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Abstract: H-adaptivity is an effective tool to introduce local mesh refinement in the FEM-based
numerical simulation of crack propagation. The implementation of h-adaptivity could benefit the
numerical simulation of fatigue or accidental load scenarios involving large structures, such as ship
hulls. Meanwhile, in engineering applications, the element deletion method is frequently used to
represent cracks. However, the element deletion method has some drawbacks, such as strong mesh
dependency and loss of mass or energy. In order to mitigate this problem, the element splitting
method could be applied. In this study, a numerical method called ‘h-adaptive element splitting’
(h-AES) is introduced. The h-AES method is applied in FEM programs by combining h-adaptivity
with the element splitting method. Two examples using the h-AES method to simulate cracks in large
structures under linear-elastic fracture mechanics scenario are presented. The numerical results are
verified against analytical solutions. Based on the examples, the h-AES method is proven to be able
to introduce mesh refinement in large-scale numerical models that mostly consist of structured coarse
meshes, which is also beneficial to the reduction of computational resources. By employing the h-AES
method, very small cracks are well represented in large structures without any deletions of elements.

Keywords: finite element method; mesh strategy; linear elastic fracture mechanics; mesh refine-
ment; fracture mechanics; numerical crack; h-AES method; interelement method; edge separation;
crack propagation

1. Introduction

The finite element method (FEM) is an effective tool for the simulation of static or
cyclic crack propagation. In FEM-based simulations of crack propagation in large structures
using shell elements, such as ship hulls, coarse meshes are often employed in consideration
of computational cost [1,2]. However, the dimensions of cracks are relatively small in large
structures. If a higher accuracy or more local details are needed in the numerical model, it
is desirable to introduce local mesh refinement, which requires less computational cost than
applying a fine mesh to the entire model [3,4]. In order to introduce local mesh refinement,
the h-adaptivity could be applied. The h-adaptivity has been proven to be an effective tool
to enhance local accuracy while keeping computational costs low, as can be seen in several
research works on the simulation of cracks [5–8].

For engineering questions using shell elements, the element deletion method is often
used to represent cracks. The element deletion method is easy to implement, and its accu-
racy can be enhanced in many ways—e.g., by using higher mesh density [9] or by adopting
suitable material models [1,10–13]. As a result, the element deletion method is frequently
applied in accidental load scenarios involving large structures, e.g., during ship collision
and grounding [14–16]. However, the deletion of elements will bring some drawbacks.
One of the drawbacks is the loss of mass or energy due to element deletion [17,18]. The
other is the strong mesh dependency along the crack path, causing differences between the
numerical and experimental results [19–21].
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Apart from the element deletion method, there are other FEM-based crack repre-
sentation methods—such as the extended finite element method (XFEM), the remeshing
technique, the edge separation method, and the element splitting method. In the algorithm
of the XFEM, the cracks are modelled by introducing functions that represent discontinuity
in elements with fracture [22–25]. Compared with the element deletion method, crack
paths based on the XFEM method could be less mesh-dependent [20,24,26–28], and the
conservation of mass could be preserved [28,29]. Research combining XFEM with local
mesh refinement were also proved to be effective [4,30]. Remeshing techniques are usually
applied to rebuild local meshes around the crack tip [31–35], leading to very precise results
regarding the crack initiation and propagation. However, the mesh rebuild process causes
additional computational cost.

The edge separation method is also known as an interelement method [20]. In the
edge separation method, the crack paths always coincide with the existing element edges.
In order to separate the elements by their edges, the Xu–Needleman method [36] or the
Camacho and Ortiz method [37] could be applied. When applied to shell elements, the
edge separation method is often used together with cohesive methods [38–40] or the VCCT
method [41]. For cracks induced by cyclic loading, compared to classical theory of linear
elastic fracture mechanics (LEFM), this method allows for an easy implementation of
uncertainty in fatigue crack initiation and propagation characteristics by means of random
fields [42]. However, in the edge separation method, the crack path is strongly mesh-
dependent, since it has to coincide with the element edges [43]. Some meshing techniques
introduce more element edges to enhance the accuracy of a crack path, such as the 4k
mesh technique [44–46], which has also been proven to be effective when combined with
adaptive mesh refinement [45].

In order to reduce the mesh dependency in the edge separation method, the element
splitting method could be applied. In the element splitting method, a crack path still has to
coincide with the element edges [47], just like in the edge separation method. However,
the existing elements can be split up to create more element edges. Thus, cracks are
considered to be able to propagate within the original elements. As a result, the mesh
dependency, though still existent, could be reduced [47–50]. The element splitting method
could be applied to hexagon elements [47,48,51], quadrilateral elements [49], triangular
elements [52], or 4k mesh-based triangular and quadrilateral elements [50]. Figure 1 shows
an example of the different crack representations resulting from element deletion, edge
separation, and the element splitting method. More details about the element splitting
method will be introduced later in this paper. However, one of the research articles above
combined the element splitting method with h-adaptivity for the representation of cracks
in large structures.

In this study, a combination of the h-adaptivity and the element splitting method,
which is called the ‘h-adaptive element splitting’ (h-AES) method, is introduced. The aim
of the h-AES method is to provide an optional alternative to current methods of simulating
small cracks in large structures with a structured coarse global mesh. Compared with
unstructured meshes, structured meshes can be generated and refined easier [47], which
is the reason for applying structured meshes in this study. In Section 2, the basic concept
and methodology of the h-AES method is introduced. Before applying it to more complex
models, a verification against analytical solution is needed as a first step. Thus, in Section 3,
two examples of numerical implementation using the h-AES method are presented, in
which the numerical results are compared with analytical results based on LEFM. A further
discussion of the h-AES method can be found in Section 4.
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tion method; (c) Crack representation using the edge separation method; (d) Crack representation 
using the element splitting method. 
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coarse mesh	Ω௖; see Figure 2. The mesh refinement is introduced by dividing the ‘parent 
elements’ into ‘sibling elements’—a process that is also known ‘fission’ [5]; see Figure 3. 

If a smaller mesh size is needed, the parent elements can be divided into more sibling 
elements; see Figure 2b. Additionally, further refinement could be introduced on the al-
ready refined meshes; see Figure 3c,d and Figure 4. The domains of the further refined 
mesh belong to different refinement levels. If more than one level of refinement is intro-
duced, the first refined domain Ω௥ is defined as Ω௥ଵ instead, and the further refinement 
levels are defined as Ω௥ଶ and so on; see Figure 4. 

Figure 1. (a) The original mesh and the crack path; (b) Crack representation using the element
deletion method; (c) Crack representation using the edge separation method; (d) Crack representation
using the element splitting method.

2. The H-Adaptive Element Splitting Method
2.1. Mesh Refinement Using H-Adaptivity

In the h-AES method, when local mesh refinement is introduced, the local mesh is
divided into two domains: the domain of refined mesh Ωr and the domain of the original
coarse mesh Ωc; see Figure 2. The mesh refinement is introduced by dividing the ‘parent
elements’ into ‘sibling elements’—a process that is also known ‘fission’ [5]; see Figure 3.
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Figure 3. (a) A parent element before refinement; (b) Four sibling elements replacing the parent
element; (c) One sibling element becomes a parent element for four sibling elements on the next level;
(d) Two sibling elements become parent elements for eight sibling elements on the next level.

If a smaller mesh size is needed, the parent elements can be divided into more sibling
elements; see Figure 2b. Additionally, further refinement could be introduced on the
already refined meshes; see Figures 3c,d and 4. The domains of the further refined mesh
belong to different refinement levels. If more than one level of refinement is introduced,
the first refined domain Ωr is defined as Ωr1 instead, and the further refinement levels are
defined as Ωr2 and so on; see Figure 4.
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h-AES method is based on a method introduced by Camacho and Ortiz [37], where cracks 
are modelled by adding duplicate nodes along the crack paths; see Figure 6. 

Figure 4. Multiple levels of mesh refinement, where the thinner lines represent the new element
edges after refinement. Ωr1, Ωr2, and Ωr3 refer to the domain of first, second, and third level of
refinement, respectively.

During the fission process, a newly generated node will become a hanging node if
it is on the edge of a neighboring element from the unrefined domain or the lower-level
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refined domain; see Figure 3. If a hanging node is not on the crack path, an additional
function is needed to keep the consistency between the domains. In the h-adaptivity, linear
boundary conditions [6] are applied to the hanging nodes; see Figure 5. Considering the
node relationship in Figure 5, the linear boundary condition could be expressed as:

u3 =
l23

l12
u1 +

l13

l12
u2 (1)

where u1, u2, and u3 are the displacement of N1, N2, and N3, respectively.
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Figure 5. An example of the boundary nodes between two domains of mesh refinement, where N3 is
a hanging node.

2.2. Representation of Cracks

As is discussed before, the element splitting method is identical to the edge separation
method if no element splitting happens. The edge separation algorithm used in the h-AES
method is based on a method introduced by Camacho and Ortiz [37], where cracks are
modelled by adding duplicate nodes along the crack paths; see Figure 6.
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Figure 6. (a) Representation of a crack by introducing duplicate nodes on the crack path; (b) Crack-
representation by separating the relevant edges of the elements in the mesh.

The element splitting process in the h-AES method only applies to quadrilateral
elements. Figure 7 shows the procedure of modelling crack propagation using the element
splitting method, in which the direction and length of crack propagation are known. At
the beginning, the program will find the intersection point of the element edges and the
propagation of the crack. After that, the nodes with the shortest distance to the intersection
points are selected. The path of the numerical crack is determined by connecting the selected
nodes. If any pair of neighboring nodes along the numerical crack are not connected by
existing element edges (see Figure 7d), the element will be split along its diagonal line. The
split element is replaced by two triangular elements; see Figure 7e. In addition, if the end
position of the crack propagation does not coincide with any nodes, the program will find
a node whose distance from the propagation end is less than le, where le is the length of
the element edge. The node that meets this condition will be included in the numerical
crack as well. In the h-AES method, although the numerical crack is still mesh-dependent,
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the implementation of element splitting could provide more flexible crack paths than the
normal edge separation method. Moreover, in structured meshes consisting of triangular
and quadrilateral elements, the accuracy of a crack path can be enhanced by adapting
smaller element sizes from mesh refinement [46].
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3. Numerical Implementation in LEFM Using the H-AES Method

In this section, two numerical examples using the h-AES method are exemplarily
presented for verification. Their numerical results are verified against analytical solutions
based on LEFM theory.

In order to adapt the h-AES method for FEM calculation, a FEM-based MATLAB
program was developed, including the modules of pre-processing, calculation, and post-
processing. In this study, since the two examples are both 2D models, 4-nodes quadrilateral
elements and 3-nodes triangular elements are used. The shape function based on Lagrange
polynomials is applied for the 4-nodes quadrilateral element, and the shape function for
constant strain triangles is used for the 3-nodes triangular elements. The Gauss–Legendre
quadrature is applied for the numerical integration of the stiffness matrix, which is suitable
for linear elastic models.

3.1. Mode I Loading with a Horizontal Crack

In this example, a 640 mm × 640 mm plate with a 4 mm horizontal straight crack in
the center is considered. The plate is under biaxial loading; see Figure 8a. More details
about the configuration of the simulation are presented in Table 1. Since the boundary
length of the plate is 160 times the size of the crack, this example can be regarded as a
horizontal crack in a semi-infinite plate under biaxial load; see Figure 8b.
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Table 1. Configuration of the simulation.

Parameters Values

Length of the plate (L) 640 mm
Width of the plate (B) 640 mm

Thickness of the plate (t) 1 mm
Crack length (2a) 4 mm

Stress at boundary (σx and σy) 300 MPa
Young’s modulus 206 GPa

Mass density 7900 kg/m3

Poisson’s Ratio 0.3
Global mesh size 32 mm

Smallest mesh size 0.003125 mm
Refinement levels 7
Number of nodes 636,960

Number of elements 634,036

The mesh refinement is concentrated around the crack tip region see Figure 9, which
also includes a magnified presentation of the 5th-level refinement domain, as well as a
comparison between the elements from the 7th-level refinement domain and the elements
from the 6th-level refinement domain—which shows that the latter is 20 times the size of the
former. In this study, since it would be difficult to present the whole mesh density without
magnification, the mesh is always shown together with its magnified view. Figure 10 shows
the mesh around one of the crack tips after deformation. In this example, if fine mesh is
applied to the entire model with the same smallest mesh size, the numerical model will
consist of more than 41 billion nodes and elements. Considering the number of nodes and
elements presented in Table 1, the application of h-AES method could significantly reduce
the computational cost.
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Table 1. Configuration of the simulation. 
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Figure 9. (a) Global mesh (in this view, the size of the largest element is 32 mm × 32 mm); (b) Mesh
from the view of the 5th-level refinement domain (in this view, the size of the largest element is
0.25 mm × 0.25 mm); (c) Comparison between the elements from the 7th-level refinement domain
and the elements from the 6th-level refinement domain (in this view, the size of the largest element is
0.0625 mm × 0.0625 mm).
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analytical result is below 1%. In general, a good correspondence is achieved. 

Figure 10. (a) Deformed mesh around the crack tip from the view of highest refinement level (in this
view, the size of the largest element is 0.003125 mm × 0.003125 mm); (b) Deformed mesh around
the crack tip from the view of the 6th refinement level (in this view, the size of the largest element is
0.0625 mm × 0.0625 mm).

In this example, the crack is represented by the edge separation method, since no
element split was needed. Compared to the element deletion method, the representa-
tion of crack by applying the h-AES method does not remove any elements from the
numerical model.

In order to verify the numerical results, they have to be compared to analytical solu-
tions. In this example, Westergaard’s solution and the theory of stress intensity factor (SIF)
are used.
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Regarding the coordinate system in Figure 8a, Westergaard’s solution [53] offers a
closed-form solution to represent the stress field on y = 0. For σyy in the stress field, the
function is written as:

σyy =
σ∞√

1−
( a

x
)2

(2)

where a is half of the length of the crack, x = r + a, r is the distance from crack tip, and
σ∞ is the far-field stress, i.e., the stress on the boundary of the plate. Figure 11 shows the
comparison between the results from h-AES and Westergaard’s solution, with Figure 11b
showing more details of the comparison near the crack tip. The shape function used in
the program is based on constant strain triangles or Lagrange polynomials, which cannot
obtain exact representations of the behavior in the region of singularity [54], which is the
crack tip region in this example. As a result, the accuracy near the crack tip is not as good
as in other regions. However, when r

a ≥ 0.07, the relative error between numerical and
analytical result is below 1%. In general, a good correspondence is achieved.
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In LEFM, the stress field near crack tips can be represented using stress intensity
factors (SIF), which are adopted in this study for a comparison between the numerical and
the analytical results. In this example, the stress field equation for mode I loading [55]
is used:

σxx =
KI√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
(3)

σyy =
KI√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
(4)
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τxy =
KI√
2πr

cos
θ

2
sin

θ

2
cos

3θ

2
(5)

where KI is the SIF for mode I loading, and r and θ are polar coordinates. For horizontal
cracks in an infinite plate under biaxial loading, the value of KI is calculated by the following
equation [55]:

KI = σ∞
√

πa (6)

where σ∞ is the far-field stress, i.e., the boundary stress.
In order to compare numerical and analytical results using the stress field equations,

the stress results of different points located on several arcs ahead of the crack tip are selected.
Figure 12 shows the configuration of the arc and the points for stress comparison. In this
study, three arcs are selected. Each of the arcs has 21 points. The ratio η for the arcs is 0.02,
0.04, and 0.06, respectively, where η = r/a.
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Figure 12. Arc in front of the crack tip for a comparison between stress values from analytical (SIF)
and numerical results.

The comparison between numerical and analytical results is shown in Figure 13. For
σxx, σyy, and τxy, the numerical result corresponds best with the analytical value when
η = 0.02, with the relative error between numerical and analytical result mostly below
5% for σxx and 3% for σyy. This is due to the fact that the stress field equation is valid for
r → 0 , which means that, in practice, the accuracy decreases with increasing r. However,
for the presented configurations, agreement between closed-form solutions and numerical
calculations is very good.
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From the equations concerning stress fields around crack tips [55], the following
relationship could be deduced: [56].

(
σxx + σyy

)
I+I I = 2

(
KI√
2πr

cos
θ

2
− KI I√

2πr
cos

θ

2

)
(7)

where KI and KI I are the SIF for mode I and II, respectively.
For θ = 90◦ and θ = −90◦, KI and KI I can be expressed as:

KI =

√
πr
2

(((
σxx + σyy

)
I+I I

)
θ=90◦

+
((

σxx + σyy
)

I+I I

)
θ=−90◦

)
(8)
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KI I =

√
πr
2

(
−
((

σxx + σyy
)

I+I I

)
θ=90◦

+
((

σxx + σyy
)

I+I I

)
θ=−90◦

)
(9)

By using Equations (7) and (8), the stress intensity factor can be calculated from the
stress value, which makes it possible to compare numerical and analytical results for KI ;
see Figure 14. The difference between numerical and analytical results is most pronounced
near the crack tip, where singularity exists. This phenomenon also results from the shape
functions applied in the program. After η > 0.02, when η increases, the difference between
numerical results and analytical results increases gradually. This phenomenon can be
explained by the fact that the stress field equation is valid for η → 0 , which is the result of
r → 0 . In general, the numerical result is close to the analytical result.
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3.2. Mixed-Mode Loading with an Inclined Crack

Considering a square plate under uniaxial loading (see Figure 15) and an inclined crack,
the crack is subjected to mode I and mode II loading. In this example, a 160 mm × 160 mm
plate under uniaxial loading is considered. The crack in the plate runs straight through the
center. The angle from the positive direction of the x-axis to the crack is 45 degrees; see
Figure 15. More details about the configuration of the simulation are given in Table 2. Since
the length of the plate is about 28 times the size of the crack, this example can be regarded
as an inclined crack in a semi-infinite plate under uniaxial load; see Figure 15.
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Table 2. Configuration of the simulation.

Parameters Values

Length of the plate (L) 160 mm
Width of the plate (B) 160 mm

Thickness of the plate (t) 1 mm
Crack length (2a) 5.66 mm
Angle of crack (β) 45◦

Stress at boundary (σ) 300 MPa
Young’s modulus 206 GPa

Mass density 7900 kg/m3

Poisson’s Ratio 0.3
Global mesh size 8 mm

Smallest mesh size 0.003125 mm
Refinement levels 5
Number of nodes 276,528

Number of elements 279,120

The mesh refinement is concentrated around the crack tip. In order to represent the
inclined crack, the elements on the crack path are split; see Figures 16c and 17a. Figure 16
shows a magnified view of the 2nd-level refinement domain, as well as a comparison
between the elements from the 5th-level refinement domain and the elements from the
4th-level refinement domain, with the latter being 20 times the size of the former. Figure 17
shows the mesh around one of the crack tips after the deformation. In this example, if
fine mesh is applied to the entire model with the same smallest mesh size, the numerical
model will consist of more than 2 billion nodes and elements. Similar to the last example,
considering the number of nodes and elements presented in Table 2, the application of
h-AES method could greatly reduce the computational cost.
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Figure 16. (a) Global mesh (in this view, the size of the largest element is 8 mm × 8 mm); (b) Mesh
from the view of the 2nd-level refinement domain (in this view, the size of the largest element is
1 mm × 1 mm); (c) Comparison between the elements from the 5th-level refinement domain with
the elements from the 4th-level refinement domain (in this view, the size of the largest element is
0.0625 mm × 0.0625 mm).
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Figure 17. (a) Deformed mesh around the crack tip from the view of the highest refinement level;
(b) Deformed mesh around the crack tip from the view of the 4th refinement level.

In this example, the crack is represented by splitting quadrilateral elements into
triangular elements and separating the triangular elements along their hypotenuse; see
Figure 17. Same as that in the last example, no element was removed from the numerical
model to represent the crack as well.

The theory of stress fields using stress intensity factors is used to verify the numerical
results. In this example, apart from the stress field equation for mode I loading, the stress
field equation for mode II loading [55] is used as well:

σxx =
KI I√
2πr

sin
θ

2

(
2 + cos

θ

2
cos

3θ

2

)
(10)

σyy =
KI I√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
(11)

τxy =
KI I√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
(12)

In this example, the KI and KI I are [55]:

KI = σ
√

πa · sin2θ (13)

KI I = σ
√

πa · sinθcosθ (14)

Similar to the last example (Figure 12), several points in front of the crack tip are
chosen for the comparison between the numerical results and analytical results of σxx, σyy,
and τxy in Figure 18. Again, the highest accuracy is obtained where η = 0.02.

Equations (7) and (8) are used to calculate KI and KI I from the stress field near the crack
tip. Figure 19 shows a comparison between KI and KI I from the numerical and analytical
results. Due to the fact that θ = 45◦, it can be concluded from Equations (13) and (14) that
the analytical results of KI and KI I are the same in this example, as they share the same
line in Figure 19. Like in the last example, the difference between the numerical result and
the analytical result is the most pronounced near the crack tip. After the position of best
accuracy, the difference between numerical result and analytical result increases gradually
as η increases. The reason for this is the same as in the last example. Again, the numerical
result is close to the analytical result.
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4. Discussion

In this study, by combining the h-adaptivity and the element splitting method, the
h-AES method was introduced for the task of simulating cracks in large structures. The
main contributions of this study are summarized as follows:

• The application of h-adaptivity method enables the h-AES method to effectively
create very fine meshes while keeping most of the global mesh structured and coarse.
Comparing with the application of fine mesh to the entire model, the introduction of
h-adaptivity could significantly reduce the computational cost.

• The numerical results of the h-AES method were verified against analytical solutions
from LEFM scenarios with good correspondence. As a result, in numerical models
mostly consisting of coarse meshes, more local details of FEM-based crack simulations
could be revealed by the mesh refinement.

• Considering engineering applications, compared with the frequently applied element
deletion method, no element is deleted in the application of the element splitting
method. As a result, the drawbacks caused by element deletion, such as the loss of
mass and energy, are avoided.

• The element splitting method integrated in the h-AES method is based on the edge
separation method, which means that, in the h-AES method, the crack paths still have
a strong mesh dependency. However, as the element splitting method is applied,
numerical cracks can propagate in the diagonal line of quadrilateral elements, which
can provide more flexible crack paths—in particular for structured meshes that initially
only included quadrilateral elements. Hence, the extent of the mesh-dependency of
crack paths is reduced.

The aim of the h-AES method is to provide a practicable crack representation method
for simulations of cracks in large engineering structures under static or cyclic loading. In
this study, the h-AES method is applied to linear elastic models with cracks. However,
it is possible to apply the h-AES method to more numerical simulation scenarios with
additional numerical functions, such as the introduction of non-linear material models and
the algorithm of contact problems. Moreover, for ductile materials used in ship structures,
the onset of local material failure under critical loading can be captured accurately with
coarse meshes employing proper material models [12,13,15,57]. This provides a possibility
to adaptively introduce local mesh refinement before crack initiation, which could be
included in future research work.

Concerning the examples presented in this study, the increase in computational cost
for the mesh refinement is caused by the increased degrees of freedom. If the h-AES method
is applied in explicit analysis, since the time step is related to the smallest mesh size, the
influence on computational cost will be researched in future study as well.
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5. Conclusions

In this study, an adaptive mesh refinement method called the ‘h-adaptive element
splitting’ (h-AES) method was introduced for the numerical simulation of cracks using shell
elements in FEM. Two examples of the h-AES method for crack simulations in large struc-
ture under LEFM scenarios were presented. The numerical results were verified against
analytical solutions and showed good correspondence. The h-AES method was proven to
be able to effectively reveal local details of geometry and material behaviors in numerical
models mostly consisting of structured coarse mesh. By employing the h-AES method,
very small cracks are well represented in large structures without any deletions of elements.
Considering the advantages mentioned above, the implementation of h-adaptivity could
benefit the numerical simulation of fatigue or accidental load scenarios involving large
structures, such as ship hulls. Future research will integrate more numerical techniques
into the h-AES method and apply the h-AES method to more complex simulations. This
could be simulations of tensile tests of steel specimens or impact tests on steel panels.
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Nomenclature and Abbreviations:

Ωr
The domain of
refined mesh. Ωr1, Ωr2, . . .

The domains of refined
meshes in first, second levels,
and so on.Ωc

The domain of original
coarse mesh.

le
The length of
element edge. u1, u2, . . . The displacements of node 1,

node 2, and so on.
a Half of the crack length.
L Length of the plate. N1, N2, . . . Node 1, node 2, and so on.
B Width of the plate. σxx, σyy

Normal stress in x and y
directions.t Thickness of the plate

r
The distance from
crack tip.

τxy Shear stress in xy-plane.

σ∞ Far-field stress.
KI , KI I

Stress intensity factor of
mode I, II loading.

θ
The angle of crack in
polar coordinates.

β
The angle of crack on
the plate.

η

The ratio of the distance to
crack tip and half of the
crack length.

FEM Finite element method
XFEM Extended finite element method
LEFM Linear elastic fracture mechanics
h-AES h-adaptive element splitting
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