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Abstract: Strain is a crucial assessment parameter in structural health monitoring systems. Microstrip
sensors have been one of the new types of sensors used to measure this parameter in recent years. So
far, the strain directionality of these sensors and the methods of miniaturization have been studied.
This article proposes the use of a single cell metamaterial as a resonator of the microstrip sensor
excited through the microstrip line. The proposed solution allowed for significant miniaturization of
the microstrip sensor, with just a slight decrease in sensitivity. The proposed sensor can be used to
measure local deformation values and in places with a small access area. The presented sensor was
validated using numerical and experimental methods. In addition, it was compared with a reference
(rectangular geometry) microstrip sensor.

Keywords: metamaterial; metasurface; split ring resonator (SRR); single cell; strain sensor; structural
health monitoring (SHM)

1. Introduction

The safety and integrity of infrastructure is an important aspect of building and main-
taining activities. Therefore, Structural Health Monitoring (SHM) systems are becoming
more and more popular. SHM systems support or even replace periodic structural condition
inspections. The implementation of SHM in various structures is beneficial in many ways
such as increasing public safety, cutting costs of exploitation and monitoring, improving
the life span of constructions, and early detection of risks. This leads to improvement of the
examined object’s overall performance [1]. Large dimensions of structures, fancy shapes,
new building materials, as well as monitoring of old structures have resulted in increased
expenses on SHM systems and their development. Extensive research is being carried
out to improve efficiency and reduce the cost of SHM systems. In particular, research is
conducted on the topics of new sensors, communication of system components, and data
processing including exploitation time estimation.

Strain sensors are a crucial component in most sensor networks used to monitor
civil structures. In the case of bridge condition monitoring systems, about 50% of all
sensors are strain sensing elements [2]. The stress measurement of steel structures is
performed in two ways. The first method is the analysis of the magnetic properties of steel
using a magnetic sensor [3]. The second option is to use a sensor attached to the tested
structure. The sensor output signal depends on the deformation. Until now, stress sensors
have been invented using various physical phenomena. The first strain gauge was the
proposed and commercialized resistance strain gauge by Edward E. Simons and Arthur C.
Ruge [4]. The operating principle of a resistance strain gauge is based on the changes in a
conductor’s electrical resistance as a result of changes in its cross-sectional area and length.
The resistance value of the sensor increases as it is stretched. The change in the resistance
of a semiconductor element is used in piezoresistive sensors. In this case, the crystal lattice
of the semiconductor is distorted, which affects the energy bands [5]. Utilization of the
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piezoelectric effect in the strain sensor is presented in [6]. In the case of FBG (Fiber Bragg
Grating) sensors, deformation changes the length of the reflected light patch [7].

Microstrip antennas for strain measurements have been proposed and developed in
recent years [8–25]. The vector network analyzer (VNA) measures the frequency domain
reflection coefficient (S11) of the microstrip antenna sensor. The entire measurement system
should be considered as a uniform transmission line. All components of the system (VNA
port, coaxial wires, SMA connector, microstrip line) have the same impedance (usually
equal to 50 Ohms). When a transmission line is loaded with wave impedance, the signal
given at the input is not reflected. Planar microwave resonators (patch, radiating part of
antenna sensor) have an impedance equal to the wave impedance at resonant frequen-
cies. The resonant frequency depends on the shape and size of the patch. Changing the
shape of the patch (i.e., because of external strain) changes the resonant frequency. In
this type of sensor, the reflection coefficient as a function of frequency is monitored to
determine the deformation based on the resonant frequency shifts. The sensors were fed
in wired form [8–14,16–20,22,24,25] and wireless [15,21,23]. The first and most studied
sensor geometry is the rectangular microstrip strain sensor [8–12,18–21,24]. This geome-
try provides the highest sensitivity at a given resonance frequency. In the work of [24],
rectangular microstrip sensors were used to measure deformations. The patches were
designed for different resonant frequencies. The following conclusions can be drawn from
the study: the higher the resonant frequency, the bigger its shift, and the smaller the size
of the sensor. Additionally, circular [13–15,25] and other shapes [16,17,22,23,26] of patches
were utilized. Other sensor geometries have been developed for the application of local
strain measurements or for measuring the direction and value of strain. An important
advantage of microstrip sensors is the ability to measure many resonance frequencies with
different current density distributions in the patch. This property allows the direction and
stress values to be measured using one sensor. For other types of strain gauges, several
sensors must be used to measure the direction and strain value. For this purpose, sensors
with a rectangular [20] and circular patch [13] and two rectangular patches powered by a
T-junction power divider [22] were used.

The patches dimensions range from 0.5λ to 6λ (λ—wavelength) depending on the
utilized geometry. Selected applications require a smaller sensor. This necessity results from
measurements of local deformation values or in places where there is a small measurement
area. Microstrip strain sensors designed for higher operating frequencies are smaller and
have higher sensitivity. So it seems that the best way is to design sensors for high resonant
frequencies. Notwithstanding, the prices of Vector Network Analyzers strongly depend
on their maximum frequency, which makes the use of sensors with very high operating
frequencies economically unjustified. Microstrip deformation sensors were miniaturized
using the following methods:

• application of a laminate with high electric permittivity [25],
• utilization of a special patch geometry [17].

The work of [25] investigated the sensitivity of circular microstrip strain gauges
designed on various laminates. Similar resonant frequency shifts were obtained for all
sensors. The use of a high electric permittivity laminate (εr = 13.2) made it possible to
significantly reduce the size of the sensor. The patch radius length was 9.68 mm, while for
εr = 2.2, the radius length equaled 23.7 mm. Application of the specific patch geometry
can also reduce the sensor dimensions. This miniaturization method was carried out by
applying the Sierpinski curve fractal in [17]. The sensitivity of the sensor for three iterations
of this fractal was tested. The higher the fractal iteration, the smaller the size and sensitivity.
For the third iteration of this fractal, the patch size was reduced four times, with a two-fold
reduction in sensitivity in relation to the rectangular resonator.

This article presents further research on the miniaturization of microstrip sensors by
selecting the appropriate patch geometry. A single metamaterial element was used in this
work. Metamaterials are man-made artificial structures that enable material properties
to be obtained that do not occur in nature, e.g., negative refractive index n, consequently
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negative electric permittivity εr and magnetic permittivity µr [26–29]. They consist of a
2- or 3-dimensional matrix of structural elements (cells) with dimensions several times
smaller than the electromagnetic wavelength at which they are supposed to work. Their
unique resonance properties can be relatively easily controlled by appropriately designing
the geometry of the structural elements. In this work, one of the best-known metamaterial
structures—a variant of the split ring resonator (SRR)—was used. In the literature, this
variant is called a double split-ring resonator (dSRR). In this work, the proposed sensor
was compared with a rectangular microstrip sensor. Numerical calculations and strain
measurements were performed in order to evaluate the designed sensors.

2. Sensors Design

In this work, the topic of miniaturization of microstrip sensors has been developed.
This is especially important when measuring local strain values or where there is not enough
places to attach the sensor. We can reduce the dimensions of the patch by using a patch
operating at a higher operating frequency. However, this solution has disadvantageous
effects because it is necessary to use a Vector Network Analyzer with a higher measuring
frequency range. One of the methods of reducing the size of the sensor is the use of a
laminate with high electric permittivity [25]. Another solution is to use the appropriate
shape of the patch. The work of [17] uses a patch in the shape of a Sierpinski curve. In this
work, it was decided to use a single structural element of the metamaterial as the patch of
the microstrip strain sensor. For this purpose, a double Split-Ring Resonator (dSRR) was
chosen. This choice resulted from the possibility of easy matching of the patch impedance
to the microstrip line using the inset feed. This choice of the impedance matching method
resulted from the possibility of limiting the measuring area and the size of the sensor.
Narrow-band impedance matching can be also achieved by a quarter wave transformer
and stubs. But these solutions increase the size of the sensor and have the potential to
affect the accuracy of local strain value measurements. The sensor is designed using an
optimization method for a resonant frequency f r = 2.725 GHz.

A rectangular microstrip sensor was designed for the same operating frequency [30].
This assumption avoids the influence of the resonant frequency on the sensitivity of the
microstrip transducer. All sensors were designed on glass-reinforced epoxy laminate FR4
(main dielectric parameters: εr = 4.4, tanδ = 0.02). The laminate was 0.18 mm thick. The
dimensions of the sensors are shown in Figure 1.
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The transducer is glued to the element under test (planar sample). As a result of
the action of external mechanical forces on the sample, the deformation is transferred
through the adhesive connection to the evaluated sensor. The flexibility of utilized FR4
laminate is enough for measured strains—in performed experiments within previous
works, the evaluation was done even for plastic deformations of samples (which is far
too much in the case of standard SHM applications). The resonant frequency shift is
due to deformation-induced changes in the geometry of the resonator. It depends on
the direction of deformation: geometric dimensions parallel to the axis of the acting
force increase, while perpendicular dimensions decrease. This causes a change in the
distribution of electromagnetic fields and the flow of currents, which is reflected in slight
changes in the equivalent circuit of such a system as well, as in the frequency response
of the sensor’s reflection coefficient and consequently the resonant frequency. Current
loops dimension changes influence the inductance of the element, while electric field gap
(between conductors) changes influence the capacitance of the resonator element. Thus,
the principle of operation does not differ in any way from the principle of operation of
commonly used microstrip resonators.

3. Sensors Validation

Numerical analysis and experimental validation were conducted for the designed
sensors. The description will be presented in this section.

3.1. Numerical Analysis

The Finite Element Method (FEM) model was developed in the Comsol Multiphysics
environment to evaluate the designed sensors. The numerical model geometry is shown
in Figure 2. The designed microstrip sensor was fixed to the S355J2+N construction steel
planar sample. This material is often utilized in civil constructions. The dimensions of the
samples utilized were length 250 mm, width 45 mm, and thickness 1 mm. At first, the Solid
Mechanics module was used to compute the deformation of the steel sample. In this case,
the following equation was solved using FEM [31]:

0 = ∇ · S + FV (1)

where: S—second Piola-Kirchhoff stress tensor, Fv—force per unit volume.
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Mechanical loading of the sample simultaneously deforms the tested microstrip sensor.
It causes the change of the current density distribution in the microstrip patch as well as
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the S11 frequency domain response. The electromagnetic problem was computed using the
RF module, where the following equation was solved [32]:

∇× µ−1
r (∇× E)− k2

0

(
εr −

jσe

ωε0

)
E = 0 (2)

where: σ—electric conductivity, εr—relative permittivity, µr—relative permeability, k0—
wave number, E—electric field, ω—angular frequency.

The sensors’ resonant frequency was determined based on the estimation of the
local minimum of the obtained magnitude of the reflection coefficient S11 characteristics.
Received S11 frequency responses obtained using calculations and measurements are shown
in Figure 3.
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3.2. Experimental Validation

In this section, experimental evaluation of designed and simulated sensors was con-
ducted. In this case, dSRR and rectangular sensors were manufactured using the pho-
tolithographic process. Dimensions of designed sensors are shown in Figure 1. Tested
sensors were fixed with cyanoacrylate adhesive to the construction steel samples. This
adhesive connection allowed the transmission of sample strain to sensors. The sample was
extended by a custom mechanical deformation system. Next, Rohde & Schwarz ZVB20
Vector Network Analyzer (Columbia, MD, USA) was used for S11 acquisition (in the case of
the deformed sensor). Measurements were carried out in the 2.3–3.3 GHz frequency range
with 0.1 MHz steps. The utilized power level was 0 dBm. The photo of the measurement
setup used for this purpose is shown in Figure 4. Until recently, Vector Network Analyzers
were devices with large dimensions and high prices. In recent years, small and low-cost
VNAs have been developed, which could be used in the future in practical SHM measure-
ments. In our research, we used a frequency range (<3 GHz) that allowed the use of such
low-cost VNAs.

3.3. Results

The deformation assessment is performed by monitoring the frequency response of the
reflection coefficient S11 magnitude. In order to determine the deformation, it is necessary
to determine the shift of the resonance frequency ∆f r from the initial state.

∆ fr = frload − frε=0 (3)

where: f rload is the resonant frequency for the case with external mechanical load, and f rε=0
is the resonant frequency without mechanical deformation.
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Figure 4. Photo of the measuring system.

The resonant frequency is the frequency at which the local minimum of the magnitude
of S11 occurs. In order to determine the resonance frequency of the transducer, in the first
step, the frequency range with the local minimum of the reflection coefficient magnitude
was selected. Then a two-term Gaussian model was used to fit the measured data to the
mathematical equation, and based on that, the resonant frequency was designated. The
resonant frequency shifts were determined using the numerical method and measurement
for the dSRR microstrip sensor and the rectangular patch. The relationships between
material strain and the obtained resonant frequency shifts for the strain along the main
patch axis are shown in Figure 5. Comparing the results shown in Figures 3 and 5, a good
convergence between simulations results and measurement was obtained. The sensitivity
of the dSRR patch is lower than the rectangular microstrip sensor by 28% in simulations
and 35% in measurement. The utilization of the dSRR patch made it possible to reduce
the patch size by 93% (Table 1). The lower sensitivity of the dSRR sensor results from the
current density distribution at a studied resonance. In the case of the rectangular patch,
the current direction is parallel to the current density distribution at the first resonance.
In the case of the dSRR patch, the current distribution is more multidirectional as shown
in Figure 6. Moreover, the strain directional characteristics of the tested sensors were
determined, as shown in Figure 7. The force direction strongly influences the change
of the studied resonance frequencies. Therefore, a single resonance measurement of the
deformation with these sensors can only be performed for a known strain direction.
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Table 1. Comparison of the studied sensors.

Patch Shape Sensitivity
[kHz/µε]—Simulation

Sensitivity
[kHz/µε]—Measurement Resonator Size [mm2]

dSRR −1.862 −1.548 77.44
Rectangle −2.602 −2.379 832.28
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In the case of rectangular sensor and direction angle α = 0◦, increasing the strain causes
a rapid decrease of ∆f r, but for the direction angle α = 90◦, the ∆f r is slightly increasing.
This is caused by an elongation of the sample in the direction parallel to the load, and its
shortening in the perpendicular direction. This has an important implication: there is some
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direction, for which there will be no change of ∆f r caused by strain, thus the sensor will
be not sensitive to the strain. This restricts the application of the rectangular sensor to
applications where the direction of external load is unknown. In the case of the proposed
sensor, for both directions (α = 0◦ and α = 90◦), an increase of strain causes a decrease of ∆f r.
Thus, there will be no such case where the proposed sensor is not sensitive to any strain.

4. Conclusions

In this article, the dSRR microstrip strain sensor has been designed and tested. The
proposed sensor has been compared with a rectangular microstrip sensor. Both are designed
for the same resonant frequency. This assumption eliminates the influence of the resonant
frequency on the sensitivity of the transducer. So only the patch shape effect is investigated.
The sensors were verified by numerical and experimental analysis. The proposed geometry
allowed for the reduction of the patch size by over 90% with a simultaneous approx. There
was a 30% decrease in sensitivity in relation to the rectangular resonator. This is a better
result than that obtained in [17], where a 75% reduction in the patch size was achieved with
a two-fold decrease in sensitivity in relation to the rectangular resonator. Table 2 shows
a comparison of the sensitivity of different microstrip transducers. As can be seen, the
resonant frequency, as well as the shape of the resonator, affect the sensitivity of the sensor.
For similar operating frequencies (2.4–3.0 GHz—the band covered by low-cost VNAs) the
dSRR sensor proposed in this paper has the best sensitivity to patch size ratio.

Table 2. Comparison of recently reported microstrip strain sensors.

Reference Patch Shape Frequency [GHz] Sensitivity
[kHz/µε] Patch Size [mm2]

Sensitivity/
Patch Size Ratio
[kHz/µε·mm2]

Dielectric

This work rectangular 2.725 −2.379 832.28 −0.002858 FR4
This work dSRR 2.725 −1.548 77.44 −0.019990 FR4

[8] rectangular 17.2 −17.2 21.32 −0.806754 Kapton
[10] rectangular 3 −2.54 N/A N/A RT Duroid 5880
[13] circular 2.5 −2.05 1123.59 −0.001825 FR4
[17] first iteration of Sierpinski curve fractal 2.725 −2.35 778.24 −0.003020 FR4
[17] second iteration of Sierpinski curve fractal 2.725 −1.36 333.54 −0.004077 FR4
[17] third iteration of Sierpinski curve fractal 2.725 −1.18 184.59 −0.006393 FR4
[18] rectangular 2.469 −2.847 1138.36 −0.002501 FR4
[19] rectangular 7.31 −3.43 750 −0.004573 PDMS
[22] double patch sensor 2.75 −2.82 823.28 −0.003425 FR4

However, it is still a worse method of miniaturization of microstrip stress sensors
than the utilization of laminate with high electric permittivity. The proposed method of
miniaturization can be used in conjunction with a laminate with high electric permittivity,
in applications where the sensitivity requirements are lower and where deformation tests
on a small area are required. Moreover, the proposed sensor is devoid of one of the
drawbacks of the rectangular sensor—the sensitivity does not drop to zero at the selected
load direction. The obtained results are promising and allow us to state that strain sensors
built on single structural elements of metamaterials or their small collections have great
potential. Further work will consist of further miniaturization of the transducers and
increasing their sensitivity. In the future, we also plan to focus on wireless strain sensors
or sensor pairs. For this reason, the research will be extended to include the transmission
coefficient and group delay. Additionally, an analysis based on 3D Smith charts [33,34]
is planned.
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