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Abstract: Two-process random textures seem to present better functional properties than one-process
surfaces. There are many random two-process textures. Plateau-honed cylinder surfaces are the
most popular example. Two-process surfaces are also created during the initial periods of life of
machined elements. However, knowledge about two-process textures measurement, modeling, and
behavior is low. Two-process surfaces are very sensitive to measurement errors. It is very difficult to
model them. Special methods of their characterization were created. Their functional significance
was studied in a small number of publications. In this paper, measurement, characterization, and
modeling of two-process textures were presented. The functional impact of them was analyzed, the
effects on contact mechanics and friction and wear were mainly studied. Finally, considerations of
future challenges were addressed. The nature of two-process random textures should be taken into
account during analyses of properties of machined elements. The plateau part decides about the
asperity contact, and the valley portion governs the hydrodynamic lubrication.

Keywords: two-process surface; measurement; modeling; characterization; contact mechanics;
friction; and wear

1. Introduction

All surfaces are rough. Roughness affects various properties, such as contact, friction,
lubrication, and wear [1]. Therefore, many researchers analyzed the functional properties
of the rough surfaces. The majority of the research work was related to random surfaces of
Gaussian ordinate distribution. For example, the statistical models of contact were related
to Gaussian surfaces [2–7].

Initial methods of analysis, such as filtering, using Gaussian filters [8–13] of textures,
were related to surfaces of symmetrical ordinate distribution. However, two-process
surfaces and generally multiprocess textures seem to present better functional properties
than one-process surfaces. The plateau-honed cylinder surface is the most popular example
of two-process random textures. Cylinder liners are commonly made of gray cast iron.
Due to the recent trend toward lighter engines, the materials for the engine blocks changed
from cast iron to aluminum alloys. To improve wear resistance, many coatings, such as
thermally sprayed coatings or Nikasil plating, are applied to aluminum bores. The plateau-
honed cylinder has traces of two processes: final honing and plateau honing. During the
final honing deep valleys are created, while during plateau honing the plateau smooth
structure is formed. This surface consists of two parts, the plateau and the valley. Two-
process surfaces are created during a mild wear of one-process textures—the resemblance
to surfaces created during running-in is the first reason for plateau honing process creation.
Campbell [14] revealed in theoretical investigations that obtaining the same material ratio
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during volumetric wear of a two-process surfaces would be smaller than that of one-process
surface characterized by the same roughness height. Figure 1 illustrates this. It presents
one- and two-process profiles characterized by the same rms. height Pq, their material ratio
curves, and selected parameters. The material ratio curve (Abbott-Firestone) represents
the cumulative height distribution [15]. For a one-process unfiltered profile maximum
peak height Pp and maximum valley depth Pv are similar, in contrast to the two-process
profile, for which the Pv parameter is higher than the Pp parameter. To obtain 40% of the
material ratio, the wear volume of the two-process profile would be nearly three times
smaller than that of the one-process profile Aw. It is related to a smaller wear and quicker
running-in of the two-process surface. The Pv parameter describes the area under the
profile material ratio curve [16]. One can see that assuming the same volumetric wear for
which the one-process surface will vanish, the plateau part of the two-process surface will
still exist. One can see also that the oil capacity Ac of a two-process surface is twice that of
a one-process Ac texture. It will result in better tribological properties, such as a smaller
risk of the seizure of two-process surface in starved lubrication conditions.
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Figure 1. Profiles (a,b), material ratio curve (c,d) and parameters (e,f) of (a,c,e) one-process and 
(b,d,f) two-process surfaces. 

There are other possible advantages of two-process textures over one-process sur-
faces—smaller wear of the smoother peak part and the possibility of creating hydrody-
namic lift by deep valleys [17]. However, after comparison of tribological performances 
of one- and two-process textures, contradictory results were obtained by various research-
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Figure 1. Profiles (a,b), material ratio curve (c,d) and parameters (e,f) of (a,c,e) one-process and (b,d,f)
two-process surfaces.

There are other possible advantages of two-process textures over one-process surfaces—
smaller wear of the smoother peak part and the possibility of creating hydrodynamic lift by
deep valleys [17]. However, after comparison of tribological performances of one- and two-
process textures, contradictory results were obtained by various researchers. To correctly
assess the functional behavior of two-process surfaces, these should be precisely analyzed.
However, their description is difficult. Furthermore, two-process random surfaces are
sensitive to measurement errors. Surface modeling led to a reduction in the time and cost
of experimental investigations. Most of the work was devoted to the simulation of random
two-process surfaces [18–22]. Two-process surface modeling is more difficult [21].
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Since two-process surfaces are sensitive to measurement errors, problems related to
these errors will be described. This topic is important, since measurement errors can lead to
false prediction of functional properties of machine elements. Next, parameters developed
specially to two-process surface description will be presented. The main task in random
two-process texture characterization is its partition into plateau and valley parts. It will be
presented in this paper as well as other topics related to characterization of two-process
surface. Methods of two-process texture generation, mainly based on superimposition
procedure will be also presented. Finally, the effects of two-process surfaces on contact
mechanics, as well as on friction and wear, will be shown. Summarizing, the structure
of this paper is as follows: measurement and characterization of two-process surfaces
(measurement errors, specific parameters, characterization), simulation and impact (contact
mechanics, friction and wear).

2. Measurement and Characterization of Two-Process Random Surfaces
2.1. Measurement Errors

Two-process surfaces are very sensitive to measurement errors. These errors can be
divided into the following groups [23,24]:

• errors typical to the method of measurement,
• errors related to quantization and digitization,
• errors related to preprocessing such as filtration,
• other errors.

Data processing is completed after measurements have been taken.
The stylus method is commonly used in the measurement of areal (3D) surface topog-

raphy. As a result of the long measuring time, it was typically replaced by optical methods.
Among them, white light interferometer and confocal methods are the most popular.

When using a stylus, the main error is caused by the mechanical filtration of the tip
of the stylus. The lateral resolution depends critically on the size of the stylus tip and, to
a lesser degree, on the flank angle. The problem is that the radius of the stylus may not
penetrate fully to the bottom of the valley. The tip of the stylus acts as a low-pass filter by
cutting out high frequencies. The stylus can distort information of a wavelength 10 times
larger than the diameter of the tip [23]. Figure 2 presents the mechanical filtration of the
stylus tip.
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Figure 2. Graphical interpretation of mechanical filtration by the tip of the stylus, adapted from [24].

The path of the spherical tip of the stylus was modeled, according to [25]. In this case,
distortion of the profiles was analyzed on only one cross-section. The two-process profile
consists of two parts: plateau and valley. Each part is characterized by amplitude parame-
ters and the horizontal parameter. When the horizontal parameter of the valley portion
was smaller than that of the plateau part, the changes in parameters due to mechanical
filtration were larger than those obtained for the opposite case. This could be explained by
the fact that the stylus tip could not go inside thin valleys. The changes in the standard
deviation of the height (Pq parameter) of the two-process profile were substantially larger
than those of the one-process profile, of similar roughness height. The changes in the profile
slope were similar to the change in the Pq parameter. The horizontal parameters increased,
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but their changes were smaller than those of the Pq parameter. For cylinder surfaces after
plateau honing, a mechanical filtration by 3D ball caused larger changes of amplitude
distribution than that of 2D circle. It was due to the real width of the valleys—when the
valley is inclined to the measurement direction, the real width of the valley is smaller than
the width of the valley in the profile—so it is more difficult for the stylus tip to penetrate
inside the valley [26].

The slower the stylus moves, the finer the details can be studied. At comparatively
high speed, the stylus flight is possible—the stylus can lose contact with the surface due to
the presence of a rapid impulse, such as a growing step. The speed of the stylus, the force
of the stylus, the damping constant, and the surface characteristics affect the flight of the
stylus. The effect of stylus flight is to record negative slopes as milder [27,28].

The experiment was performed using a Talyscan 150 measuring instrument with the
following sliding speeds: 0.5, 1, 2, and 3 mm/s. After the measurement with the highest
measuring speed, the height parameters decreased, but their changes were comparatively
small; the maximum errors in the Sa, Sz, Sv, and Sq parameters were 10%. The changes in
Sp could be greater (to 23%). The tendency of the emptiness coefficient to change depends
on the character of the surface topography (for example, the width of valleys). When Sp/Sz
decreased, the highest changes (decrease) of Sp occurred. When the Sp/Sz coefficient
increased, the changes in Sv were larger than those in Sp. However, the biggest changes
of the emptiness coefficient were 10% in comparison to the speed of 0.5 mm/s. The Sku
parameter decreased during increasing speed, but its relative changes were not greater
than 2%, The large reduction of rms. surface slope Sdq occurred (up to 20%). Summit
density (up to 35%) and summit curvature decreased (to 38%). The hybrid parameter Sdr
decreased, and its changes were the highest (up to 45%) [26,29]. Similar changes in profile
parameters occurred. PSm and correlation length increased. Figure 3 shows the effect of
the measurement speed on the parameters Sq and Sdq. One can see that for a speed of
2 mm/s these parameters increased compared to the slowest speed of 0.5 mm/s.
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surface topography, adapted from [29].

In the application of the white light interferometers and confocal measuring systems,
when the light intensity obtained with a photodetector is too low, which is caused by high
slopes, surface absorbance, or reflectivity, the surface points cannot be detected [30–34].
The non-measured points are typically replaced by a smooth shape computed from the
neighbors, using various algorithms. The plateau-honed cylinder surface is very sensitive
to errors caused by the presence of non-measured points, especially in the bottoms of
valleys (see Figure 4)—even when the number of non-measured points is small, the errors
of parameter calculation can be large.
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Figure 4. Plateau honed profile measured by white light interferometer (a) and with filled in non-
measured points (b).

Sharp edges cause the presence of outliers, called spikes, which are high and narrow
peaks that do not really exist on the surface [35,36]. The spikes should be detected, and
the points should be interpolated. Wang et al. [37] used several statistical methods for
outlier detection.

The presence of spikes changes the shape of the material ratio curve; its peak part
(left) has a vertical shape. Therefore, the presence of spikes caused mainly changes in
the parameters characterizing the peak details of textures. The parameters characterizing
the valley part, such as Sv, were stable. Other height parameters typically increased. The
change in the Sa parameter was small. Changes in the Smr parameter were very large.
The peak density Spd decreased, and the peak curvature Spc increased. Skewness Ssk
and kurtosis Sku parameters typically increased. The changes in other parameters were
rather low. Surface directionality Std was constant. Hybrid parameters, such as amplitude
parameters increased.

Figure 5 shows a contour plot of the plateau-honed surface with and without spikes.
The process of analog-to-digital conversion, called digitization, depends on the repre-

sentation of the analog signal by discrete data points. In the frequency domain, the ordinate
values of the signal are recorded at equal sampling intervals. Quantization depends on
splitting the signal into parallel height levels.

When sampling interval is too low, the data points are highly intercorrelated. On
the other hand, the loss of spatial information can occur. In 3D surface topography mea-
surement by stylus measurement, the sampling interval should be as large as possible
to decrease the measurement time. The minimum sampling interval is similar to the
dimension of the probe.
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Figure 5. Contour plots (a,d), material ratio curves (b,e), and selected parameters (c,f) of the plateau-
honed cylinder surface, with (a–c) and without spikes (d–f).

Several methods [38,39] were proposed to select the optimal sampling interval based
on the acceptable tolerance between the parameters obtained from a sampled profile
and their real values. The changes of hybrid parameters, summit density, and summit
curvature are high with sampling interval change. Therefore, the sampling intervals were
based on the surface spectral analysis [40–42]. Selection of the sampling interval depends
on information on which wavelengths are the most important in surface functions. For
example, according to Whitehouse and Archard [7] the sampling interval should be equal
to the correlation length (the distance, at which the autocorrelation function decays to a
given value, here 0.1), since after wear only long wavelengths exist on the surface. The
problem of sampling interval selection is important for two-process texture. For a rougher
surface, a higher sampling interval is required, while for the smoother surface, a smaller
sampling interval is needed [43]. The sizes and density of deep valleys are functionally
important. Therefore, Pawlus and Chetwynd proposed a sampling interval for which
deep valleys can be identified [44]. Figure 6 presents the effect of the sampling interval
equal to half of the width of the deep valley W, on the valley depth. For the best case, the
obtained depth of the valley D should be H (real depth of the valley) and for the worst case
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it should be H/2. The sampling interval equal to 0.3 of the mean width of the deep valley
was proposed.
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Figure 6. The effect of the sampling interval on the depth of the deep valley, after [45].

To use this method, deep valleys should be identified. Various procedures can be used
for this aim, typically on the basis of the material ratio curve, such as presented in [45].
The other method is based on the shape of the cumulative spectrum [42,44]. This approach
can be used properly when only the valley part can be analyzed because the plateau part
commonly contains a high-frequency component.

The quantization process depends on splitting the signal into a number of levels
parallel to the surface. According to Whitehouse [46], the minimum number of quantization
levels is 100. The authors of the articles [47,48] analyzed the influence of quantization on
the characteristics of the 3D topography. The average roughness parameters varied steadily,
but the skewness was very sensitive to changes in quantization levels. Quantization errors
affect mainly parameters related to the peak surface part. The effect of the quantization
error on the parameters of the two-process surface can be larger than that on the parameters
of the Gaussian surface. For similar maximum heights, the quantization errors of the peak
and valley parts of the Gaussian surface are the same, but for the two-process surface, the
quantization errors affect mainly the peak surface portion—see Figure 7. Quantization
errors can be monitored by the shape of the material ratio curve. Its stepwise shape proved
that quantization errors occurred.
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Figure 7. Color-code plots (a,c) and material ratio curves (b,d) of the random one-process (a,b) and
two-process (c,d) surface of similar maximum height for vertical resolution of 100 nm.

The peak density of 3D surface topography typically decreased, and the peak curvature
increased due to quantization errors. The main directionality was constant. The correlation
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length and amplitude parameters were stable. Quantization errors can distort information
about surface anisotropy.

The characteristic feature of two-process textures is that they contain deep valleys.
These valleys are associated with problems of filtration. Previously, instruments used a
filter that had a transmission characteristic similar to that of two capacitor-resistor networks
connected in cascade, called a 2CR filter [8]. However, this filter led to phase distortion.
Therefore, a Gaussian filter was established. Implementations of this filter were presented
in [9–11,13]. Then, a Gaussian regression filter, working without running-in and running-
out lengths was established. The Gaussian regression filter of 3D surface topography was
developed [49,50]. Spline filters have properties similar to the Gaussian filter [51–53]. They
work without marginal lengths. However, Gaussian and spline filters also can lead to
distortion of the deep valleys. Phase distortion can be diminished by increasing the cut-
off [54,55]. The alternative is to use no filter. Especially for plateau-honed surface textures,
the valley suppression filter was established, earlier in the German standard DIN 4776 and
then in ISO 13565-1 [56] standard. The filtering technique occurs in the following steps: the
surface if filtered with a Gaussian digital filter to determine the mean line. Then all valleys
below the mean line are removed. The profile is filtered again. The mean line obtained by
the second filter (waviness) is superimposed on the original unfiltered profile. The filtering
procedure leads to a more negative skewness and a higher kurtosis than that obtained after
using the Gaussian filter [57]. Robust Gaussian filters were also developed [58]. They can
be used for both one-process and two-process textures. For a one-process surface, their
behaviors would be the same as those of Gaussian filters. The robust filter uses additional
weights, which decrease in the place of peaks and valleys presence. They can work without
marginal lengths in 2D and 3D systems. However, for a surface with very deep and wide
valleys, robust filters should be modified [59].

After using an improper Gaussian filter for two-process profiles, the parameters de-
scribing the shape of the ordinate distribution changed. However, the changes in kurtosis
and skewness were smaller than the changes in the emptiness coefficient Rp/Rt and the
normalized core roughness depth Rk/Rt. The absolute values of the Rsk and Rku parame-
ters decreased, while the emptiness coefficient increased. The horizontal parameter RSm
decreased. Figure 8 presents the unfiltered profile, filtered profiles (roughness) after using
Gaussian and robust Gaussian filters with material ratio curves and selected parameters.

Some morphological filters are also recommended for two-process textures, especially
dilation, closing, and closing + opening filters. During a dilation, the structuring elements
are in contact with the peaks of the surface (upper envelope), while in erosion with the
surface valley (lower envelope). Shunmugam and Radhakrishman [60] first presented
a direct dilation algorithm using the circle. Closing depends on dilation followed by
erosion, and opening depends on erosion following dilation. Typically, the circle/sphere or
horizontal line/plane is used as structural elements. Morphological filters were described
by Dietzsch et al. [61], Krystek [62], Srinivasan [63], and Scott [64]. The authors of the
articles [65–68] confirmed the applicability of morphological filters for two-process surfaces.
After proper selection of the size of structuring element, the roughness profile will not be
distorted. For example, Pawlus et al. presented a procedure for estimating the radius of the
circular disc [68].

When filtering was not used, only the shape should be removed. It is typically
undertaken by applying the polynomial. For two-process surfaces, using the low degree
of polynomial is preferred. When the level of polynomial is too high, the distortion of
deep valleys is possible. Specifically, the highest degree of the polynomial is three for
two-process surfaces. Podulka et al. [69] presented the procedure to estimate the degree of
the polynomial. It depends on selecting the degree for which the core roughness depth Sk
achieves the minimum value. The better possibility is to exclude the valleys during form
removal. However, it is not always possible, especially for the surface of plateau-honed
cylinder liners.
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Figure 8. Profiles (a,d,g), material ratio curves (b,e,h) and selected parameters (c,f,i) of the two-
process random profile (a–c), after application of the Gaussian (d–f) and robust Gaussian filter of 0.8
mm cut-off (g–i).

2.2. Specific Parameters

Two standards ISO 135653-2 [70] and ISO 13565-3 [71] were dedicated to two-process
random profiles. Both methods are based on the material ratio curve. The first group of
parameters, called Rk, is based on the profile partition into 3 portions: valley, core, and
peak. This division is executed by sliding a 40% of material ratio wide window through the
entire curve. There are the following parameters: the core roughness depth Rk, the reduced
peak height Rpk, the reduced valley depth Rvk, and two material ratios: Mr1 and Mr2
(Figure 9a) [72–75]. There is also the so-called oil capacity A2 dependent on the parameters
Mr2 and Rvk. The material ratio Mr1 is of minor importance. This standard is based on
earlier works by Trautwein [76,77].
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from the Rq group (ISO 13565-3 standard)—(b).

The second ISO 13565-3 standard appeared in the USA. It is based on the partition
of the two-process profile into 2 parts: peak (plateau) and valleys—Figure 9b [54,78–80].
It is based on the probability plot of the material ratio curve. In this plot, for one-process
random profile, one straight line, while for two-process random structure, two straight
lines are visible. The Rpq parameter (rms. height of the plateau part) is the slope of
the upper straight line corresponding to the plateau part, while the Rvq parameter (rms.
height of the valley portion) is the slope of the straight line that approximates the valley
portion. The Rmq material ratio characterizes the plateau-to-valley transition. The depth
of the plateau Pd, not included in standard, but important for profile modeling, is also
presented in Figure 9b. It is a vertical distance between the mean lines of the plateau and
the valley parts.

The mentioned parameters were extended to areal surface topography—ISO 25178-2
standard [81].

They were compared in [82]. Shortly speaking, the Rk/Sk parameters can be used for
various surfaces, not only random two-process surfaces—which is their disadvantage [83].
They should not be used for deterministic surfaces; in those cases, there are problems
with determining the parameters Rpk/Spk and Rvk/Svk. Furthermore, sometimes the
implementation of this method can lead to false results [82]—the main problem is the
dependence of the Mr2/Sr2 on the slope of the material ratio curve, sometimes leading
to an increase in oil capacity during wear. The usefulness of the Mr1/Sr1 parameter is
doubtful. The advantage of this method is the ease of parameter calculation, so it can
be used for the assessment of the plateau honing process [84]. The areal parameters
characterizing height are slightly higher than similar parameters describing profile. Since
this method appeared first, it is the most commonly used. It can be combined with the
areal volume V parameters also defined in the standard ISO 25178-2: Vmp—peak material
volume, Vmc—core material volume Vvc—core void volume, and Vvv—dale void volume.
The disadvantage of the V parameters is that they are based on arbitrary transition points
between the peak and the core and the core and the valley [85].

The Rq/Sq family has a more theoretical background than the Rk/Sk group. It is based
on two parts of the surface: the plateau and the valley. The areal parameters are similar
to the profile parameters. It can be used for two-process texture modeling. However, its
advantage is the difficulty in calculating the parameters. First, there is a problem with
applying an approximating function of the probability plot of the material ratio curve.
The other function that is easier to implement was proposed in [86]. The other problem is
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that the original procedure described in the ISO 13565-2 standard led to an overestimation
of the Rpq parameter. This performance is related to the transition between the plateau
and valley parts. Near this transition, overlapping between two Gaussian distributions
occurred, this part having curvature should be removed during parameter calculation. In
the procedure from the standard, the angle between the asymptotes of the approximating
function should be bisected three times. It was found that further bisection decreases errors
in the calculation of the Rpq parameter [87]. Recognition and joining of the details of the
plateau part, based on [88], can also lead to improved calculation of the Rpq parameter
(Figure 10). First, the valley edges should be determined. Next the plateau details should
be joined. Recently, Sakakibara et al. [89] presented an improved algorithm to calculate
parameters from the Rq group.
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The probability parameters Rpq/Spq, Rvq/Svq, and Rmq/Smq can also be obtained
from the height distribution [90–94].

2.3. Characterization of Random Two-Process Textures

The main problem in random two-process texture characterization is the partition of
the surface into plateau and valley portions. It is related to the determination of oil capacity.
The plateau and valley parts also affect differently the functional properties of two-process
texture; therefore, the partition should be performed correctly. It can be undertaken using
Rk/Sk and Rq/Sq groups; however, as was already said, the Rk/Sk family can lead to
some errors. The transition point can be obtained as a point of maximum/minimum
curvature (depending on the orientation of the vertical scale) of the normalized material
ratio curve [95,96]. The additional method depends on rotating the curve of the normalized
material ratio at an angle of 45 degrees and searching for the point of the highest ordinate
(Figure 11) [82].
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The transition point is helpful for the proper determination of the sizes of the deep
valleys [95,97]. The parts of the plateau and valley can also be separated on the basis
of morphological filtering [98]. The identification of deep valleys was performed by
scientists [99–102]. Other methods for characterization of the plateau-honed cylinder
texture can be found in the review paper [103].

As was mentioned in the Introduction, two-process textures are characterized by a
negative value of skewness, and the emptiness coefficient smaller than 0.5. For two-process
textures, negative skewness corresponds to large kurtosis. In addition, the Sp/Sv (Rp/Rv)
ratio is less than 1. Kurtosis is proportional to the Sq/Sa (Rq/Ra) ratio [104], which is
equal to 1.25 for surfaces of Gaussian ordinate distribution. Yousfi et al. [105] described
the plateauness of the Spq/Svq (Rpq/Rvq) ratio, which is smaller than 1 for two-process
surfaces. Article [106] contains other parameters that differentiate between one-process
and two-process textures.

Generally, the ordinate distribution and the material ratio curve contain the same infor-
mation. For the unimodal height distribution, the height corresponding to the maximum of
the ordinate distribution corresponds to the smallest slope of the material ratio curve. Two-
process random textures are superimpositions of two Gaussian surfaces. Therefore, these
surfaces are sometimes called bi-Gaussian surfaces [92–94]. From intuition, these surfaces
should be characterized by a bimodal height distribution. However, the probability height
distribution of two-process surfaces is rarely bimodal. In [107] the limiting conditions of
the bimodal height probability distribution of the two-process surfaces were developed.
When the Smq parameter is greater than 50%, a unimodal amplitude distribution occurs.
The ordinate of mode and the smallest slope of the material ratio curve correspond to
the material ratio of 50% (Figure 12a–c). However, this ordinate for the unimodal height
distribution and the Smq parameter smaller than 50% corresponds to that of the Smq
parameter (Figure 12d–f). For the bimodal height distribution, typically the upper peak
(Figure 12g–i) can be the main mode.
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distribution (c,f,i), of random two-process isotropic modeled surfaces of the Smq parameter of 80%,
Spq = 0.1 µm, Svq = 0.75 µm (a–c), Smq = 40%, Spq = 0.1 µm, Svq = 0.75 µm (d–f), and Smq = 20%,
Spq = 0.1 µm, Svq = 0.35 µm (g–i).

In the production process, surface roughness is typically assessed using only one
parameter, the average roughness height Ra is commonly used. However, the structure
of two-process surfaces is complicated and should be described by a set of parameters.
The selected parameters should be functionally important and have low sensitivity to
measurement errors. The analysis of the correlation between the parameters is substantial.
The parameters that describe the surface should be uncorrelated and should characterize
various surface features. Nowicki [108] and Gorlenko [109] used the linear correlation
coefficient to select parameters that describe surface profiles, while Qi et al. [110] char-
acterized areal textures. Fecske et al. [111] studied the correlation between the height
parameters of the modeled surfaces of the Gaussian ordinate distribution. However, typi-
cally correlation analysis was used for surfaces after the same kind of machining. Terry and
Brown et al. [112] analyzed ground surfaces, Ham and Powers [113] surfaces after single-
point experimental forming, Reizer et al. [114] textured surfaces and Etxeberria et al. [115]
surfaces from biomaterials. Many works on this topic were related to two-process tex-
tures [45,106,116–120]. The following parameters were selected for the description of the
cylinder liners of the plateau-honed [45] and worn cylinder liners [116]: amplitude param-
eter, distance between deep valleys, and two parameters that describe the shape of the
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ordinate distribution, such as Rp/Rt and Rk/Rt. Pawlus et al. [106] recently revealed that
the parameters Rq/Ra and Rp/Rt characterize the shape of the ordinate distribution of
two-process profiles. Rosen et al. [117] revealed that the parameters describing the plateau
region are more interrelated than the parameters describing the valley part. The correlation
between parameters within the Sk/Rk and Sq/Rq groups of slide-honed cylinders was
studied by Pawlus et al. [118]. They found that the parameters Rpk and Rk were inter-
correlated; they proposed three parameters from the Sq/Rq group and Sk/Rk, Svk/Rvk,
and Sr2/Mr2 parameters from the Sk/Rk family. Pawlus et al. [119] found after analysis
of the modeled profiles that the parameters Rpk, Rk and Rpq parameters, Rvk and Rvq
parameters, as well as Mr1, Mr2 and Rmq parameters were intercorrelated. Grabon and
Pawlus [120] added to the parameters Spq, Svq, Smq or to Sk, Svk and Sr2 the following
set of parameters: Sz, Ssk, Sal, Str, and mean curvature of the summits [121,122] describing
various random two-process textures.

3. Simulation of Two-Process Random Textures

Typically, random 2D profiles or 3D surface topographies of the Gaussian ordinate
distribution are modeled. For profile modeling, the input data are rms. height Rq and
correlation length CL, which is the distance at which the autocorrelation function decays
to an assumed value, typically 0.1. The shape of the autocorrelation function should also
be specified. However, areal isotropic or one-directional anisotropic surface textures are
characterized by the Sq parameter and correlation lengths in perpendicular directions.
More complicated surfaces, such as cross-hatched surfaces after a one-process honing, are
characterized by additional parameters, such as the honing angle.

Modeling of Gaussian textures is based mainly on time series ARMA and FFT meth-
ods. Among time series methods, typically AR (autoregressive) methods were used for
profile modeling [123–127] and areal surface topography modeling [128–132]. Wu [18] and
Newland [133] developed a method based on Fast Fourier Transform. Other methods of
Gaussian texture modeling are presented in [21]. Bakolas [134] presented a method of
simulating an oriented surface. Methods of generation of surfaces of non-Gaussian ordinate
distribution are based on the Johnson translation system [135–139]—the skewness and
kurtosis are additional input parameters. However, this method allows us to correct the
simulation of textures with a low absolute value of skewness.

The two-process surface texture modeling procedure is related to the description using
parameters from the Rq/Sq group. For profile generation, it is necessary to model two
profiles. Each of these profiles is characterized by the Rq parameter and correlation length.
However, the Rq parameter of the upper (plateau) profile is equal to the Rpq parameter of
the two-process profile, while the Rq parameter of the lower (valley) profile is equal to the
Rvq parameter of the two-process profile. The vertical distance between these profiles Pd
(Figure 9b) is related to the parameters of the Rq group by the following equation:

Pd = Rmq (Rpq − Rvq) (1)

The simulation of a two-process surface profile depends on the superimposition of
two Gaussian profiles. It is based on selection from two Gaussian profiles points of smaller
ordinates [140]. The iterative procedure was used to obtain the desired correlation length
of the two-process profile. It depends on changing the correlation lengths of the plateau
and valley profiles and selecting those profiles for which the correlation length of the
two-process profile is the closest to the assumed value [141,142]. Figure 13 presents an
example of the generation of a two-process profile.
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Figure 13. Example of generation of two-process random profile: (a) plateau profile: Rq = 0.3 µm,
CL = 25 µm, (b) valley profile Rq = 1.4 µm, CL = 90 µm, (c) two-process profile, Rmq = 85%.

One can predict the value of the the Rq parameter of two-process profile on the basis
of the Rpq, Rvq, and Rmq parameters:

Rq = RpqRmq + Rvq (1 − Rmq) (2)

Rmq should be given on a linear scale. The relative error of the prediction of the Rq
parameter was found to be equal to 5.5%. Higher errors correspond to larger Rvq/Rpq
ratios. Figure 14 presents two-process profiles with the Rq parameter calculated and
predicted using Equation (2) Rqpr.

This procedure is helpful for comparing functional behaviors of one-process and
two-process profiles characterized by a similar value of the Rq parameter.

This procedure can be extended for the modeling of the random surface areal topogra-
phy of two-process random surface—Figure 15.
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Figure 14. Two process random profiles: Rpq = 1 µm, Rvq = 7 µm, Rmq = 70%, Rq = 2.88 µm,
Rqpr = 2.8 µm (a), Rpq = 2 µm, Rvq = 10 µm, Rmq = 80%, Rq = 3.69 µm, Rqpr = 3.6 µm
(b) Rpq = 0.5 µm, Rvq = 5 µm, Rmq = 90%, Rq = 0.955 µm, Rqpr = 0.95 µm (c), the correlation
lengths of the plateau and valley profiles were 20 µm.

The procedure of simulation of a two-process structure after plateau honing is more
complicated. It is based on creating cross-hatched Gaussian structures of parts of the
plateau and valleys with their superimposition [140]. Some errors of the honing treatment
can also be modeled.

Two-process surfaces can also be modeled on the basis of skewness and kurtosis
using the Johnson translation system [135–139] or other procedures, such as those pre-
sented in [21]. However, skewness and kurtosis are not robust parameters sensitive to
measurement errors in contrast to parameters from the Sq/Rq family [26]. Briefly, the same
parameters Spq, Svq, and Smq could result in different values of the skewness Ssk and the
kurtosis Sku.

There are different variants of the superimposition procedure. The simulated surface
should be superimposed on the real surface or vice versa, two real surfaces can also be
superimposed. The first possibility is used to simulate surfaces after low wear (smaller than
the initial roughness height) [114,143,144]. During modeling, the one-directional surface
of normal ordinate distribution was superimposed on the surfaces after machining. This
method gave better results than the previously used truncation by a plane/line [145–149].
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It is possible to obtain information on surface parameters after machining based on
the measurement of the two-process surface (after machining and wear) [150].
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Spq = 0.21 µm, Svq = 1.28 µm, Smq = 79% (c).

4. Impact of Two-Process Random Textures

Many research works in the tribology field are related to behaviors of one-process
surfaces. However, there is a comparatively small number of works that are concerned with
two-process random surfaces. These surfaces are not only machined, including the most
popular plateau-honed surfaces, but two-process surfaces are also formed in low wear,
particularly during the running-in process of machine elements. The functional behavior
of the surface created during running-in is better than that of the machined texture. Seal
surfaces [151] and surfaces created by additive processes [152] are other examples of two-
process textures. Generally, the plateau part decides about asperity friction, while the valley
part about hydrodynamic friction. In this section, the effects of two-process surfaces on
contact mechanics, as well as friction and wear, will be presented.
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4.1. Contact Mechanics

Some works in the field of contact mechanics are related to surfaces of negative skew-
ness that are typically associated with an improvement of contact characteristics [153–159].
In [153] the contact between two textures was modeled as a contact between a rigid flat
and an elastic–plastic rough texture considering the work hardening and the interaction be-
tween the summits. Belhadjamor found that a negative skewness led to an improvement of
contact stiffness. In [154] a contact of steel-on-steel surfaces was studied. Skewed surfaces
had higher tangential stiffness, compared to Gaussian surfaces. Negative skewness led to
more elastic contact [155,156]. Change and Jeng [157] revealed that skewed surfaces tended
to improve contact and lubrication of smooth textures. McCool [158] found that a negative
skewness led to a lower mean effective pressure than the Gaussian surface with the same
value of the Sq parameter. Yu and Polycarpou [159] found that a surface with negative
skewness resulted with a smaller area of contact, number of contacting asperities, contact
load, and mean asperity pressure than Gaussian surfaces. Chilamakuri and Bhushan [135]
revealed that a surface with a negative skewness caused a high contact area. Tayebi and
Polycarpou [160] analyzed a contact between a magnetic disk of 2.4 GPa hardness and
a slider of 22.6 GPa hardness. They found that negative skewness led to a higher static
friction coefficient compared to the Gaussian case. To obtain low adhesion, a surface with
positive skewness is needed [161,162].

Peng and Bhushan [163] analyzed a contact between a rough surface of the Al2O3-
TiC head and a flat diamond tool. They revealed that the contact area of two-process
surfaces with negative skewness decreased with an increase in the Rpq/Rvq ratio. How-
ever, the depth of the plateau has a marginal effect on the contact area and maximum
contact pressure.

Tomanik [164] calculated the elastic contact area, asperity contact pressure, and surface
separation on the basis of the measured surfaces of honed and plateau-honed cylinder
liners made of cast iron. He considered only summits to exist above the mean surface plane.

Leefe [165] analyzed the elastic contact of two-process random surfaces. He found
that the plateau surface part governed the contact performance of the two-process texture.
He also found that the cumulative distribution of the asperity height can be approximated
by two straight lines, similar to the cumulative distribution of surface ordinates—Figure 16.
Leefe studied many worn surfaces, for example, from worn seal rings, mainly carbon
graphites and ceramics.
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Figure 16. Cumulative probability distribution of the ordinate heights (a) and the heights of the
summits (b), adapted from [165].

Hu et al. [166] studied the influence of the parameters Spq, Svq, and Smq on the
parameters that characterize the summits, such as rms. height, density of the summits,
and mean radius of the curvature of summits. Rms. height of the summits increases when
Spq and Svq increase and Smq decreases. However, rms. height of the summits located



Materials 2022, 15, 268 19 of 34

in the upper part of the surface part depends only on the Spq parameter. The increase
of a Smq parameter means the higher proportion of upper components, located above
the knee-point—Figure 16, therefore the higher Smq had a positive effect on the summit
density of the upper part. The radius of summit curvature is positively related to the Smq
parameter, but negatively to the Spq parameter—see Table 1. Hu et al. [166] modeled worn
surfaces, made of silicon carbide (SiC), tungsten carbide (WC), resin-impregnated carbon
(RIC) and metal-impregnated carbon (MIC) from mechanical face seal.

Table 1. The relations between the parameters Spq, Svq, and Smq and the parameters of summits,
after [93].

σs σ2ps Sds Sd2ps R R2p

Spq + + ≈ ≈ − −
Svq + ≈ ≈ ≈ ≈ ≈
Smq – ≈ ≈ + + +

where + represents ‘be positively related’,− represents ‘be negatively related’, and ≈ represents ‘be
nearly uncorrelated’.

σs, σ2ps—standard deviation of summits height of entire surface, and the peak part,
respectively, Sds, Sd2ps—density of the summits of the entire surface and of the peak part,
respectively, R, R2p—mean radius of summits curvature of entire surface, and of peak
portion, respectively.

Pawlus et al. [167] analyzed a contact of steel-on-steel random two-process surfaces.
In not all cases, the cumulative distribution of asperity heights can be approximated by
two straight lines. When the correlation lengths CL are small (the ordinates of neighboring
points are not correlated with each other), only one straight line is visible—Figure 17b. CLp
and Clv mean the correlation length of the plateau and valley parts, respectively.
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Greenwood and Wiliamson [168] developed the plasticity index to characterize the
ability of the surface to plastic deformation.

Ψ =
E′

H

(σS
R

) 1
2 (3)

where H—hardness of the softer material, E′—equivalent Young’s modulus.

1
E′

=
1− v2

1
E1

+
1− v2

2
E2
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where E1, E2, v1, v2 and Young’s moduli and Poisson’s ratios of two contacting surfaces,
respectively. According to Greenwood and Williamson [168] the contact is elastic for the
plasticity index smaller than 0.6 and plastic for the plasticity index higher than 1, while for
the range 0.6–1 the mode of deformation is doubtful. Greenwood and Williamson analyzed
the cumulative summit height distribution of specimen from worn mild steel.

Pawlus et al. [167] modified this version, considering only summits existing on the
plateau surface part.

Ψ2p =
E′

H
(σ_2ps/R_2p )̂(1/2) (5)

The modified plasticity index, given by Equation (5) is much smaller than the plasticity
index calculated for the entire surface—Equation (3). The errors in the determination of the
plasticity index for the two-process surface are higher for a smaller Smq parameter, a longer
Svq/Spq ratio and a higher correlation length of the valley surface. However, this index
is larger than that obtained for the plateau Gaussian surface. It is caused by the fact that,
when calculating the modified index, the highest point of the summits belongs to the peak
part, but the other points can belong to the valley region. The plasticity index (4) is valid for
isotropic surfaces. It was modified for the plateau-honed cross-hatched anisotropic texture
made of gray cast iron [169], following the paper [170].

The authors of the papers [93,171,172] analyzed the contact of two-process random
surfaces with a smooth flat using a deterministic approach. Contact of steel-on-steel flat
surfaces was considered in [171,172]. Hu et al. [93], similar to [166] modeled worn surfaces
from a face seal. The plateau part decides about the contact performance of two-process
surfaces; however, the impact of the valley surface portion also exists [171]. For the same
values of the Sq parameter of the one-process surface and Spq parameter of the two-process
texture, the contact area is lower for one-process surface.

For plastically deformed surfaces, the effect of the sampling interval on the dependence
between the contact load and the real contact area is negligible [172]. For surfaces inclined
to plastic deformation, for the same contact pressure p, the contact area A increases with
increasing sampling interval—Figure 18.
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Zelasko [173] analyzed the contact of two-process random surfaces with a smooth
sphere. The maximum contact pressures were smaller for two-process surfaces, when the
Sq parameter of the one-process texture was equal to the Spq parameter of the two-process
surface, the difference was higher for the larger Svq/Spq ratio of the two-process texture.

The majority of research in the field of contact mechanics is analytical. In [174] the
plastic contact of steel surfaces with a hard flat surface was experimentally studied. The
plastic deformation d was found to be proportional to the plasticity index calculated by
Equations (3) and (4). The results were compared with those predicted using the elastic-
plastic model JG developed by Jackson and Green [6]—Figure 19.
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4.2. Friction and Wear

Similar to contact problems, several researchers obtained good tribological behaviors
of negatively skewed surfaces. Sedlacek et al. [175,176] studied the contact between 100Cr6
steel discs of different roughness and ball made of Al2O3. They obtained the reduction in
friction of negatively skewed surfaces in lubricating sliding.

Dzierwa et al. [177] analyzed sliding contact between disc made of 42CrMo4 steel of
hardness 40 HRC and ball made of 100Cr6 steel of 62 HRC hardness [177]. He achieved
a decrease in wear under dry contact of negatively skewed surfaces of small and high
amplitudes, respectively. Jocsak et al. found after simulation that for the same surface
height, the negative skewness of the cylinder liner surface reduced the friction of the piston
ring pack [178]. Michail and Barber [179] found that skewed cylinder liners produced a
smaller oil film thickness than the surface of normal ordinate distribution. However, this
effect is minimized because of the typically lower roughness height of the skewed surface
(for smaller amplitudes, the ratio of oil film thickness to roughness height increases).

The surfaces analyzed in References [175–179] were not highly skewed.
However, the textured surfaces are highly skewed. Kang et al. [180] after simulation

found that under elasto-hydrodynamic (EHL) lubrication the change of the skewness from
−0.5 to −2 for the same roughness height did not change the pressure and thickness of the
film. However, decreasing the skewness to −4.7 caused significant increases in the oil film
thickness and percentage of higher pressure.

Of course, random textures belong to a group of textured surfaces, but most of the
textured surfaces had a random-deterministic character. Surface texturing is an option to
improve the tribological properties of sliding surfaces by creating dimples (oil pockets and
cavities). These dimples led to friction reduction mainly in mixed and boundary lubrication,
a decrease in abrasive wear, and a decrease in the tendency to seizure. Laser texturing is
the most popular technique for forming dimples. Reviews on surface texture are presented
in References [181–185].

Jeng and Gao [186] found that the change in negative skewness was smaller during
low wear than the change in positive skewness. Skewness typically decreased during wear.
For high negative skewness, initially this parameter can increase.

Goeke et al. [187] achieved a smaller friction of the milled and honed surfaces in the
lubricated reciprocating motion compared to those of the milled, milled and ground and
polished surfaces. Surfaces after milling and grinding and after milling and honing were
characterized by a similar roughness height, but the plateauness of the milled and honed
surfaces was higher. Textures were created on the 18CrNiMo7-6 case hardening steel of
63 HRC hardness.
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Pawlus found using the engine test bench that wear during running in was propor-
tional to the emptiness coefficient Rp/Rt. He tested one- and two-process cylinder surfaces
made of gray cast iron [188]. Smaller wear on the two-process surface than on the one-
process textures was also received for wear higher than the initial surface height under
artificially increased dustiness conditions [189]—Figure 20.
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Figure 20. Relation between the emptiness coefficient and the cylinder wear of the engine under
artificially increased dustiness conditions, for various initial values of roughness amplitude Rt
parameter, adapted from [189].

Jeng [190] compared the tribological behaviors of one- and two-process surfaces
characterized by a similar value of the Rq parameter in lubricated conditions. The discs
made of gray cast iron typically used as cylinder liner material co-acted with pin made
of chrome-plated gray cast iron commonly used as a material of the first piston ring
in automotive engines. Jeng found that the two-process surface was characterized by
a higher resistance to scuffing. This behavior was probably caused by the higher oil
capacity than one-process surface—see also Figure 1. Both surfaces behaved similarly
under fluid lubrication. However, under mixed lubrication, the plateaued surface reduced
the coefficient of friction, Figure 21a. This performance was caused by the fact that the valley
surface part had a negligible effect on the asperity contact. Initially, the wear of the two-
process surface was higher than that of the one-process surface, but the plateaued surface
quicker finished running-in and its wear in the steady state period was lower—Figure 21b.
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Barber and Ludema [17] conducted similar research. However, they did not achieve
the tribological superiority of a two-process cylinder over one-process one.
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Grabon et al. found in an experiment conducted using a test rig that the wear of the
two-process cylinder was smaller than the wear of the one-process cylinder described by
the same value of the Sq parameter [191]—Figure 22. Specimens were made from cylinder
liner honed surfaces of grey cast iron of hardness 218 HB, the counter-specimens were
made of chromium-coated steel C45.

Materials 2022, 15, x FOR PEER REVIEW 23 of 35 
 

 

was higher than that of the one-process surface, but the plateaued surface quicker finished 
running-in and its wear in the steady state period was lower—Figure 21b. 

Barber and Ludema [17] conducted similar research. However, they did not achieve 
the tribological superiority of a two-process cylinder over one-process one. 

Grabon et al. found in an experiment conducted using a test rig that the wear of the 
two-process cylinder was smaller than the wear of the one-process cylinder described by 
the same value of the Sq parameter [191]—Figure 22. Specimens were made from cylinder 
liner honed surfaces of grey cast iron of hardness 218 HB, the counter-specimens were 
made of chromium-coated steel C45. 

(a) (b) 

 
 

Figure 21. Friction coefficient as a function of load for a rotational speed of 4000 rpm (a), linear wear 
as a function of test duration (b), adapted from [190]. 

 Figure 22. Dependence between the Sq parameter and the wear of the cylinder liner, adapted
from [191].

The comparison between the tribological behaviors of one-process and two-process
surfaces was the most correct when rms. heights of them were similar such as in Refer-
ences [189–191]. However, typically the amplitude of two-process texture is lower than that
of one-process surface. For example, in [192] specimens were cut, specimens were cut from
grey cast liners, and counter-specimens were made from a chromium-coated compression
ring. A lower wear of the plateaued cylinder liners was achieved. On the contrary, Santochi
and Vignale [193] obtained a higher amplitude of the two-process cylinder surface made of
cast iron compared to the one-process surface. They achieved better operating parameters
(power, fuel consumption) of plateaued cylinder texture. Similar, Yin et al. [194] obtained
a smaller friction torque for the cylinder texture with a higher negative skewness and a
higher amplitude. Sato et al. [195] found that a two-process cylinder liner made of cast iron
improved the lubrication of Diesel engine in the beginning of running-in for comparatively
high roughness (Rt near 2 µm). However, for low roughness height (Rt about 0.5 µm) one-
honed liner led to more hydrodynamic lubrication. Yousfi et al. assessed the plateauness
of the cylinder liner surface using the Spq/Svq ratio. Simulation revealed that a lower
friction was related to a lower value of this ratio [196]. However, in experimental research
the coefficient of friction was not correlated with the plateauness of the cylinder [105].

Changes in parameters of the Sq family during low cylinder wear are interesting.
The Spq parameter of the initial two-process liner surface decreased, the Svq parame-
ter was constant, while the Smq parameter increased. The one-process texture changed
to two-process texture and the tendency of changes in parameters was similar to that
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mentioned above [192]—Figure 23. A similar tendency was found in other works in lubri-
cated conditions [114,143]. Probably, after finishing low wear, two-process surface became
one-process texture.
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Figure 23. Evolutions of probability plots of the material ratio curve of the initial two—(a) and
one-process (b) liners, adapted from [192].

Discs of a 42CrMo4 steel of hardness of 40 HRC were put in contact with balls of
100Cr6 steel ball of a hardness of 60 HRC [197]. In lubricated sliding, the friction force
of assemblies with two-process surfaces was smaller than that of one-process surfaces of
the same amplitude. The coefficient of friction was proportional to the Sq parameter of
one-process surface and the Spq parameter of two-process surface—Figure 24.
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Until now, the comparison between the tribological performances of the one- and
two-process surfaces has been presented under lubricated conditions. Only a few works
on this topic have been carried out in the dry sliding regime. The results depend on the
applied normal load. A 40 HRC hardened steel disc of hardness 40 HRC co-acted with steel
pin of 64 HRC hardness [198]. When the normal load was 10 N and the test duration was
30 min, for smoother textures (Sq near 1 µm) wear volume of the two-process disc surface in
the dry unidirectional siding was smaller than that of the one-process texture. The opposite
situation occurred for rougher one- and two-process surfaces. In both cases, the distances
to obtain the steady state of the coefficient of friction were larger for two-process textures.
For the normal load of 20 N, the wear volume of the two-process surfaces was smaller
than that of one-process surface also for the Sq parameter of 3 µm. However, for a normal
load of 50 N and a test duration of 10 min, one- and two-process surfaces led to similar
tribological performances [197].

In the works [197,198] one-process random surfaces of isotropic character were created
by vapor blasting. Two-process random textures were formed by vapor blasting followed
by lapping. They had also isotropic character.

Hu et al. analyzed changes in bi-Gaussian surface parameters in dry sliding [199,200]—
Figure 25. For the hard material, the Spq parameter changed to the value obtained during
running-in and the plateau part went down. When the low-wear process was finished, the
plateau part went up due to the creation of deep scratches (the Svq parameter increased).
For the soft material, initially the upper component went down and sharply went up
because deep scratches were created. The Spq parameter changed to the value determined
during running in. In a stable period, the Spq and Svq parameters were steady. This
procedure was modified in [151]. The silicon-carbide sample was placed in contact with
the carbon-graphite sample [151,199,200].
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There are opinions that two-process surfaces have bi-fractal structures [201,202]. Wei
et al. [203] developed bi-fractal characterization method used for the evaluation of a plateau-
honed cylinder profile during the wear process.

Acoustic emission can be used for the analysis of the tribological interaction between
sliding surfaces [166]. Huang et al. [204] developed a bi-Gaussian acoustic emission model
for sliding friction of two-process textures. They analyzed the mechanism by which bi-
Gaussian stratified topographies influence wettability [205–207].

Cylinder bores studied in [201] were made of gray cast iron. Similar to the works [166]
and [93], worn surfaces made of silicon carbide (SiC), tungsten carbide (WC), resin-
impregnated carbon (RiC) and metal-impregnated carbon (MiC) from a mechanical face
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seal were analyzed in [202,204]. The surfaces of steel discs made of AISI 52,100 were
studied in [205,207]. The surfaces analyzed in [206] were fabricated by 3D direct-laser
lithography attaching IP-S photoresist to an indium tin oxide-coated fused silica by means
of a two-photon polymerization.

There are also three-, four- and generally multi-process surfaces, when the number of
processes creating traces on textures is higher than two. Surfaces after plateau honing and
wear made of gray cast iron can be an example of this texture [208]. The other possibility is
presented in [209].

5. Conclusions and Perspectives

1. There are many random two-process textures. The plateau-honed cylinder surface is
a typical example. Two-process surfaces are also created in low wear. Seal surfaces
and surfaces formed in additive processes are other examples;

2. The two-process surface consists of two parts: plateau and valley. These surfaces are
more complicated than one-process textures. Therefore, the nature of two-process sur-
faces should be taken into consideration during studies of the properties of machined
elements. The modeling of two-process surfaces is helpful during analysis;

3. Two-process surfaces are sensitive to errors of measurement, especially the mechanical
filtration of the stylus tip, the presence of non-measured points, the effect of sampling
interval, and quantization error;

4. Improper filtration causes distortion of two-process surfaces. The Gaussian filter
should not be applied for these surfaces. Valley suppression filter, robust or mor-
phological filters are preferred. Increasing a cut-off from 0.8 to 2.5 mm leads to
the reduction of valleys distortions. Polynomials of low order are recommended to
remove curvatures;

5. Some surface topography parameters were specially designed to two-process random
textures. Of these, the Rq family of parameters is preferred. The Rpq, Rvq, and Rmq
parameters are statistically independent, based on theoretical background, and usable
in surface modeling. However, the procedure for determining parameters is difficult
to interpret numerically;

6. One of the main problems in the analysis of two-process random surfaces is partition
into plateau and valley parts, which differently affect functional properties. It is related
to the determination of oil capacity. It can be undertaken using the various methods
such as using Rq/Sq family, rotation of the material ratio curve, and searching for a
point of minimum/maximum curvature;

7. The ordinate distribution of random two-process surfaces is typically unimodal,
especially when the Rmq/Smq parameter is greater than 50%. For the bimodal height
distribution, usually the upper peak is the major mode;

8. The analysis of linear correlation and regression is helpful in parameter selection.
The basic description of surface topography of two-process surfaces should contain
non-correlated parameters, describing various surface properties;

9. The simulation of a two-process random surface depends on the superimposition
of two Gaussian surfaces. One can predict the value of the Rq parameter of the
two-process profile on the basis of the Rpq, Rvq, and Rmq parameters;

10. Two-process surfaces are functionally important. Their tribological impacts are the
most substantial under mixed and boundary lubrications. The plateau part decides
about the asperity contact, while the valley part governs hydrodynamic lubrication;

11. Negative skewness usually leads to an improvement in contact characteristics. For
the same roughness height, the inclination to plastic deformation of a two-process
surface is lower than that of a one-process surface. For two-process random surfaces,
the plasticity index should be modified from its original formula;

12. Two-process random surfaces are typically characterized by higher scuffing resistance,
smaller wear, and coefficient of friction in mixed lubrication compared to one-process
surfaces of similar roughness height. Different modes of evolution of two-process
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surfaces occur in dry and lubricated friction. In the initial period of life, two-process
texture changes into three-process one;

13. In further research, more modeling and experimental work should be performed to
compare functional behaviors of random one- and two-process surfaces of the same
roughness height. In tribological research, the Rq/Sq group of parameters should
be preferred over the Rk/Sk family. In standardization, the method of determining
the Rq/Sq parameters should be improved. Modeled two-process surfaces should be
used more frequently in research work.
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Nomenclature
2D profile
3D areal surface topography
CL profile correlation length
E′ equivalent Young’s modulus
H hardness of softer material
Pd plateau depth
PSm, RSm mean width of profile elements
R mean radius of summit curvature
Sa (Pa, Ra) arithmetical mean height
Sal auto-correlation length
Sdq (Pdq, Rdq) root mean square slope
Sdr developed interfacial area ratio
Sk (Rk) core roughness depth
Sku (Pku, Rku) kurtosis
Smr areal material ratio
Smq (Rmq) material ratio at plateau–to–valley transition
Sp (Pp, Rp) maximum peak height
Spc mean peak curvature
Spd peak density
Spq (Rvq) plateau root mean square roughness
Sq (Pq, Rq) root mean square height
Ssk (Psk, Rsk) skewness
Spk (Rpk) reduced peak height
Sr1 (Mr1) material ratio: peaks/core
Sr2 (Mr2) material ratio: core/valleys
Std main texture direction
Str texture aspect ratio
Sv (Pv, Rv) maximum valley depth
Svk (Rpk) reduced valley depth
Svq (Rvq) valley root mean square roughness
Sz or St (Pz or Pt, Rt) maximum height
Vmc core material volume
Vmp peak material volume
Vvc core void volume
Vvv dale void volume
σs standard deviation of asperity height
Ψ plasticity index
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171. Pawlus, P.; Żelasko, W.; Dzierwa, A. The effect of isotropic one-process and two-process surface textures on contact of flat surfaces.

Materials 2019, 12, 4092. [CrossRef]
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173. Żelasko, W. Contact of Peaks of Flat One and Two-Process Texture with Spherical and Flat Surface. Ph.D. Thesis, Rzeszów

University of Technology, Rzeszow, Poland, 2015. (In Polish).
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