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Abstract: This study examined the mechanical and durability properties of CaO-activated ground-
granulated blast-furnace slag (GGBFS) concretes made with three different additives (CaCl2, Ca(HCOO)2,
and Ca(NO3)2) and compared their properties to the concrete made with 100% Ordinary Portland
Cement (OPC). All concrete mixtures satisfied targeted air content and slump ranges but exhibited
significantly different mechanical and durability properties. The CaO-activated GGBFS concretes showed
different strength levels, depending on the type of additive. The added CaCl2 was the most effective, but
Ca(NO3)2 was the least effective at increasing mechanical strength in the CaO-activated GGBFS system.
The OPC concrete showed the most excellent freezing–thawing resistance in the durability test, but only
the CaO-activated GGBFS concrete with CaCl2 exhibited relatively similar resistance. In addition, the
chemical resistance was significantly dependent on the type of acid solution and the type of binder. The
OPC concrete had the best resistance in the HCl solution, while all CaO-activated GGBFS concretes had
relatively low resistances. However, in the H2SO4 solution, all CaO-activated GGBFS concretes had
better resistance than the OPC concrete. All concrete with sulfate ions had ettringite before immersion.
However, when they were immersed in HCl solution, ettringite tended to decrease, and gypsum was
generated. Meanwhile, the CaO-activated GGBFS concrete with CaCl2 did not change the type of
reaction product, possibly due to the absence of ettringite and Ca(OH)2. When immersed in an H2SO4

solution, ettringite decreased, and gypsum increased in all concrete. In addition, the CaO-activated
concrete with CaCl2 had a considerable amount of gypsum; it seemed that the dissolved C-S-H and
calcite, due to the low pH, likely produced Ca2+ ions, and gypsum formed from the reaction between
Ca2+ and H2SO4.

Keywords: CaO-activation; auxiliary activator; GGBFS; chemical resistance; freezing; thawing

1. Introduction

With global warming, abnormal climates are occurring worldwide, causing many
problems [1,2]. The international community agreed to reduce greenhouse gas emissions
through the Paris Climate Agreement, to prevent accelerating global warming.

There is increasing demand for materials to replace Portland cement [3,4] because the
OPC industry accounts for 8 to 10% of worldwide CO2 emissions, accelerating global warm-
ing [5]. Therefore, many studies have been conducted on developing alternative binders
with a low carbon footprint, using various industrial by-products, such as fly ash or ground-
granulated blast-furnace slag (GGBFS) to replace OPC [6–8]. Fly ash-based geopolymers
using fly ash as the main material use alkaline activators, such as sodium hydroxide (NaOH),
potassium hydroxide (KOH), or sodium silicates (e.g., water glass). Palomo et al. [9] reported
that geopolymer activated with NaOH 8–12 M cured at 85 ◦C showed a compressive strength
of about 40 MPa, and it reached nearly 90 MPa when water glass was added to the binder.
Sun et al. [10] explored the effect of three different aggregate sizes on the strength of geopoly-
mers. M.A.M Ariffin et al. [11] showed that geopolymer concrete exhibited better sulfuric

Materials 2022, 15, 271. https://doi.org/10.3390/ma15010271 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15010271
https://doi.org/10.3390/ma15010271
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-4830-2625
https://orcid.org/0000-0002-2318-3001
https://doi.org/10.3390/ma15010271
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15010271?type=check_update&version=3


Materials 2022, 15, 271 2 of 16

acid resistance than OPC concrete. Although geopolymer has high compressive strength and
durability, it has the disadvantage that its performance changes depending on the type of
activator and curing temperature [12]. Furthermore, U Yurt et al. [13] showed the performance
of alkali-activated GGBFS composite varying with the different alkali activators and activation
temperature. In addition, many studies [14,15] reported that alkaline activated GGBFS binders
have high compressive strength and chemical resistance. However, similar to geopolymers,
GGBFS-based cementless binders have drawbacks in the following usages [16]: (1) high
material costs, (2) user safety, and (3) difficulty in producing a one-part binder. Despite these
problems, alkali-activated binders produce comparable mechanical properties compared to
the OPC binder [17,18]; thus, many studies have been conducted at the concrete level to
validate the mechanical and durability properties [19,20].

On the other hand, the CaO-activated binder system [21,22] relatively overcame the
disadvantages mentioned above of alkali-activated binders. Kim et al. [23] studied CaO-
activated GGBFS binder, and Yum et al. [21,24,25] enhanced mechanical properties of CaO-
activated GGBFS binders by adding different types of additional activators. In addition,
there are studies to develop cementless binders by activating fly ash using CaO and other
chemical additives [22,26]. Although the CaO-activated binders can potentially apply
to construction fields, no study has been conducted at the concrete level on mechanical
properties and durability.

Therefore, this study compared the mechanical and durability properties of various
CaO-activated GGBFS concretes using additives, CaCl2, Ca(HCOO)2, and Ca(NO3)2. Me-
chanical properties, such as compressive strength, tensile splitting strength, and elastic
modulus were measured. In addition, the durability properties were evaluated by the
freezing and thawing cycle test and the chemical resistance test using hydrochloric acid
(HCl) and sulfuric acid (H2SO4). Changes in hydration products were examined through
powder X-ray diffraction (XRD) measurement and thermogravimetry analysis (TGA).

2. Materials and Methods

Commercial OPC (type I, 42.5N) and GGBFS were used in this study. In addition,
all used chemicals were analytical grade. CaO (Daejung, Korea) was the main activator,
and CaCl2 (Daejung, Korea), Ca(HCOO)2 (Aladdin, China), Ca(NO3)2 (Sigma Aldrich,
Burlington, MA, USA), and CaSO4 (Daejung, Korea) were additives. The maximum size
of coarse aggregate was 25 mm. Fine aggregate were classified as aggregates with a size
less than 5 mm. All aggregates were used under saturated surface dry (SSD) conditions. In
addition, a naphthalene-based commercial plasticizer was used in concrete mixtures.

XRD, XRF, and particle size distribution analysis were performed to identify the
characteristics of the raw materials (i.e., OPC and GGBFS). XRD patterns were recorded by
means of a D/Max2500 V diffractometer (Rigaku, Japan) with an incident beam of Cu-kα
radiation (λ = 1.5418 nm) in a 2θ scanning range from 5◦ to 60◦; X-ray fluorescence was
conducted with S8-Tiger spectrometer (Bruker, Billerica, MA, USA).

Particle size distribution results (Figure 1) show that the average particle sizes of OPC
and GGBFS were 25 and 30 µm, respectively. Table 1 exhibits the XRF results of OPC and
GGBFS, and they mainly consisted of CaO and SiO2. In Figure 2, the XRD results show that
akermanite [Ca2Mg(Si2O7)] was identified in GGBFS, and GGBFS primarily consisted of
an amorphous phase. On the other hand, dicalcium silicate (C2S), tricalcium silicate (C3S),
tetracalcium aluminoferrite (C4AF), tricalcium aluminate (C3A), and gypsum (CaSO4) were
identified in OPC [27].
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Figure 1. Particle size distributions of OPC and GGBFS.

Table 1. Oxide compositions: OPC and GGBFS (wt%).

Oxide OPC GGBFS

CaO 64.05 59.48

SiO2 18.59 23.05

Al2O3 4.45 9.72

MgO 3.14 2.54

SO3 3.55 1.37

TiO2 0.29 0.98

MnO 0.19 0.83

FexOy 3.61 0.68

K2O 1.23 0.68

Na2O 0.29 0.28

Others 0.61 0.4

Table 2. Material proportions of binders used in concrete mixture samples (wt%).

Binder Type OPC GGBFS CaO CaCl2 Ca(HCOO)2 Ca(NO3)2 CaSO4 Sum

P-binder 100 0 0 0 0 0 0 100

C-binder 0 94 4 2 0 0 0 100

F-binder 0 88 4 0 3 0 5 100

N-binder 0 86 4 0 0 5 5 100

The material proportions of binders used to produce concrete samples are shown in
Table 2. The P-binder was 100% OPC. The other binders (C-, F-, and N-binders) were CaO-
activated GGBFS binders, which used CaO as a primary activator for activating GGBFS
while included different additives. The C-binder, F-binder, and N-binder used CaCl2,
Ca(HCOO)2, and Ca(NO3)2, respectively, as additives, and their material proportions were
determined via previous studies [21,24,25]. Note that F-binder and N-binder additionally
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used five weight percentages of CaSO4 to enhance the early compressive strength of
the binders.
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Figure 2. XRD patterns of OPC and GGBFS with identified phases.

The mixture proportions of concrete are given in Table 3, and the samples were
labeled similarly after the used binders. According to the Korea Concrete Specification [28],
concrete mixture proportions were designed, and the targeted compressive strength was
above 45 MPa. Targeted slump and air content ranges were 5–15 cm and 3–6%, respectively.

Table 3. Mixture proportions of concrete samples.

Sample Binder
Type

Gmax
(mm)

w/b
(wt%)

s/a
(vol%)

Unit Weight (kg/m3)

Water Binder FA CA Plasticizer

P-CON P-binder

25 36.73 42.31 176.63 480.82

687.81 955.86 0.14

C-CON C-binder 676.34 939.93 0.14

F-CON F-binder 673.87 936.48 0.14

N-CON N-binder 673.87 936.48 0.14

Note: FA denotes fine aggregate; CA denotes coarse aggregate; Gmax denotes the ratios of the maximum size of
coarse aggregate; w/b denotes water to binder weight ratio, and s/a denotes sand to aggregate volume.

For concrete production, all mixing procedures followed the Korea Standard (KS) F
2403 [29]. The fresh concrete samples were cast in cylindrical molds (ϕ 10 cm × 20 cm3)
to test determine compressive strength, split strength, elastic modulus, and chemical
resistance, and samples in prism molds (10 × 10 × 40 cm3) for freezing and thawing
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cycle tests. The fresh concrete samples were compacted and cured at 23 ◦C and 99%
relative humidity.

Slump and air content were examined according to the KS F 2402 and KS F 2421 [30,31].
The slump and air content tests were conducted once for each mixture proportion. Triplicate
samples were tested for compressive and split strength of each mixture at 3, 7, and 28 days
of curing. Chord elastic modulus was measured for the 28-day cured samples, and triplicate
specimens were tested for each mixture. The elastic modulus was calculated using the
chord modulus using stress-strain curves obtained from three linear variable differential
transformers (LVDT) installed in longitudinal directions of concrete [27]. The measured
elastic modulus was compared with models proposed by the American Concrete Institute
(ACI) 318 and the Euro-International Committee for Concrete—the International Federation
for Pre-stressing (CEB-FIP); the CEP-FIP equations are as follows [32,33]:

ACI Model : Ec = Wc
1.5 × 0.043

√
f28

CEB − FIP : Ec = 2.15 × 104(
f28

10
)

1/3

where Ec is the elastic modulus (GPa), f28 is the 28-day compressive strength (MPa), and
wc is density (kg/m3).

Freezing and thawing cycle resistance tests were performed using 14-day cured sam-
ples, and all experimental procedures followed by KS F 2456 [34]. In addition, three
identical samples were used on each measurement date. The initial weight and dynamic
modulus of elasticity were recorded for 14 days after curing, and then the samples were
tested for freezing and thawing cycles. Each cycle consisted of −20 ◦C to 4 ◦C; the time of
each cycle was less than 4 h, and the relative dynamic modulus of elasticity and weight
change were measured every 30 cycles. Three identical samples were used for each concrete,
and the experiments were conducted up to 300 cycles.

Chemical resistance tests were carried out according to ASTM C 267 [35]. The 28-day
cured samples were immersed in a container with 5% HCl and 5% H2SO4 solutions, and
the solutions were replaced once in 4 weeks. The weight changes were measured at 3, 7, 14,
28, 56, and 91 days after immersion to identify the evolution of reaction products. On each
weight measurement, three identical specimens were weighed. Analysis of XRD and TGA
identified reaction products after 28, 56, and 91 days of immersion. The exposed samples
were fractured and finely ground using a mortar and pestle. In addition, XRD and TGA
were conducted once for each measurement day and mixture proportion. In addition, SDT
Q600 (TA Instruments, New Castle, DE, USA) was used to measure the reaction products of
each sample with a heating rate of 30 ◦C/min from 25 to 1000 ◦C in a nitrogen atmosphere
in an alumina pan.

3. Results
3.1. Slump and Air Content

Figure 3 displays the air content and slump measurement test results. The air content
and the slump values satisfied the criteria specified in KS F 2421 (air content = 3–6%) and
KS F 2402 (slump = 5–15 cm) [30,31], respectively.

3.2. Compressive and Split Strength

Compressive strengths of hardened concretes are shown in Figure 4, and the greatest
compressive strength was measured from P-CON at all curing days. In addition, all
mixtures showed increased strengths with increasing curing days. All cementless concrete
samples exhibited significantly lower compressive strengths than P-CON at three days,
mainly due to the lower reaction rate of CaO-activated GGBFS binders than OPC binder [36].
The type of used additives influenced the strength development of CaO-activated GGBFS
concretes. CaCl2 was the most effective in increasing strength, while Ca(NO3)2 was the
least effective.
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The mixture proportion of concrete was designed following the Concrete Standard
Specification in Korea [37], and the designed 28-day compressive strength (fcr) was 45 MPa.
The compressive strength was 48 MPa for P-CON, but the CaO-activated GGBFS concretes
gained only about 10 to 30 MPa, significantly lower compressive strength than fcr.

The split strengths are presented in Figure 5. The tensile strength of OPC concrete
was reported as about 10 to 15% of the compressive strength [27]. The concrete specimens
made with CaO-activated GGBFS binders having no OPC also exhibited a similar trend in
this study.
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3.3. Chord Elastic Modulus

The measured elastic modulus values of concrete samples are given in Table 4 with
the calculated values from ACI 318 and CEB-FIP model codes. It is known that the strength
and elastic modulus had a proportional relationship in OPC concrete [27], and the same
tendency was observed for all binder types of concrete in this study.

Table 4. The results of elastic modulus using experiments and model codes.

Sample
Label

Compressive Strength
at 28 Days (MPa)

Density
(kg/m3)

Elastic Modulus (GPa)

Exp. ACI 318 CEB-FIP

P-CON 44.8 2415.5 28.8 34.1 41.5

C-CON 30.5 2372.6 20.9 27.4 35.7

F-CON 29.5 2349.7 19.1 26.6 34.7

N-CON 20.7 2360.2 17.2 19.7 29.1

When comparing the experimental values with the calculated values from the ACI
and CEB-FIP models, the models showed significantly higher elastic modulus than the
measured values. Previous studies similarly reported that the ACI and CEB-FIP models
tended to overestimate the elastic modulus of OPC concrete, and it was observed for all
types of concretes in this study [38–40].
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3.4. Freezing and Thawing Cycle Tests

Figure 6 presents the freezing and thawing cycle test results for changing relative
dynamic modulus of elasticity and weight loss with increasing cycles.
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The dynamic elastic modulus of P-CON and C-CON decreased down to about 60% up
to 300 cycles, while those of F-CON and N-CON were not measured because they were
damaged significantly before reaching 300 cycles. Thus, F-CON and N-CON are vulnerable
to freezing and thawing cycles.

It is worth noting that although C-CON and F-CON had similar compressive strengths
and elastic modulus, they showed significantly different resistances to freezing and thawing
cycles. However, a sample with a higher drop of the dynamic modulus tended to show a
steeper decrease in the weight. Thus, the strength itself was a less accurate indicator than
the dynamic modulus for estimating the ability to resist freezing and thawing cycles in this
study.

For OPC concretes, KS F 2456 [34] determines that OPC concrete is susceptible to
freezing and thawing cycles when OPC concrete samples are destroyed before 300 cycles or
when the dynamic elastic modulus decreases below 60% after 300 cycles. Thus, this study
implies that KS F 2456 can also be applied to the CaO-activated GGBFS system.
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3.5. Chemical Resistance Tests (5% HCl and 5% H2SO4)

The results of chemical resistance tests using 5% HCl and 5% H2SO4 solutions are
shown in Figure 7. Significantly different results were obtained, depending on the type of
solutions. In 5% HCl aqueous solutions, although weight loss was observed in all immersed
samples, P-CON had the most excellent resistance, while N-CON was the most vulnerable.
However, the samples immersed in 5% H2SO4 aqueous solutions yielded different results;
the most considerable weight loss occurred in P-CON, followed by N-CON, F-CON, and
C-CON, in order.
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Figure 7. Chemical resistance test results: (a) 5% HCl solution and (b) 5% H2SO4 solution.

XRD and TG/DTG Analysis in Chemical Resistance Tests

When concrete samples were immersed in acid solutions (i.e., HCl and H2SO4), the
pH of the concrete was lowered, resulting in the change of hydration products.

In the HCl solution, the change of the reaction products was investigated using the XRD
and TG/DTG analysis, shown in Figures 8 and 9, respectively. After immersion, Ca(OH)2
disappeared in the P-CON sample, and Friedel’s salt (Ca2Al(OH)6Cl(H2O)2) was found. The
HCl solution likely lowered the pH of P-CON, resulting in removing OH− of Ca(OH)2 [41,42],
and Friedel’s salt was produced by the reaction of Cl− ions from HCl and Ca2+ ions from
Ca(OH)2. In addition, regeneration of Ca(OH)2 was observed at the 91-day sample. It seemed
that as the chemical resistance test proceeded, Ca(OH)2 was regenerated by a complex chemical
reaction; more research will likely be needed for the regeneration of Ca(OH)2.
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Figure 8. XRD patterns of hardened samples immersed in 5% HCl solution: (a) P-CON, (b) C-CON,
(c) F-CON, and (d) N-CON. (Note. E: ettringite, C: C-S-H, CC: calcite, G: gypsum, H: hydrocalumite,
F: Friedel’s salt, P: portlandite, and N: nitrate AFm, respectively).
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Figure 9. TG/DTG curves of hardened samples immersed in 5% HCl solution: (a) P-CON, (b) C-CON,
(c) F-CON, and (d) N-CON.

The XRD showed that all samples with sulfate ion (SO4
2−) (i.e., P-, F-, and N-CON) had

ettringite before immersion. When immersed in HCl solution, the DTG analysis showed
that ettringite tended to decrease, and gypsum was generated; F-CON exhibited the most
prominent decrease of ettringite, while N-CON displayed the slightest change in ettringite
peak. Previous studies [41,43,44] reported that, below pH value of 10.6, ettringite was no
longer stable, and gypsum formed. Unlike the other samples, C-CON did not change the
type of reaction product in the HCl solution, possibly due to the absence of ettringite and
Ca(OH)2 before immersion. In addition, the weight loss occurred in the vicinity of 800 to
900 ◦C in CaO-activated concrete, which might be the recrystallization of C-S-H [45].

Figures 10 and 11 show the results of XRD and TG/DTG tests, respectively, for the
samples in the H2SO4 solution. In addition, similar to the HCl results, regeneration of
Ca(OH)2 at the P-CON sample and crystallization were observed. It is worth noting that
ettringite is relatively more susceptible to the drying process of sample preparation than
other cementitious reaction products and, thus, ettringite can often be underestimated
in quantity in XRD and TG/DTG [46,47]. Unfortunately, in this study, the result for
ettringite in the H2SO4 solution in TG/DTG was not precisely consistent with that of XRD;
however, careful interpretation enabled us to recognize the approximate tendency of the
product change.
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Figure 10. XRD patterns of hardened samples immersed in 5% H2SO4 solution: (a) P-CON, (b) C-
CON, (c) F-CON, and (d) N-CON. (Note. E: ettringite, C: C-S-H, CC: calcite, G: gypsum, H: hydroca-
lumite, and P: portlandite, respectively).
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In the samples that had ettringite before immersion (i.e., P-, F-, and N-CON in
Figure 10), as the DTG peaks of ettringite decreased, the gypsum DTG peaks tended
to increase, as shown in Figure 11. In particular, the F-CON and N-CON samples showed
relatively strong gypsum XRD and DTG peaks, and the peaks were even stronger than
those of samples in the HCl solution. The cause of gypsum formation was similar to the
case of HCl immersion; as the pH of the concrete was likely lowered in the H2SO4 solution,
ettringite became unstable and decomposed, producing gypsum.
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Figure 11. TG/DTG curves of hardened samples immersed in 5% H2SO4 solution: (a) P-CON,
(b) C-CON, (c) F-CON, and (d) N-CON.

However, note that gypsum can also form from the reaction between Ca(OH)2 and
H2SO4 without ettringite decomposition [27,41]. For instance, in P-CON, because Ca(OH)2
was present before immersion, this reaction surely accounted for a portion of gypsum forma-
tion. However, this reaction was also likely responsible for the gypsum formation in C-CON
despite no Ca(OH)2 before immersion (Figures 10b and 11b). Previous studies [27,41,48–51]
reported that C-S-H and calcite can dissolve, producing Ca2+ ions (or Ca(OH)2) when the
pH is lowered. In the TG/DTG results, the decrease in calcite peak was—relatively—clearly
seen, but the decrease in C-S-H peak was difficult to observe because the C-S-H peak below
200 ◦C overlapped with the peaks of ettringite and gypsum, making it challenging to ana-
lyze. However, when referring to the other study results [49–51], C-S-H likely dissolved to
some extent similar to calcite. Thus, the dissolved Ca2+ ions can produce gypsum from the
reaction with H2SO4 in C-CON. On the other hand, in the case of P-CON, the coexistence
of Ca(OH)2 generally prevents chemical deterioration of C-S-H [49,52]; thus, a relatively
smaller amount of C-S-H likely dissolved than the other samples.
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4. Conclusions

This study examined the mechanical and durability properties of three types of CaO-
activated GGBFS concretes made with three different additives (CaCl2, Ca(HCCO)2, and
Ca(NO3)2), and compared their properties with those of Portland cement concrete. Detailed
conclusions are summarized as follows:

1. All CaO-activated GGBFS concretes satisfied the targeted air content and slump
ranges. However, they exhibited lower mechanical properties (compressive strength,
split strength, and elastic modulus) than OPC concrete.

2. In the CaO-activated GGBFS system, the additive CaCl2 was the most effective at increas-
ing strength and elastic modulus, while the additive Ca(NO3)2 was the least effective.

3. In the freezing and thawing cycle test, the CaO-activated GGBFS concretes with added
Ca(HCOO)2 and Ca(NO3)2 were destroyed before 300 cycles; however, the one made
with CaCl2 had a relatively comparable resistance in the freezing and thawing cycles
test to OPC concrete.

4. The strength was a less accurate indicator than the dynamic modulus for estimating
the ability to resist freezing and thawing cycles in this study.

5. The chemical resistance tests using 5% HCl and 5% H2SO4 solutions showed signifi-
cantly different results depending on the type of acid solutions. In a 5% HCl solution,
although weight loss was observed in all immersed samples, the OPC concrete had
the most excellent resistance, while the CaO-activated GGBFS concrete with Ca(NO3)2
was the most vulnerable. However, in 5% H2SO4 aqueous, the most considerable
weight loss occurred in the OPC concrete.

6. In XRD, all concrete with added sulfate ion (SO4
2−) (i.e., Portland cement concrete

and CaO-activated GGBFS concretes with Ca(HCOO)2 and Ca(NO3)2) had ettringite
before immersion. When they were immersed in HCl solution, their DTG results
showed that ettringite tended to decrease, and gypsum was generated; however,
the CaO-activated GGBFS concrete with CaCl2 did not change the type of reaction
product in the HCl solution, possibly due to the absence of ettringite and Ca(OH)2
before immersion.

7. When immersed in H2SO4 solution, similar to the case of HCl, the DTG peaks of
ettringite decreased, and the gypsum DTG peaks tended to increase. However, in
the H2SO4 solution, gypsum was synthesized from the reaction between Ca(OH)2
and H2SO4 in all concrete samples. In particular, the concrete without ettringite (i.e.,
CaO-activated GGBFS concrete with CaCl2) had a considerable amount of gypsum
formation; in this concrete, dissolved C-S-H and calcite, due to the low pH, likely
produced Ca2+ ions, and gypsum formed from the reaction between Ca2+ and H2SO4.
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