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Abstract: This paper examines the surface roughness of a thin brass wire (140–200 microns in
diameter) after two dieless drawing (DD) processes, i.e., conventional dieless drawing (CDD) and
incremental dieless drawing (IDD). In incremental dieless drawing, small increments in deformation
were applied in several passes. It has been proven that the IDD process not only has a greater efficiency
but also enables obtaining a wire with significantly lower surface roughness. The explanation
for these effects is based on the results of the numerical modeling of both compared processes.
The developed numerical model takes into consideration the initial roughness of the wire surface,
shape and dimensions of grains, and their diversified mechanical properties. Nanoindentation
measurements, microstructure, and plastometric studies allowed us to find the effective flow stress
distribution in the grains. The IDD process was found to be much more stable and develop a much
more uniform distribution of grain strain than the CDD process. More homogeneous deformation
results in surface roughness reduction. Approximately 25–30% reduction in surface roughness of the
wire produced by the IDD process was predicted by simulations and confirmed experimentally.

Keywords: dieless drawing; wires; brass; roughness

1. Introduction

The dieless drawing (DD) process consists of stretching a workpiece that has been
locally heated in such a way that the plastic deformation is localized in the material vol-
ume with increased temperature. The workpiece movement relative to the heating device
ensures the processing of long products (e.g., wires). To the best of our knowledge, this
process was proposed for the first time by Weiss and Kot for wire production [1]. Currently,
this process is laboratory tested for the manufacture of pipes [2], bars [3], and wires [4].
The lack of dies and lubricants enables significant cost reduction [5] and eliminates the
influence of friction on the deformation process [6]. These are the significant advantages
of this technology. Moreover, the appropriate selection of deformation temperature and
strain rate enables the processing of materials with limited plasticity [7]. On the other hand,
geometrically unconstrained deformation can result in product diameter heterogeneity
along the length [8]. There are two methods to obtain it, which can both be used indepen-
dently and simultaneously. The first method is to control the cooling speed of the processed
material as it extends from the deformation zone [9]. This method can also be used to
obtain a product with a prescribed length-varying diameter [10]. The effectiveness of this
method depends on the material flow stress sensitivity to the deformation temperature.
The second method is to use a multi-pass deformation process, proposed for the first time
by Furushima and Manabe [11]. The maximum single-pass deformation that did not cause
product diameter heterogeneity was chosen by them as the crucial process parameter.
This approach is quite practical, but it is not based on any theoretical explanation. Such
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an explanation was proposed by Milenin [12], and this approach was used in the study
presented in this paper. Thus, the idea developed in this work is that the DD process is
divided into several passes with a small increment of strain in each of them. For each of
the strain increments, stability of the plastic deformation was determined based on the
Considère criterion ([13], as well as some 21st-century literature, e.g., [14,15]) proposed by
Byla et al. [16]:

Kstab =
dσ

dε

1
σ

(1)

where ε is the strain, and σ is the stress determined from the flow stress–strain curve of
the deformed material. Value Kstab < 1 means non-stable plastic deformation, and Kstab > 1
means stable deformation.

The stability of the plastic deformation increases with the value of Kstab. At the same
time, the tendency to localize the deformation in the form of necking decreases, which
has been confirmed experimentally previously (e.g., [17]). Knowledge of the Kstab value
allows for precise control of the necking through precise selection of the deformation rate.
Such a methodology (known as incremental dieless drawing (IDD)) requires knowledge
of the flow stress dependence on the strain, strain rate, and temperature. Previously, this
methodology was successfully applied to improve the efficiency of the DD process and
to prove that the workability of the IDD process is significantly higher than that of the
conventional DD process (CDD) [17].

According to Equation (1), the stability of plastic deformation (coefficient Kstab) in-
creases with a decreasing strain increment. Usually, it is necessary to recover the deformed
material ductility between some increments in deformation. During dieless drawing, this
is usually guaranteed by the high deformation temperature at which recrystallization
occurs [12,17]. On the other hand, too-small strain increments significantly reduce the
productivity of the process, since it requires multiple repetitions (i.e., multi-pass process).
Thus, it is most rational to determine the optimal value of the strain increment based on
an experiment.

In this study, the IDD process was used both to improve the workability and to reduce
the product surface roughness.

Minimizing roughness is especially important for very fine wires. In general, rough-
ness can be roughly regarded as the geometrical heterogeneity of the product on the
microscale. Minimizing roughness is important for at least two reasons. First, an increase
in roughness can be the onset of tensile necking. Second, surface roughness can reduce
the mechanical, corrosive, and electrical performance of the wire. An increase in surface
roughness during deformation is well known as strain-induced roughness. It has been
confirmed for various materials, e.g., steel [18], aluminum alloys [19], and titanium [20].
Strain-induced roughness was investigated by Dai and Chiang [21]. They concluded that
roughness is proportional to the amount of imposed plastic strain and the average grain
size. A monotonic increase in roughness as a function of the initial roughness and the
strain imposed at room temperature was proven experimentally by Stoudt et al. [22]. On
the other hand, reduction in roughness due to multi-pass DD was reported by Furushima
and Manabe [11]. An attempt was made to explain this effect as a result of surface profile
elongation with drawing wire elongation [23]. However, this explanation does not answer
the question of why this effect is much more pronounced for multi-pass IDD than for
single-pass DD with the same total deformation. Answering this question is one of the
goals of this paper. Experimental studies are insufficient to explain this. First, the process of
roughness measurement is accompanied by sufficiently large errors, which can be compa-
rable with the magnitude of the effect under study. Second, it is difficult to understand the
mechanism of the observed phenomenon only based on an experiment. For these reasons,
in this paper, along with experimental studies, numerical simulation was used.

Among the known approaches to modeling strain-induced roughness, two groups can
be distinguished. The first group is based on the crystal plasticity (CP) theory [24]. This
approach takes into consideration the crystal lattice orientation of the grains. However,
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there are at least two good reasons why the practical application of such an approach might
be ineffective.

1. Significant difficulties during the methodology calibration, especially for hot deformation.
2. Inhomogeneity in the mechanical properties of the material are not only related to

differences in the crystal lattice orientation, as was assumed in this approach. Some
differences in the microstructure, the presence of non-metallic inclusions, or the
second phase of the material can also be important.

The complexity of the CP model and the process of its calibration is such that the
construction of such a model goes far beyond the scope of the practical problem solution
considered by us in this study.

The second approach uses classical mechanics of continuous media to model inhomo-
geneity in the mechanical properties of the microstructure element [25]. The finite element
method (FEM) was used in this paper to understand strain-induced roughness. Failure
to show the method of model calibration and insufficient verification of its results are
serious shortcomings of this paper. The model calibration methodology using results of
nanoindentation measurements has been proposed by Milenin et al. [26]. It was assumed
that the statistics in the dispersion of the nanoindentation results over the cross-section
of the material can be transferred to the statistics of the flow stress distribution in grains
of the microstructure. The usefulness of this assumption was confirmed for the CDD of
magnesium alloy tubes. The same approach and methodology were used in this study for
the IDD process.

In this study, the hypothesis that proper selection of IDD process parameters will
allow obtaining a cheaper product with better workability and lower surface roughness
than the product obtained by the CDD technology will be verified. The practical goal of this
study is to propose an inexpensive technology for the production of thin wires (thickness
of 140 mm) from the brass CuZn37. This wire is commonly used as electrically charged
wire in electric discharge machining [27] and in jewelry manufacturing [28].

To do this, some partial goals have to be achieved:

(i) Develop a theoretical model of the roughness changes during DD and the model
calibration based on the experimental results for thin brass wire;

(ii) Comparative analysis of roughness development during the CDD and IDD processes
and explanation of the reasons for any possible differences.

2. Materials

Commercial cold-drawn wire with a diameter of 200 µm made of CuZn37 alloy was
used as the DD workpiece. The wire microstructure with grains elongated in the drawing
direction (Figure 1a) is typical for cold-drawn materials. The metallographic microscope
Axio Imager M1m by ZEISS (Oberkochen, Germany) was used for microstructure char-
acterization. The arithmetic average roughness (Ra) of the surface measured along the
wire length was equal to 0.12 ± 0.04 µm (Figure 1b). According to relevant standards (ISO
4288, ISO 21920-3, and ASME B46.1), the sampling length was equal to 0.8 mm, and the
evaluation length was 5 times higher (i.e., equal to 4 mm). The optical profiler Wyko NT930
by Veeco (New York, NY, US) was used for the surface roughness measurements.

The Empyrean PANalytical X-ray laboratory diffractometer (by Malvern Panalytical,
Malvern, UK) equipped with a parallel Goebel mirror (divergence 0.02◦) in the incident
beam, two soller slits (0.04 rad) placed on both incident and diffracted beams, and a
parallel-plate collimator (divergence 0.18◦) was applied in the XRD incomplete pole figures
measurements. CuKα radiation was used, and a nickel filter was applied in front of the
PIXCel 3D detector. The inverse pole figures were calculated using the LaboTex Software
by Labo Soft Company (Kraków, Poland) [29] from the incomplete pole figures 111, 200,
220, and 311, measured by the Schulz reflection method [30]. The measurement covered
the angular positions of the sample α = 0–80◦ (tilting) and β = 0–60◦ (rotation around the
normal direction) and were performed in net points ∆α = ∆β = 5◦. However, only a tilting
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range up to 65◦ was used for the complete figure calculation. The [111] fiber texture, typical
for drawn wire made of fcc structure metal, was revealed (Figure 1c). Some duplex fiber
textures of [111] and [100] orientations are usually developed in brass wire conventionally
drawn, and the former is usually much stronger. In our wire texture, the component [100]
was almost completely absent, which can be associated with a relatively large amount of
cold deformation. Such crystallographic texture can promote strain-induced roughness
during the DD process.
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Figure 1. Results of the experimental study of the initial wire: (a) microstructure (light microscope);
(b) example surface profile in the longitudinal direction; (c) crystallographic textures of initial wire
(the inverse pole figure).

The stress–strain curves of the CuZn37 alloy were determined from compressive tests
made on the Zwick250 machine by ZwickRoell GmbH & Co. (Ulm, Germany). Based
on the result, the flow stress dependence on the strain, strain rate, and temperature was
determined [31] as:

σ = Aem1tεm2 ξm3 em4/ε(1 + ε)m5tem6εξm7ttm8 (2)

where ε—plastic strain, ξ—strain rate, t—temperature, A, m1–m8 are empirical coefficients:
A = 81259.14073, m1 =−0.004279279, m2 = 0.093835212, m3 =−0.036575464, m4 = −0.004250721,
m5 = 6.06186·10−5, m6 = −0.4821499, m7 = 0.000317437, and m8 = −0.596443559.

Some examples are shown in Figure 2.

Materials 2022, 15, 35 4 of 13 
 

 

measurements. CuKα radiation was used, and a nickel filter was applied in front of the 

PIXCel 3D detector. The inverse pole figures were calculated using the LaboTex Software 

by Labo Soft Company (Kraków, Poland) [29] from the incomplete pole figures 111, 200, 

220, and 311, measured by the Schulz reflection method [30]. The measurement covered 

the angular positions of the sample α  =  0–80° (tilting) and β  =  0–60° (rotation around the 

normal direction) and were performed in net points Δα  =  Δβ  =  5°. However, only a tilting 

range up to 65° was used for the complete figure calculation. The [111] fiber texture, typ-

ical for drawn wire made of fcc structure metal, was revealed (Figure 1c). Some duplex 

fiber textures of [111] and [100] orientations are usually developed in brass wire conven-

tionally drawn, and the former is usually much stronger. In our wire texture, the compo-

nent [100] was almost completely absent, which can be associated with a relatively large 

amount of cold deformation. Such crystallographic texture can promote strain-induced 

roughness during the DD process. 

The stress–strain curves of the CuZn37 alloy were determined from compressive tests 

made on the Zwick250 machine by ZwickRoell GmbH & Co. (Ulm, Germany). Based on 

the result, the flow stress dependence on the strain, strain rate, and temperature was de-

termined [31] as: 

𝜎 = 𝐴𝑒𝑚1𝑡𝜀𝑚2𝜉𝑚3𝑒𝑚4/𝜀(1 + 𝜀)𝑚5𝑡𝑒𝑚6𝜀𝜉𝑚7𝑡𝑡𝑚8 (2) 

where 𝜀—plastic strain, 𝜉—strain rate, t—temperature, A, m1–m8 are empirical coeffi-

cients: A = 81259.14073, m1 = −0.004279279, m2 = 0.093835212, m3 = −0.036575464, m4 = 

−0.004250721, m5 = 6.06186·10−5, m6 = −0.4821499, m7 = 0.000317437, and m8 = −0.596443559. 

Some examples are shown in Figure 2. 

 

Figure 1. Results of the experimental study of the initial wire: (a) microstructure (light microscope); 

(b) example surface profile in the longitudinal direction; (c) crystallographic textures of initial wire 

(the inverse pole figure). 

 

Figure 2. Stress–strain curves of CuZn37 alloy for 400 °C (a), 350 °C (b), and different strain rates 

(0.1–10 s−1). 

  

Figure 2. Stress–strain curves of CuZn37 alloy for 400 ◦C (a), 350 ◦C (b), and different strain
rates (0.1–10 s−1).
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3. Methods
3.1. Overall Research Approach

The flowchart of the research method is shown in Figure 3.
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3.2. Dieless Drawing Processes

The schematic of the setup used for DD is shown in Figure 4. Work rollers (4) rotate
at different speeds controlled by dedicated PC software, providing the deformed wire
velocities V0 and V1 (V1 > V0). The difference in the velocities was used for the wire
longitudinal strain calculation under the constant volume assumption from the formula:

εpass = 1− V0

V1
(3)
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Figure 4. Scheme of the equipment for dieless drawing: 1—wire; 2—heating device; 3—support
rollers; 4—work rollers; 5—electric stepper motors.

Since there is no friction between the material and the die surface during deforma-
tion, the material velocity is theoretically unlimited. However, an increase in the velocity
requires an increase in the heating device power, since the material heating time is in-
versely proportional to the velocity. Practically used material velocities cover the range
of 0.25–1.1 m/s [4,32]. The difference between the velocities V0 and V1 determines the elon-
gation of the wire and is limited by the workability of the material under the given conditions.

An electric mini-furnace 2 cm long and 0.5 mm in diameter was used as the heating
device (2 in Figure 4). The length of the heating device corresponds approximately to the
length of the deformation zone.
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The length of the processed wire is limited only by the capacity of the work rolls. With
a wire diameter of 200 µm, rolls (4 in Figure 4) can contain up to 10–15 m of wire. In our
studies, wire samples with a length of 3–5 m were processed without any problems.

Two DD processes were performed on this device, i.e., CDD and IDD. For the one-
pass CDD process, the velocity V1 monotonically increased until final elongation or wire
breakage. To measure the dependence of roughness on elongation, the process was repeated
several times up to different final elongations.

To carry out the multi-pass IDD process, the rollers’ rotation direction was reversed
at precise moments in time. Each pass strain amount was much smaller than in CDD and
was carefully selected to ensure the deformation stability. The passes were repeated many
times, and surface roughness was measured at a different stage of the process.

3.3. Roughness Measurement

For the calculation of the Ra parameter, the following equation was used:

Ra =
1
n

n

∑
i=1
|yi| (4)

In this formula, it is assumed that the mean line of the profile has been calculated,
where yi is the vertical distance from the mean line to the data point, and n is the number
of ordered points in the profile [33]. Equation (4) was also used for the calculation of
roughness in the mathematical model, but instead of the measured values of yi, coordinates
of corresponding nodes in the numerical model were used.

3.4. Boundary Element Method Based on the Numerical Model of Roughness

The model developed in this study is based on the boundary element method (BEM)
applied to the simulation of the deformation of a representative volume element (RVE)
consisting of several tens of model grains. The conditions for the joining of grains are added
to the system of equations of the problem. Each grain can have individual mechanical
properties. Interpolation of unknown quantities inside grains (displacements and stresses)
is based on the fundamental Kelvin solution, transformed for the two-dimensional problem
of visco-plastic deformation of an incompressible material [26] expressed by equations:

∆ux =
3 Fx

2Eg

(
g(3− 4ν)− x

∂g
∂x

)
−

Fyy(1 + ν)

Eg

∂g
∂x

(5)

∆uy =
Fy(1 + ν)

Eg

(
g(3− 4ν)− y

∂g
∂y

)
− Fxx(1 + ν)

Eg

∂g
∂y

(6)

σx = Fx

(
2(1− ν)

∂g
∂x
− x

∂2g
∂x2

)
+ Fy

(
2ν

∂g
∂y
− y

∂2g
∂x2

)
(7)

σy = Fy

(
2(1− ν)

∂g
∂y
− y

∂2g
∂y2

)
+ Fx

(
2ν

∂g
∂x
− y

∂2g
∂y2

)
(8)

σxy = Fx

(
(1− 2ν)

∂g
∂y
− x

∂2g
∂x2

)
− Fy

(
(1− 2ν)

∂g
∂x
− y

∂2g
∂x∂y

)
(9)

g = − 1
4π(1− ν)

ln
√

x2 + y2 (10)

where σx, σy, σxy—stresses in nodes on grains boundaries; Fx, Fy—forces that result in incre-
ments of displacements and stresses in Kelvin′s fundamental solution; ∆ux, ∆uy—displacement
increments in nodes on grains boundaries; ν—Poisson’s ratio (for an incompressible mate-
rial equal to 0.5).

The algorithm of the model is based on determining the loads Fx, Fy at the nodes of
the boundary elements mesh when the boundary conditions are met. Knowing the loads
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at the nodes, increments in displacement components, and the stresses in nodes can be
determined by Equations (5)–(10). A detailed description of the model algorithm is given
elsewhere [34,35] (basic principles and their application and the code validation, respectively).

To determine the value of strains increments and strain rates in grains, the central
point of each grain must be defined. Some increment in this point displacement was
determined as the average of displacement increments in the nodes of the boundary
elements from the current grain. Based on the linear interpolation of ∆ux and ∆uy the
increments in each grain strain were determined by Cauchy equations (that follow from
the Saint–Venant compatibility condition; for details see, for example, [36]). The following
conditions imposed on the boundaries were determined experimentally: longitudinal strain
of wire, εx; strain rate, ξ; and temperature, t.

The material of the grains is characterized by the current values of the strain rate,
strain, and flow stress following Equation (2). To take into consideration the difference in
the mechanical properties of various grains, the Kg coefficient is introduced in the model,
the values of which are distributed in the grains under the normal distribution law of
random variables. The parameters of this distribution are determined based on processing
the results of experiments on nanoindentation. In the Kelvin equations, the mechanical
properties of grains are taken into consideration using the effective modulus Eg, which in
the model is calculated by the equation:

Eg = Kg
σ
(
ε,

.
ε, t
)

∆ε
(11)

where σ
(
ε,

.
ε, t
)

is the flow stress (Equation (2)), ∆ε is the increment of effective plastic
strain in grains, and Kg is a coefficient that takes into consideration the inhomogeneity of
mechanical properties in different grains.

Each grain value Eg is calculated by the iterative method, the values of ε,
.
ε are deter-

mined as an average over the volume of the grain, and each grain temperature is taken to
be the same.

The computational grid was built in such a way as to recreate the real grain microstruc-
ture observed through an optical microscope (Figure 5a). The image analysis software
described elsewhere [37] was used for the grain boundary identification in the microscopic
images of the real microstructure and for the generation of the corresponding microstruc-
ture of the domain used in the computer model (see Figure 5b). After that, an artificial
surface relief was imposed on the calculation mesh (Figure 5c) in accordance with the
measured roughness of the initial wire (Figure 1b). In the model, the classical definition
of the roughness parameter Ra (i.e., the arithmetic average of the absolute values of the
profile height deviations from the mean line, recorded within the evaluation length (EN ISO
4287:2000, ASME B46.1-19950)) was slightly changed. Thus, the surface profile height was
referenced to the computational network nodes lying on the model wire surface along its
length. Thus, to perform numerical studies, the model needs calibration with the following
particular steps:

- The flow stress model determination (Equation (2));
- Generation of the boundary elements (BEM) grid based on experimental data (i.e., mi-

crostructure, Figure 5a);
- Determination of the mechanical inhomogeneity Kg parameter values (Equation (11)),

based on the nanoindentation test results;
- Generation of the surface relief in BEM grid based on experimental data (i.e., initial

surface profile modeling) (Figure 5c).

3.5. Nanoindentation Tests for Calibration of Numerical Model

Nanoindentation tests were performed using the Hysitron Tribolab TI-700 instrument
by Bruker Co. (Billerica, MA, US) equipped with the Berkovich tip indenter. Reduced elastic
moduli (Er) were evaluated using the methodology proposed by Oliver and Pharr [38].
Subsequently, statistical analysis and data deconvolution were used to determine single-
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phase distributions following the methodology proposed by Němeček et al. [39] and
Gupta et al. [40]. Each measurement was performed under displacement controlling with a
maximum displacement of 200 nm. The trapezoidal load function was applied (i.e., 3.7 s of
the linear loading/unloading and 5 s of the holding period). Sixty hardness measurements
were made, placed in five rows parallel to the wire diameter. Before the measurement, the
wire was placed in a molting form, fixed by adhesive tape to define the grinding plane, and
poured into epoxy resin. Then, it was gently ground mechanically using SiC foils up to grit
size 4000 with water as a lubricant. This way, approximately half of the wire thickness was
removed. Afterward, the wire was polished until a mirror shine was achieved, using the
Struers (Copenhagen, Denmark) diamond suspensions with the particle size of 3 and 1 µm.
After a thorough cleaning of the surface of the remaining polishing suspension, the sample
was ready for measurement.
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4. Results and Discussion
4.1. Results of the Nanoindentation Test and Calibration of the BEM Model

Results of the nanoindentation test are shown in Figure 6 in the form of the reduced
module Er dependence on the distance from the longitudinal symmetry axis of the ini-
tial wire.
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Figure 6. Reduced modulus vs. the distance from the longitudinal symmetry axis of the initial wire:
nanoindentation test result.

The mean value of the reduced module Er and mean standard error ∆Er calculated for
the whole data set was equal to Er = 123.2 GPa and ∆Er = 4.416 GPa, respectively. These
values were used to determine the Kg parameter value by the following equation:

Kg = 1± ∆Er

Er
(12)
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A Kg value equal to 1 ± 0.0493 was used as the basic data of an artificial generator of
random variables Kg, i for i-th grains of the model microstructure distributed according to
the normal distribution (Figure 5c). For this purpose, the vdrnggaussian function included
in the Intel® (Santa Clara, CA, US) Math Kernel Library, version 2021.1 was used in the
dedicated software developed by us.

4.2. Experimental Study of the DD and IDD Processes

The experimental conditions of the drawing processes are collected in Table 1. Each
of the DD processes listed in the table were repeated several times for different final
deformations of the wire. The longitudinal strain was calculated from the results of the
measurement of the change in the wire diameter. The maximum achieved strain was equal
to 0.43 and 0.78 for the CDD and IDD processes, respectively (increasing in the workability
by more than 1.8 times). The roughness versus strain relationship is shown in Figure 7.

Table 1. The experimental conditions of the DD processes.

Process V0, mm/s V1, mm/s εpass n td, ◦C

CDD 12.16 12.16–18.1 0–0.328 1 400
IDD 12.16 13.38 0.091 8 400

V0, V1—wire velocities; εpass—longitudinal strain (according to Equation (3)), n—number of passes, td—the
temperature in a heating device, measured by a thermocouple.

4.3. Strain Effect on Roughness Modeling

Experimental studies have shown that both processes (i.e., CDD and IDD) significantly
change the surface profile (e.g., Figure 8). So, longitudinal grooves (i.e., traces of the wire
drawing process) visible on the original wire are covered by the surface profile developed
in the IDD/CDD process. Qualitatively, the surface profile developed by the CDD and IDD
processes is very similar. The quantitative difference in surface roughness development
during both of the above processes were determined by the numerical modeling.
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Figure 7. Results of experimental and numerical study of the strain effect on roughening for incre-
mental dieless drawing (IDD) and conventional dieless drawing (CDD). In the figure, calculated and
experimental (exp.) data for CDD and IDD are shown. The initial roughness Ra was equal to 0.12 µm
(IDD and CDD) and 0 µm (CDD (a)).
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The plastic strain effect on surface roughness was numerically simulated for IDD
and CDD (for both, the initial roughness Ra was equal to 0.12 µm) and additionally for
CDD for an initial Ra equal to 0 µm (CDD_a). Identical grain microstructure (Figure 5a,b),
computational networks, and the Kg parameter distribution (Figure 5c) were used for each
of the above cases. The flow stress in grains was calculated with Equation (2), and the
simulated experimental conditions were collected, as shown in Table 1.

For a perfectly smooth surface without any roughness (i.e., the initial value of Ra
equal to 0 µm), the dependence of the parameter Ra calculated from the model on the wire
deformation in CDD can be well described by a linear function of the form: Ra = 0.7574ε
(the coefficient of determination R2 equal to 0.9997), where ε is the longitudinal strain
of the wire. Some initial roughness reduces the intensity of its growth upon the CDD
strain for a low deformation range (up to strain of about 0.3 in the case shown in Figure 7).
Above, a similar growth rate in Ra value as for the perfectly smooth wire was revealed.
The model results showed that the influence of the initial roughness on the roughness
of a strongly deformed wire is relatively small. As the deformation of the CDD wire
increases, the results obtained from the model become closer to the experimental results
(Figure 7). A much slower growth rate in the Ra value over the entire strain range was
model predicted for the IDD with a strain increment of 0.09, and approximately a 30% lower
Ra was predicted by the model for the limit strain in CDD, equal to 0.43. This effect seems
to be related to lover mean shear strains and to higher stability of the grain deformation
(i.e., higher value of the Kstab,i parameter) predicted by the model for IDD than for CDD (see
Figure 9). Higher deformation stability means that stress rises faster in the grains deforming.
This, as a result, leads to more homogeneous deformation, since the local increase in the
strain is immediately impeded by the strain hardening. It can be summarized that more
homogeneous deformation of the grains reduces strain-induced roughness, which can be
observed in Figure 7.
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5. Summary

The roughness of CuZn37 wire strain induced during dieless drawing was explained
based on experimental and numerically predicted results obtained for conventional and
incremental dieless drawing. A small increase in strain (about 0.09) was imposed on the
latter of these processes. Approximately a 30% reduction in roughness was experimentally
demonstrated for the incremental dieless drawing process carried out under the same
conditions as the conventional process. Numerical microscale modeling showed that a
decrease in strain-induced roughness occurs due to the more stable plastic deformation of
the grains connected with the incremental dieless drawing process.

A decrease in the roughness of the wire surface during incremental dieless drawing is
also accompanied by an increase in the workability by more than 1.8 times. The incremental
dieless drawing process, however, has lower productivity due to the need to perform
multiple passes instead of just one in the conventional process.
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