8 Hz. 
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Figure 12. (a) Ninth mode; (b) ISO-frequency contours; (c–e) group velocity of ninth wave mode at
277.6 Hz, 294.3 Hz, and 311 Hz.

To be more precise in evaluating the propagation of elastic waves on different disper-
sion surfaces, the ISO-frequency contours for the three frequency cases are marked in (b) of
Figures 6–12 with heavy black solid lines, and the group velocities corresponding to these
ISO-frequency contours are shown in (c,d) of Figures 6–12 respectively. The group velocity
in Figure 6c–e shows a distribution of points in the 0◦ to 360◦ direction. The points on the
outside of the group velocity are more densely distributed in the kx and ky directions as the
frequency increases, however, the group velocity points in this direction disappear with



Materials 2022, 15, 373 14 of 21

the frequency increases to f = 184.2 Hz. In contrast, with increasing frequency f the group
velocity distribution is more densely distributed in the region near the diagonal as the axis
of symmetry.

The clusters of velocities in the kx and ky directions increase remarkably with increas-
ing frequency, and the points in the other directions decrease significantly, according to (c,d)
of Figures 9, 10 and 12. However, a highly visible concentration of group velocity points
in the diagonal direction of the graph is observed in Figure 6c,d as well as in Figure 11c,d
when the frequencies are located in the fourth and eighth modes, and the degree of the
clusters increases noticeably with increasing frequency. That demonstrates that there is
a strong energy aggregation at this location, and it also indicates that the propagation of
energy in the kx and ky direction is much weaker in this direction compared to the diagonal
direction due to the small group velocity distribution. Consequently, we can consider that
elastic waves form vibration blind zones in the kx and ky directions, and this characteristic
is very useful for vibration isolation needs in specific directions of engineering.

4. Influence of the SHAMLRAS Bandgap
4.1. Influence of Spiral Geometry on the Bandgap

From the analysis in Section 2.1, the structure of SHAMLRAS changes markedly when
the inner diameter (R2), turn number (n), circle distance (d), the tart parameters (t0), and
the End parameters (t1) of parameter t are changed in Equation (5). The changes in these
parameters are further influenced by the bandgap characteristics of the SHAMLRAS struc-
ture and the dispersion relations. To be more flexible in dealing with different frequencies
of elastic waves in engineering damping applications, the influence of the spiral geometry
parameters on the bandgap width and position is discussed below.

The influence of the circle distance d and the inner diameter R2 on the bandgap width
of the SHAMLRAS structure are shown in Figure 13a–d respectively. With increasing
circle distance d in the range of 1000 Hz, the second bandgap width is found to show an
increase followed by a decrease. Although the bandgap width of the SHAMLRAS structure
decreases as the circle distance d increases, the frequency of each bandgap also decreases
remarkably. Furthermore, a comparison of Figure 13a,b shows that the first bandgap is
generated between the third and fourth dispersion curves when d = 2.75, 3.25, 3.75, 4.25.
The second to fifth bandgaps then corresponds to between the fifth and sixth dispersion
curves, between the seventh and eighth dispersion curves, between the ninth and tenth
dispersion curves, and between the eleventh and twelfth dispersion curves respectively.
However, in the case of d = 2.25, no bandgap can be observed to be created between the
third and fourth dispersion curves, with the first bandgap located between the sixth and
seventh dispersion curves. As the inner diameter R2 is varied, the width of the first three
bandgaps is in Figure 13c is negatively correlated with the change in R2, while only the
width of the fifth bandgap is positively correlated with the change in R2, with only the
fourth bandgap showing an increase followed by a decrease. Moreover, the position of the
dispersion curves for the first five bandgaps of the SHAMLRAS structure has not changed
by comparing Figure 13a,b. From the above discussion, there is a clear indication that we
should increase the value of the circle distance d as well as R2 in the SHAMLRAS structure
within a limited dimension when we need a low-frequency bandgap.

The dependence of the bandgap width on turn number n, starting value t0, and
end value t1 is shown in Figure 14a–f respectively. All the shapes of the SHAMLRAS
structures are noted to change more markedly with the variation of parameters. The
variation of these parameters also leads to changes in the position of the bandgap of
the SHAMLRAS structure between the different dispersion curves, especially in the low-
frequency bandgap region. There is a narrower bandgap that is consistent between the
second and third dispersion curves as the values of these three parameters gradually
approach the structural parameters selected in Table 2. As the selected parameter change to
the structural parameters shown in Table 2, the bandgap tends to decrease at all frequency
positions, in particular, the frequency values between the second and third dispersion
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curves overlap, and the bandgap at this position disappears. We also observe an interesting
phenomenon: there is a striking similarity in the effect of the turn number n in Figure 14a,b
and the end value t1 in Figure 14e,f on the SHAMLRAS geometry and band structure. This
suggests a strong one-to-one correspondence between the turn number n and the end value
t1 for the SHAMLRAS structure. On the other hand, variations of the three parameters in
Figure 14 have a relatively high effect on the bandgap width of the SHAMLRAS structure.
Although the variation in bandgap width at this point does not have the same continuity of
variation as the bandgap width shown in Figure 13, the position of the dispersion curve is
the same for each bandgap, except for the structural parameters in Table 2.
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diameter R2.

In the above case, the dispersion curves of the second to fifth bandgaps of the different
SHAMLRAS structures are located between the third and fourth dispersion curves, between
the sixth and seventh dispersion curves, between the eighth and ninth dispersion curves,
and between the tenth and eleventh dispersion curves respectively. This indicates that the
relationship between the position of the bandgap and dispersion curves is relatively stable
for the range of parameters chosen.

4.2. Influence of Spiral Arrangement on the Bandgap

The effect on bandgap width and position of spirals in a square honeycomb structure
is explored here. As shown in Figure 15, the bandgap width distribution is calculated for
each case by varying the arrangement of the spirals in different quadrants. When the spiral
arrangement is varied in accordance with Figure 15, there are decreases to disappear of the
bandgap between the third and fourth dispersion curves, the bandgap between the sixth
and seventh dispersion curves, and the bandgap between the eighth and ninth dispersion
curves when the spiral arrangement is transformed in the first and third quadrants. The
different arrangement of spirals demonstrates that only the first three bandgaps of structural
parameters shown in Table 2 are more significantly affected.
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4.3. Influence of Material Parameters on the Bandgap

The influence of the material parameters Young’s modulus E, Poisson’s ratio ν, and
density ρ (only one of these parameters is changed at a time) on the width and position
of the bandgap in the numerical simulation are illustrated in Figure 16. The frequency
position of each bandgap rises gradually with increasing Young’s modulus E and Poisson’s
ratio ν as shown in Figure 16a,c. Simultaneously, the width of the five bandgaps shown in
the diagram increases. In contrast, both the width and position of the bandgap in Figure 16e
show a negative correlation with the variation in density ρ. Additionally, it can be observed
that higher frequency bandgaps are more sensitive to the change of material parameters.
In other words, the higher the bandgap frequency, the faster the bandgap width increases
(or decreases) with the change of material parameters. On the other hand, the relative
positions of each bandgap have not changed in the dispersion curves. It is demonstrated
that changes in Young’s modulus E, Poisson’s ratio ν, and density ρ during the simulations
do not open a new bandgap (or disappear the existing bandgap) in the band structure of
SHAMLRAS. As the analysis above shows, the smaller the values of Young’s modulus E
and Poisson’s ratio ρ of the material, the lower the frequency of the bandgap. At the same
time, it is easier to obtain bandgaps at lower frequencies with higher values of the density ρ.
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5. Filtering Properties of the Finite Periodic Structure of the SHAMLRAS

The dispersion relations and free wave propagation properties in the case of SHAMLRAS
infinity structures have been analyzed in the previous sections, but they may not be adaptable
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to the demands of flexible load-bearing in engineering. In this section, the performance of
SHAMLRAS for vibration isolation finite structures is investigated from both experimental
tests and numerical simulations. The geometry and loading environment in Figure 17a were
used for both the transmission loss experiments and the COMSOL simulations. To evaluate
the vibration isolation performance of the SHAMLRAS structure, the frequency response
function (FRF) was calculated with the left-hand panels of 5 mm thickness as the excitation
input and the right-hand panels of 2 mm thickness as the response receiver. The geometric
and material parameters shown in Table 2 were used as the basis for obtaining the specimens
required in the experiments through 3D printing, and the experiment was carried out based
on the transmission loss experimental setup shown in Figure 17b. After the printed specimen
has been fixed to the vertical vibration table through the 5 mm thick prefabricated base, the
excitation and response data from the experimental test are calculated using an accelerometer
to obtain the spectrum in Figure 17c. We used acceleration as the input signal for excitation in
both experimental and simulations, and the calculated spectra were placed in Figure 17c for
comparative analysis.
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setup for transmission loss in SHAMLRAS periodic structures; (c) comparative spectrum diagram
obtained from transmission loss experiment and simulation; (d) deformation of SHAMLRAS periodic
structures under harmonic loading frequency at f = 220 Hz (outside the bandgap region) and
f = 240 Hz (inside the bandgap region).

6. Conclusions

In this paper, lightweight single-phase acoustic metamaterials with low-frequency
bandgap properties are designed by combining a square honeycomb structure with multiple
Archimedean spirals.

The existent Archimedean spirals are shown to open multiple complete bandgaps
below 500 Hz with Bloch’s theorem and finite element analysis. The vibrational modes are
discussed for the dispersion curves near the first three bandgaps at the boundary points of
the IBZ. The generation of low-frequency bandgaps was found to be related to the degree
of local resonance of spirals. Characteristics of the directional propagation of elastic waves
in SHAMLRAS periodic structures and the attenuation properties of in-plane vibrations are
analyzed using dispersion surfaces and group velocities at specific frequencies. Optimizing
the width and position of the low-frequency bandgap to enhance wave attenuation can be
achieved by adjusting the material parameters, the spiral arrangement, and the parameters
of the control equations. In this case, the spirals in circular arrays, the increase of the circle
distance d and the inner diameter R2 within a limited dimension are helpful in obtaining a
lower frequency bandgap. In the end, the spectrum obtained through transmission loss
experiments and COMSOL simulations are used to demonstrate and verify the vibration
isolation performance of SHAMLRAS with limited dimensions. That proves the great
potential of the SHAMLRAS structure in achieving low-frequency noise and vibration
control using single-phase materials.
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