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Abstract: At present, the existing standards (AISC360-16, EN1994-1-1:2004, and JGJ138-2016) lack
relevant provisions for steel-reinforced concrete (SRC) composite columns with high-strength steel.
To investigate the axial compressive mechanical performance of short high-strength steel-reinforced
concrete (HSSRC) columns, the axial load test was conducted on 12 short composite columns with
high-strength steel and ordinary steel. The influences of steel strength, steel ratio, and the section
form of steel on the failure modes, bearing capacity, and ductility of the specimens were studied.
Afterward, the experimental data were compared with the existing calculation results. The results
show: compared with the specimens with Q235 steel, the bearing capacity of the specimens with
Q460 steel increases by 7.8–15.3%, the bearing capacity of the specimens with Q690 steel increases
by 13.2–24.1%, but the ductility coefficient increases by 15.2–202.4%; with the increase of steel ratio,
the bearing capacity and ductility of specimens are significantly improved. A change of the steel
cross-section could influence the ductility of SRC columns more than their bearing capacity. Moreover,
the calculation results show that present standards could not predict the bearing capacity of HSSRC
columns. Therefore, a modified method for determining the effective strength of steel equipped in
HSSRC columns was proposed. The results of the ABAQUS simulation also showed that the addition
of steel fibers could significantly improve the bearing capacity of Q690 HSSRC columns. The research
results provide a reference for engineering practices.

Keywords: high-strength steel; steel-reinforced concrete composite short column; bearing capacity;
ductility; ABAQUS simulation

1. Introduction

With the rapid development of high-rise and long-span buildings, ordinary con-
struction materials do not meet the requirements of modern buildings. Since the 1990s,
high-strength materials have increasingly been applied because their use in high-rise build-
ings can reduce the section size of structural elements and can reduce the use of building
materials while saving building space. Therefore, it is more economical and environmen-
tally friendly. In this background, high-strength and high-performance materials have
gotten significant attention [1–4]. High-strength steel has excellent mechanical performance
and can improve the mechanical performance of the structure. For the mechanical perfor-
mance of high-strength steel, the calculation method based on density functional theory is
proposed from the atomic level, which effectively reveals the mechanism of metal strength
and provides guidance for industrial production [5,6]. In recent years, the production of
high-strength steel has been increasing, and the welding conditions matching high-strength
steel are also perfected, which lays a strong foundation for the extensive application of
high-strength steel.

Scholars have carried out extensive research on the application of high-strength steel in
the construction field. Some of them had applied high-strength steel bars to ordinary steel-
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concrete structures and found that high-strength steel bars can significantly improve the
bearing capacity and ductility of reinforced concrete columns [7,8]. Compared with high-
strength steel bars, high-strength steel tubes can better restrain concrete [9–11]. Restricted
concrete can delay or even avoid local buckling of steel tubes so that the strength of
steel tubes can be fully utilized [12–14]. Compared with the normal reinforced concrete
columns, steel-reinforced concrete (SRC) columns have better structural performance,
which can effectively reduce the cross-sectional size of structural columns and obtain
larger building space. Compared with concrete-filled steel tubular columns, SRC columns
can make full use of the compressive performances of high-strength steel, and poured
concrete outside the steel can also avoid steel corrosion and improve the fire resistance
of components [15,16]. Therefore, SRC structures have been widely used in key parts of
important buildings [17–19]. The application of high-strength steel to SRC columns aims to
improve the bearing capacity of the member without increasing or reducing the sectional
area of the vertical member [20–22].

However, as shown in Table 1, during the study, scholars [23–39] also found that
when high-strength steel is applied to building structures, the existing standards cannot
accurately predict the mechanical performance of this type of specimen. Besides, design
approaches from standards, including AISC360-16 [40], EN1994-1-1: 2004 [41], and JGJ138-
2016 [42], are based on the related research results of ordinary steel; therefore, the scope of
application needs to be verified.

Table 1. Research status in various countries.

Author Strength/MPa Type Number of
Specimen Method Main Conclusion

Gu [23] 459–737

HSRC

12

experiment

• The predicted values based on Code ACI318-14 for
the bearing capacity of such specimens are too
conservative.

Li [24] 437–629 9 • The effect of high-strength steel bars on the
bearing capacity of specimens is not obvious.

Li [25] 437–629 9

• High-strength steel bars do not yield. It is
suggested that the steel strength should be
500 MPa when calculating the axial capacity of
such specimens.

Mohsen
[26] 520–670 39

• The ACI 318 model over-predicts the capacities for
the 10 columns out of 26 columns tested with
nominal 2% steel reinforcement ratio.

Wang [27] 522–906

CFHSST

13

experiment

• The codes overestimate the bearing capacity of
UHPC filled high-strength steel tubular short
columns.

Du [28] 724–741 10

• It is pointed out that the limitation of
superposition theory—the influence of constraints
are not considered, which makes the calculation
results inaccurate.
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Table 1. Cont.

Author Strength/MPa Type Number of
Specimen Method Main Conclusion

Wei [29] 359–1153 15

experiment
and

simulation

• Concrete enters plasticity prior to high-strength
steel tube, shear failure is obvious, and constraint
of high strength steel tube is insufficient.

Cai [30] 629–1022 34 • The predicted value based on Eurocode is
generally unconservative.

Fang [31] 760–782 15
• The ultimate loads based on the Eurocode 4 and

the approach from Zhu and Chan [32] were
overestimated by 18–28%.

Ehab [33] 275–690

HSSRC

54 simulation • EC4 overestimated the flexural bearing capacity of
eccentric columns.

Wang [34] 276–774 12

experiment

• Eurocode 4 and AISC360 are too conservative, and
JGJ138 is unconservative at eccentricity 0.6.

Lai [35] 590–646 12
• EN 1994-1-1 gives unconservative estimation of the

N-M interaction strength curve of CES columns
with high-strength steel S500.

Li [36] 439–888 8
• Steel contribution ratio is identified as a new

parameter for the fire resistance design of CES
columns, but it is not mentioned in the Codes.

Li [37] 439–888 5

experiment
and

simulation

• The result of the fire resistance time of CES
columns based on Code EN1994-1-2 is
unconservative when the applied load on CES
column specimens exceeds the limiting value.

Yang [38] 496–530 2 • The predicted values based on AISC360 are too
conservative, resulting in material waste.

Yang [39] 517 1 • The predicted values based on N-M correlation
curve method are conservative.

HSRC represents high-strength reinforcement concrete; CFHSST represents concrete filled high strength steel tube;
HSSRC represents high-strength steel reinforced concrete.

To investigate the influence of steel strength, steel ratio, and the section form of steel on
the axial compressive bearing capacity of HSSRC composite short columns, 12 specimens
equipped with Q235, Q460, and Q690 were tested. The main steps of this research are
shown in Figure 1. The experimental results were compared with the calculation results
from existing related codes to verify the applicability of the calculation approaches, and
design suggestions were proposed. Finally, finite element models were established.
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2. Experimental Investigation

This section contains four parts, and the main steps are shown in Figure 2.
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Figure 2. Flowchart of the experimental investigation.

2.1. Test Specimens

A total of eight high-strength welded steel-concrete composite short column specimens
and four ordinary welded steel concrete comparison specimens were designed for the
experiment. The change parameters contain the strength grade of the section steel, the steel
ratio, and the section form of the section steel. Figure 3 shows the details; the explanation
of the number of the specimens is shown in Table 2; the section size and reinforcement of
the specimen are shown in Figure 4. The height of the specimens was 600 mm. Considering
that high-strength concrete has strong brittleness and poor crack resistance, C50 pea gravel
concrete was used in this test.
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Table 2. Main parameters of specimens.

Specimen
Designation Steel Grade Steel Ratio to

Concrete
Dimensions of Steel

(b × h × t1 × t2) Stirrups Spacing Section Form of
Steel

A1Q4S3-H(A1) Q460 3.13% 100 × 100 × 5 × 5 70 H
A2Q4S5-H(A2) Q460 5.13% 100 × 106 × 8 × 5 70 H
A3Q4S6-H(A3) Q460 6.20% 110 × 106 × 8 × 8 70 H
A4Q4S6-+(A4) Q460 6.20% 50 × 106 × 8 × 5 70 +
A5Q6S3-H(A5) Q690 3.13% 100 × 100 × 5 × 5 70 H
A6Q6S5-H(A6) Q690 5.13% 100 × 106 × 8 × 5 70 H
A7Q6S6-H(A7) Q690 6.20% 100 × 106 × 8 × 8 70 H
A8Q6S6-+(A8) Q690 6.20% 50 × 106 × 8 × 5 70 +
A9Q2S3-H(A9) Q235 3.13% 100 × 100 × 5 × 5 70 H

A10Q2S5-H(A10) Q235 5.13% 100 × 106 × 8 × 5 70 H
A11Q2S6-H(A11) Q235 6.20% 110 × 106 × 8 × 8 70 H
A12Q2S6-+(A12) Q235 6.20% 50 × 106 × 8 × 5 70 +
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For Simplicity, Ai (i = 1~12) is used in some parts of the article to represent the number
of specimens.

2.2. Material Properties

According to the relevant standard “Metallic Materials Tensile Test” (GB/T 228.1-
2010) [43], the mechanical properties of the section steel and the steel bars were tested, as
shown in Table 3.
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Table 3. Mechanical properties of steel.

Grade
Yield Strength Ultimate Strength Elongation Ratio

f y/MPa Cv f u/MPa Cv δ/%

Q235 291.0 5.4% 453.1 4.3% 32.3%
Q460 469.1 7.9% 557.3 8.3% 25.0%
Q690 735.1 1.1% 822.3 0.9% 19.2%

HRB400 443.2 4.5% 594.9 3.7% 27.8%
Cv represents coefficient of variation.

According to the relevant standard “Standard for Test Methods of Concrete Structures”
(GB/T 50152-2012) [44], the mechanical properties of the concrete were tested. Nine concrete
cubes (150 mm × 150 mm × 150 mm) were maintained under the same conditions as the
specimens in 28 days, and the cubic compressive strength of the concrete test block was
55.8 MPa.

2.3. Process of Specimen Manufacture

The production processes of the specimens are shown in Figure 5. The section of steel
was formed by the full welding of three steel plates. As shown in Figure 5a, before pouring
the specimens, the section of steel was fixed to the reinforcing steel frame by thin steel bars
at the upper and lower ends. Further, paste strain gauges were placed at locations to be
measured. As shown in Figure 5b, we installed the formwork and poured the concrete into
layers that were fully vibrated during the pouring process. As shown in Figure 5c, after
the curing was completed, the top surface of the specimen was polished flat. In order to
prevent local pressure damage to the specimen, the upper and lower ends were reinforced
with carbon fiber cloth within a range of 200 mm.
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2.4. Test Setup and Procedure

The test loading was carried out by the electro-hydraulic servo testing machine
(Dongce Testing Machine Technology Co., Ltd., Jinan, China), and the loading device
is shown in Figure 6. The test was carried out in a graded loading method. Before the
formal load, to ensure the normal operation of the test instrument, a load of 100 kN was
applied in advance. At the beginning of the formal test, the load was carried out at a rate
of 200 kN/min until the load was 40% of the estimated ultimate load, then the loading
rate was reduced to 100 kN/min. When the loading reached 80% of the estimated ultimate
bearing capacity, the load method was switched to displacement control, and the loading
rate was 0.2 mm/min. After loading to the peak load, the test was ended when the bearing
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capacity dropped to ~75% of the ultimate load. To facilitate the monitoring of the compo-
nent forces, strain gauges were pasted on the surface of the section of steel, steel bars, and
concrete, and the measuring points are shown in Figure 7. The vertical displacement of the
specimen was recorded by the displacement meter in the loading device.
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3. Test Results and Analysis
3.1. Failure Phenomenon

Due to the different design parameters of the specimens, the damage phenomena
were different during the stress process. The failure phenomenon of each specimen is
described according to the yield state and the changing trend of the bearing capacity of the
section steel.

The failure modes of specimens equipped with Q460 (A1~A4) and Q235 steel (A9~A12)
are similar, and the failure characteristics are as follows.

Figure 8 shows the typical failure characteristics of the specimen. At the initial stage of
loading, the specimen was in a linear elastic state, and no cracks appeared on the concrete
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surface. As shown in Figure 8a, when the load increased to 0.8~0.9 Nu (Nu is the ultimate
bearing capacity of the specimen), micro-cracks appeared on the side of the upper end of
the column; as the load continued to increase, the cracks continued to extend downwards,
and the longitudinal bars and the section steel yielded successively. When the specimen
equipped with Q235 steel was in a compression state, the section steel yielded before the
longitudinal reinforcement. When the strength grade of the section steel was Q460, the
longitudinal reinforcement of the composite short column yielded before the section steel.
When the specimen reached the ultimate bearing capacity Nu, crack length and crack width
developed rapidly. As shown in Figure 8b, the protective concrete layer in the middle
section of the specimen cracked and fell off. With the increase of the load, as the concrete
at the middle edge of the specimen was crushed, the protective layer continuously fell
off, the load-bearing capacity of the specimen was rapidly reduced, and the longitudinal
reinforcement bulged outward. Simultaneously, stirrup yielded; as shown in Figure 8c, the
concrete of the protective layer was separated from the concrete in the confinement area
of the stirrups. Then the rate of reduction of the bearing capacity slowed down until it
reached 75% of the ultimate bearing capacity. After the test was over, the broken concrete
on the surface of the specimens was removed, and it can be observed that the concrete in
the constrained area did not show obvious collapse.
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Compared with A1~A4 and A9~A12, the cracks of specimens A5 and A6 (equipped
with 3.63% and 5.13% Q690 steel, respectively) appeared later, and the failure process has
the following characteristics.

When specimens A5 and A6 reached the ultimate bearing capacity Nu, multiple verti-
cal cracks quickly appeared on the surface of the column, and they developed continuously
with the increase of the vertical displacement. At this time, the longitudinal bars yielded,
but the section steel had not reached the yielding state. When the bearing capacity dropped
to approximately 85% of the peak load, the bearing capacity decreased slowly. When
the bearing capacity dropped to ~85% of the peak load, the bearing capacity dropped
slowly. The vertical displacement of the specimen when failed increased due to the in-
crease of the strength level of the section steel, and the degree of damage was intensified.
Figures 9 and 10 show the characteristics of the failure morphology of different specimens.
Compared with specimens A1~A4 and A9~A12, the concrete cracking degree and the final
degree of crushing in the middle section of specimens A5 and A6 were more serious.
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The specimens A7 and A8 equipped with Q690 steel and steel ratio of 6.20% were
loaded to the ultimate load, and then slowly dropped to 0.85 Nu. At this time, the concrete
protective layer fell off, the load-displacement curve reached an inflection point, the bearing
capacity of the specimen stopped decreasing, and a slow secondary lifting phenomenon
occurred. During this process, the Q690 steel yielded, and the surface of the specimen was
seriously damaged. When the vertical displacement reached 20~23 mm, accompanied by a
loud noise, the specimen lost all bearing capacity, and the test ended. After removing the
broken concrete on the surface, it was found that the longitudinal bars buckled outwards,
and the stirrups broke.

3.2. Load-Displacement Curve

Due to the different design parameters of the specimens, the damage phenomena
were different during the stress process. The failure phenomenon of each specimen is
described according to the yield state and the changing trend of the bearing capacity of the
section steel.
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Figure 11a shows the load-displacement curve of type I. The specimens conforming
to the characteristics of this type of curve are A1~A6 and A9~A12. The OA stage is the
elastic deformation stage, at which the specimens have linear deformation. At the AB stage,
the transverse deformation of each part gradually increases, and the restraint effect of the
section steel and stirrups on the concrete in the constrained area continues to increase until
the specimen enters the full-section plastic state and reaches the limit bearing capacity.
Because the concrete of the protective layer is not restrained, the deformation ability of
the specimens is relatively weak at the BC stage. At this stage, it cracks and falls off, and
the bearing capacity of the specimen decreases rapidly until the specimen is transformed
from the overall axial force to the constrained area of the steel and stirrups. The concrete
bears the axial force. At the CD stage, the load is mainly borne by the concrete inside the
confinement area of the steel section and stirrups. The concrete in the constrained area
of stirrups is jointly restrained by stirrups and steel sections, its deformation ability is
improved, its strength degrades slowly, and it can continue to bear the load, so the rate of
decrease of the bearing capacity of the specimen is slowed down.
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As shown in Figure 11b, the load-displacement curves of the specimens A7 and A8
(equipped with 6.20% Q690 steel in H-section and cross-section form) both showed a
secondary increase. The phenomenon is in line with the characteristics of the type II load-
displacement curve. At the CD stage, the concrete protective layer has completely failed,
but the strength of the concrete in the confinement area of the stirrups degrades slowly. As
the sectioned steel reaches the yielding state and enters the strengthening stage, the overall
load-bearing capacity of the specimen reaches the lowest point C of the descending section,
the displacement continues to increase, the built-in sectioned steel yields and begins to
strengthen under the action of axial pressure, and the load changes from falling to rising.
At the DE stage, when the displacement increases to a certain extent, the class II curve
breaks due to the yield of the stirrup, and the concrete in the confinement area of the stirrup
loss of restraint and sudden crushing results in loss of bearing capacity of the specimen.
Figures 12 and 13 show the load-displacement curves of the specimens with different steel
grades, steel ratios, and section forms of steel.
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3.3. Ultimate Bearing Capacity

The ultimate bearing capacity of the specimen is shown in Table 4. Compared with
the specimens equipped with Q235 steel, when the steel grades were Q460 and Q690,
the maximum increase in the bearing capacity of the specimens was 15.3% and 19.0%,
respectively. Compared with the specimens equipped with Q460 steel, the bearing capacity
of the specimens equipped with Q690 steel increased slightly because the yield strain of
the Q690 steel was much larger than the peak compressive strain of the concrete, so the
Q690 steel could not yield when the specimens reached the ultimate bearing capacity;
therefore the material performances of the high-strength steel were not fully utilized. For
the specimens with the same strength grade built-in steel, compared with the specimens
with a steel ratio of 5.13%, the highest increases in bearing capacity of the specimens with a
steel ratio of 6.20% were 13.6% and 18.8%. The growth rate was relatively large.

Table 4. Comparison of test results with calculation results calculated codes.

Specimens

Test
Results Simulation Results Calculation Results

Bearing
Capacity
Nu/kN

Bearing
Capacity
Na/kN

Simulation
Error

AISC360-16 EN1994-1-1:2004 JGJ138-2016

Nu
ca/kN

Error Rate
Nu

cc/kN
Error Rate

Nu
cj/kN

Error Rate

Single Average Single Average Single Average

A1Q4S3-H 2514.0 2457.3 −2.3% 2241.9 12.1%

9.1%

2307.8 8.9%

6.15%

2141.2 17.4%

14.9%A2Q4S5-H 2845.6 2787.9 −2.0% 2581.2 10.2% 2654.5 7.2% 2452.2 16.0%
A3Q4S6-H 2987.5 3032.5 1.5% 2807.7 6.4% 2884.7 3.6% 2658.6 12.4%
A4Q4S6-+ 2961.2 3010.4 1.7% 2753.9 7.5% 2822.7 4.9% 2602.8 13.8%

A5Q6S3-H 2585.6 2635.3 1.9% 2651.6 −2.5%

−5.8%

2744.6 −5.8%

−8.9%

2534.2 2.0%

−0.93%A6Q6S5-H 2938.5 2988.1 1.7% 3055.4 −3.8% 3159.0 −7.0% 2906.2 1.1%
A7Q6S6-H 3067.7 2976.7 −3.0% 3346.5 −8.3% 3456.8 −11.3% 3173.5 −3.3%
A8Q6S6-+ 3060.6 3126.5 2.2% 3352.4 −8.7% 3455.3 −11.4% 3172.2 −3.5%

A9Q2S3-H 2332.9 2327.2 −0.2% 2025.5 15.2%

12.8%

2079.0 12.2%

10.2%

1935.2 20.5%

18.73%A10Q2S5-
H 2468.9 2407.1 −2.5% 2212.5 11.6% 2266.1 9.0% 2102.6 17.4%

A11Q2S6-
H 2601.0 2559.9 −1.6% 2339.8 11.2% 2392.9 8.7% 2216.0 17.4%

A12Q2S6-+ 2623.3 2546.3 −2.9% 2318.8 13.1% 2367.3 10.8% 2193.0 19.6%

Simulation error = Na/Nu − 1. Error rate = Nu/Nu
c* − 1. Nu

ca, Nu
cc, Nu

cj represent the calculation results
according to the standards of the United States, Europe, and China, respectively. The details of the simulation
method and the simulation verification are shown in Section 5.

3.4. Ductility Coefficient

In order to quantitatively analyze the axial ductility of the specimens, the ductility
coefficient µ is now introduced [45,46], as shown in Equation (1).

µ = Eu/Ey (1)

where, Eu is the dissipated energy at the ultimate point; Ey is the dissipated energy at the
yield point, as shown in Figure 14. In this study, the ultimate point was taken as the bearing
capacity drops to 85% of Nu. Since the N-∆ curves of A7 and A8 cannot drop to 85% of Nu,
and the phenomenon of the secondary rise occurred, the ultimate points of A7 and A8 were
determined from the perspective of deformation. Therefore, the point with three times the
deformation of the peak load was selected as the ultimate point. The yield points of the
specimens were determined by the energy equivalence method. The calculation results are
shown in Table 5, and the ductility comparison of each specimen is shown in Figure 15.
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Table 5. Loads and displacements of characteristic points.

Specimens ∆y/mm Ey ∆u/mm Eu µ

A1Q4S3-H 3.70 4660.9 4.85 7415.84 1.59
A2Q4S5-H 3.89 5230.2 5.96 10,790.8 2.06
A3Q4S6-H 4.15 6115.6 8.35 17,757.3 2.90
A4Q4S6-+ 4.16 6163.9 15.06 34,940.8 5.67
A5Q6S3-H 3.76 5138.5 6.48 11,783.1 2.29
A6Q6S5-H 3.97 5869.2 8.53 18,357.5 3.13
A7Q6S6-H 4.16 6539.6 14.37 41,312.8 6.32
A8Q6S6-+ 4.18 6637.4 13.83 44,051.8 6.64
A9Q2S3-H 3.42 4017.9 3.83 4936.8 1.23

A10Q2S5-H 3.58 4422.0 4.88 7526.1 1.70
A11Q2S6-H 3.84 5009.8 5.51 9190.1 1.83
A12Q2S6-+ 3.82 5144.2 6.81 12,382.4. 2.41

Where, ∆y is the displacement corresponding to the yield point, ∆u is the displacement corresponding to the
ultimate point.
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By comparing the calculation results of the ductility coefficient of different specimens,
it can be found that the increases of the steel grade and steel ratio had obvious effects on the
ductility coefficient of the specimens. When the steel ratio was higher, the increase in the
strength grade had a significant impact on the ductility coefficient of the specimens. When
the section steel had higher strength, the increase in the steel ratio had a significant impact
on the ductility coefficient. When the steel ratio was 6.20%, compared with the specimens
equipped with Q235 steel, the ductility coefficients of the specimens equipped with Q460
and Q690 steel were increased by 58.5% and 245.4%, respectively. When the steel grade
was Q690, compared with the specimen with a 3.63% steel ratio, the ductility coefficients of
the specimens equipped with steel ratios of 5.13% and 6.20% were increased by 36.7% and
176.0%, respectively.

When the form of the steel changes from H-section to cross-section, the ductility
coefficient of the specimen equipped with Q235 steel increased by 31.20%, the ductility
coefficient of the specimen equipped with Q460 steel increased by 95.20%, and the ductility
coefficient of the specimen equipped with Q690 steel increased by 5.1%. When the steel
grade was Q235, the displacement difference between the two different cross-section
specimens was small when the bearing capacity of the specimen was reduced to about
85% Nu, so the ductility coefficient did not change significantly. However, it can be
observed from Figure 11 that when the bearing capacity was reduced to about 75% Nu,
the displacement of the specimen equipped with cross-section steel was much greater
than that of the specimen equipped with H-section steel. When the steel grade was Q460,
the cross-section steel fully exerted the restraint effect on the concrete when the member
was stressed, and the ductility coefficient increased significantly. When the steel grade
was Q690, the ductility of the specimens equipped with H-section and cross-section steel
were both very excellent. Compared with the specimen equipped with H-section steel,
the second increasing stage of the load-displacement curves of specimens equipped with
cross-section steel showed that the residual bearing capacity was higher, and the ultimate
displacement of the specimen was greater.

4. Calculation and Analysis of Bearing Capacity

American code AISC360-16, European code EN1994-1-1:2004, and Chinese code JGJ138-
2016 all propose the formulas for calculating the axial compressive bearing capacity of SRC
columns, but none of them give the calculation formula for the SRC column with high-
strength steel. Combined with the test results, the applicability of the above-mentioned
formulas for calculating the axial compressive bearing capacity of the specifications for the
high-strength SRC column was verified.

4.1. The Calculation Method of Current Specifications

The American “Code for Design of Steel Structure Buildings” (AISC360-16) adopts the
method equivalent to the section steel of the outer reinforced concrete part and calculates
according to the steel structure design method. The calculation formula of the axial
compression is:

Pn =

 Pn0

(
0.658

Pn0
Pe

)
Pn0
Pe
≤ 2.25

0.877Pe
Pn0
Pe

> 2.25
(2)

Pn0 = Fy As + Fysr Asr + 0.85 f ′c Ac (3)

Pe = π2(EIeff)/L2
c (4)

where, As, Asr, Ac represent the section area of section steel, steel bar, and concrete, re-
spectively; Fy, Fysr, f c

′ represent the compressive strength of section steel, steel bar, and
concrete, respectively; EIeff represents the effective stiffness of the section; Lc represents the
effective length of the member.
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For biaxially symmetric steel-concrete composite columns, the calculation formula
for the axial compressive bearing capacity of the European “Code for Design of Steel and
Concrete Composite Structures” (EN1994-1-1:2004) is as follows:

NEd ≤ χNpl,Rd (5)

Npl,Rd = Aa fyd + 0.85Ac fcd + As fsd (6)

where, Aa, Ac, As, represent the cross-sectional area of section steel, concrete, and reinforce-
ment, respectively; f yd, f cd, f sd represent the compressive strength of section steel, concrete,
and reinforcement, respectively; χ represents the buckling reduction coefficient considering
the relative slenderness ratio, confirmed according to the European “Code for Design of
Steel Structures” (EN 1993-1-1:2005) [47].

The calculation formula for the axial compressive bearing capacity of steel-concrete
composite columns from “Code for Design of Composite Structures” (JGJ 138-2016) is:

N ≤ 0.9ϕ( fc Ac + f ′y A′s + f ′a A′a) (7)

where, f c, f y
′, f a

′ represent the design value of compressive strength of concrete, steel
bar, and section steel, respectively; Ac, As

′, Aa
′ represent the cross-sectional area of con-

crete, steel bar, and section steel, respectively; ϕ represents the axial compression stability
coefficient, which can be obtained according to the slenderness ratio look-up table.

4.2. Comparison of Test Results and Calculation Results

As shown in Figure 16, when the steel content is constant, as the strength grade of
the section steel increases from Q235 to Q460, the bearing capacity of the specimens is
significantly improved. Based on the different specifications, the calculation results are
much smaller than the test results, the norms of all countries are conservative, and the
changing trend of the calculated value of the bearing capacity is consistent with the test
value. The European standard calculation results are the closest to the test results, and the
Chinese standard calculation results are the most conservative. When the existing standard
calculation methods are applied to the calculation of the axial compressive bearing capacity
of the Q690 high-strength steel-concrete composite specimens, the calculation results can
not predict the bearing capacity of the columns accurately, because compared to Q235
and Q460 steel, the yield strain of Q690 steel is much larger. Because of the limitation
of the compressive deformation capacity of concrete, the specimens reach the ultimate
bearing capacity when the concrete is crushed, but the Q690 steel has not yet yielded, so
the strength has not been fully developed. If the yield strength of Q690 section steel is
still used to calculate the bearing capacity based on the strength superposition theory, the
contribution of the high-strength section steel to the axial load bearing capacity would be
overestimated, resulting in unsafe calculation results. Therefore, it is not appropriate to
directly use the existing calculation method for the calculation of the bearing capacity of
the Q690 high-strength steel-concrete composite column specimens.

As shown in Figure 17, when the strength grade of the section steel is constant, as the
steel content increases from 3.63% to 5.13% and 6.20%, the bearing capacity of the specimen
increases significantly, and the test results and the standard calculation results have the
same change trend.
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4.3. Design Suggestion

According to the above test results and theoretical analysis, Q690 steel can greatly
improve the residual bearing capacity and deformation capacity of the specimens. However,
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because the specimens reach the ultimate bearing capacity and the high-strength section
steel fails to yield, it is not advisable to use the existing bearing capacity calculation
formulas when designing this type of member. A comprehensive consideration of the
strength degradation of the protective layer of concrete and the improvement of the strength
and deformation performance of the concrete in the confinement area of the stirrups,
if no measures are taken to ensure the compressive deformation capacity of concrete,
when calculating the axial compressive bearing capacity of high-strength steel-concrete
composite short columns, the strength of the section steel should be taken from its effective
compressive strength:

feff = Esεeq (8)

where, Es is the elastic modulus of section steel, as shown in Figure 18. According to the
weight of the unconfined concrete and the concrete in the constrained area in the full-section
concrete, the equivalent full-section concrete stress-strain curve has been calculated, as
shown in Figure 18a. The strain value corresponding to its peak point is the equivalent
full-section concrete peak strain εeq, taking the strain value εeq on the stress-strain curve of
the high-strength section of steel as the corresponding stress is the effective compressive
strength f eff provided by the high-strength section steel, as shown in Figure 18b. The
influence of this method on the calculation results of bearing capacity is shown in Figure 19.
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5. Finite Element Analysis
5.1. Model Establishment

In the failure process of the specimens equipped with Q690 steel, the compressive
strength of the steel is not fully utilized, resulting in insufficient overall bearing capacity of
the specimen. When the steel reaches the yield stress value, the protective layer concrete has
severely cracked or even fell off, which seriously affects the applicability of the structure.
To meet the requirements of engineering application, it is necessary to propose a measure
to improve the concrete deformation capacity of the component. To solve this problem,
steel fiber concrete can be applied to high-strength SRC columns.

Studies have shown that the incorporation of steel fibers can effectively improve the
deformability of concrete [48,49]. The numerical analysis of the representative specimens
A3, A4, A7, and A8 in the test was carried out through the ABAQUS finite element analysis
software. Based on the research [50], the proposed outsourcing hexahedron method uses
python scripts to insert randomly distributed steel fibers inside the specimen. By comparing
the stress characteristics of the specimen before and after inserting the steel fiber, the
influence of the incorporation of steel fibers to the bearing capacity and the force behavior
were analyzed for the specimen.

In the model, the C3D8R hexahedral reduced integral element was selected for concrete
and section steel element type, and T3D2 three-dimensional truss element was selected
for reinforcement and steel fiber element type. The friction was defined at the interface
between the concrete and the steel to consider the bond. The model grid was divided with
the size ratio proposed by Ehobody et al. [51]. After convergence analysis, we selected the
grid division scheme, as shown in Figure 20, and imposed constraints based on the actual
loading device.
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5.2. Definition of Material Properties

The compressive capacity and deformation capacity of concrete can be significantly
improved under the lateral restraint. Scholars have proposed a variety of constitutive
curves of concrete under restraint. Among them, the constitutive relationship of restrained
concrete proposed by Mander et al. [52] considered factors, such as the stirrup ratio, stirrup
strength, stirrup form, and the concrete compressive strength; the expression is as follows:

σ =
fccxr

r− 1 + xr (9)

where σ is the concrete stress; f cc is the compressive strength of concrete considering
the lateral restraint effect; x = ε/εcc; ε is the concrete strain Esec = f cc/εcc, f cc = kf c0,
εcc = [1 + 5(k − 1)]εc0, Ec, Esec are the elastic modulus and secant modulus of concrete;
f c0 is the axial compressive strength of concrete; k is the strength improvement coefficient
of constrained concrete.

For unconstrained concrete, k = 0; for concrete in the area confined by stirrups, Mander
gives the calculation method as:

k = −1.254 + 2.254

√
1 + 7.94

f ′l
fc0
− 2

f ′l
fc0

(10)

where f c0 is the axial compressive strength of concrete and fl′ is the effective lateral restraint
stress [53] for the concrete in the effective confinement area of section steel and stirrups.
Combined with the calculation method of effective restraint stress of section steel given
by Zhao et al. [54] and the theory of linear superposition of restraint of joint restraint
area proposed by Feng et al. [55], the triaxial figure proposed by Mander can be used to
determine the strength improvement coefficient k, as shown in Figure 21.
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The material performances of sectioned steel and reinforcing steel adopt an ideal elasto-
plastic constitutive model, and its mechanical performance index was adopted according to
the results of the material property test. As shown in Table 6, combined with related research
and design specifications, the simulation parameters of steel fiber were determined.

Table 6. Simulation parameters of steel fibers.

Type f sf/MPa ρf/% df/mm lf/mm lf/df

Flat 400 1.0 0.8 60 75
f sf, ρ, df, lf represent the tensile strength, volume content, diameter, and length of steel fiber, respectively.

5.3. Analysis Result

As shown in Figure 22, the damage pattern of the simulation analysis was in good
agreement with the test results. Figure 23 shows the test results of typical specimens and
the load-displacement curves of the simulation results before and after the concrete was
added with steel fiber. The simulation curve without steel fiber was in good agreement
with the test result curve, indicating that the model can simulate and analyze the stress
process of this type of specimen accurately; the reinforcement of fibers had little effect on
the ultimate bearing capacity of specimens equipped with Q460 steel. However, it can
significantly enhance the ultimate bearing capacity of the specimens equipped with Q690
steel so that the strength can be fully exerted. Compared with the simulation results of
the specimens without steel fibers, the simulation results with steel fibers of the bearing
capacity of specimens A7 and A8 increased by 15.5% and 13.9%, respectively.
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Figure 23. Comparison of load-displacement curves between two simulation results with test results.
(a)A3, (b) A4, (c) A7, (d) A8.

As shown in Figure 24, in the process of concrete compression, the steel fibers dis-
tributed along the cross-section of the specimen at the place where the concrete stress is
relatively large produced obvious tensile strain. As shown in Figure 25, by comparing and
analyzing the stress cloud diagram of section steel, it can be observed that after the concrete
is reinforced by steel fiber, when the specimen reaches the ultimate bearing capacity, Q690
steel reaches the yield state, which can give full play to the strength of the material. The
passive restraint measure provides a lateral restraint effect for the concrete, which can
enhance the deformability of the full-section concrete to match the Q690 high-strength steel.
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At present, scholars have conducted research on the deformation performance of steel
fiber concrete [56–60]. Based on the analysis of the test results, the conditions that the
high-strength steel is applied to the SRC columns are put forward: f cc ≥ f y/Es. To meet
this condition, the peak strain of concrete can be increased by adding steel fiber so that it is
not less than the yield strain of sectioned steel to ensure that the mechanical performance
of high-strength sectioned steel can be fully exerted.

6. Conclusions

In this paper, the axial load test, theoretical analysis, and ABAQUS simulation of eight
HSSRC columns equipped with Q460 and Q690 steel and four SRC columns equipped with
Q235 steel were carried out. The conclusions are as follows:

(1) For the specimens with the same steel ratio, the bearing capacity and ductility of SRC
columns increase with the increase of steel strength. Compared with the specimens
with Q235 steel, the bearing capacity and the ductility of the specimens equipped with
Q460 steel increased by 7.8–15.3%, 21.2–135.3%, respectively; the bearing capacity
and the ductility of the specimens equipped with Q690 steel increased by 13.2–24.1%,
84.1–245.4%, respectively.

(2) For the specimens with the same strength grade, the bearing capacity and ductility of
SRC columns can be significantly improved by increasing the steel ratio. Compared
with the specimens equipped with a 3.63% steel ratio, the bearing capacity and
ductility of the specimens equipped with 5.13% steel ratio increased by 5.8–13.6%,
29.6–38.2%, respectively; the bearing capacity and the ductility of the specimens
equipped with a 6.20% steel ratio increased by 11.5–18.6%, 48.8–176.0%, respectively.

(3) For the specimens with the same steel ratio, when the form of steel section is trans-
formed from H-section to cross-section, in terms of bearing capacity, the bearing
capacity of SRC columns did not change significantly; in terms of ductility, when the
steel grade was Q460, the ductility of the specimen equipped with cross-section steel
was 95.2% higher than the ductility of the specimen equipped with H section. When
the steel grade was Q690, the ductility of the specimens equipped with H-section and
cross-section steel were both very excellent.

(4) Comparing the test results with the calculation results of the existing approach, it is
found that the existing calculation approach can accurately calculate the axial bearing
capacity of SRC columns equipped with Q460 steel, but it is unable to calculate the
axial bearing capacity of SRC columns equipped with Q690 steel. Therefore, the
method of determining the effective compressive strength of high-strength steel in
SRC columns is proposed. The results show that this method can accurately calculate
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the axial bearing capacity of HSSRC columns and apply the calculation results to
engineering applications.

(5) The simulation results show that the bearing capacity of HSSRC columns with added
steel fibers is higher than the HSSRC columns without steel fibers. Therefore, steel
fibers are suggested to be incorporated into the HSSRC columns.

7. Research Limitation

In this paper, the axial load test of HSSRC short columns was carried out, and the
conclusions were obtained by combining theoretical analysis. However, the research still
has limitations:

(1) The parameters studied in this paper were the influence of the steel grade, the steel
ratio, and the section form of the steel. Subsequently, parameters such as slenderness
ratio, stirrup form, and concrete strength can be added for the test.

(2) Based on the theoretical analysis, this paper proposed to improve the deformation per-
formance of concrete by steel fibers to make full use of the compression performance
of high-strength steel, which is verified by an ABAQUS simulation. The conclusion
can be verified by experiments.
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