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Abstract: A spontaneous oscillation between the expansion and contraction of a nitrobenzene pendant
droplet containing di-(2-ethylhexyl)phosphoric acid (DEHPA) was observed in an aqueous phase
under alkaline conditions. We described this phenomenon as the spontaneous oscillation of the
oil–water interfacial tension. The oscillation characteristics such as the induction period and the
interfacial-tension oscillation frequency were investigated under different temperatures and aqueous
phase polarities. The effects of the interfacial tension of the biphasic pendant-droplet, the surface
excess of the surfactant molecules, and the amount of nitrobenzene elution from the droplet to
the aqueous phase on the oscillation characteristics were investigated. Consequently, the periodic
expansion–contraction oscillation mechanism was explained through the adsorption–desorption
cycle of DEHPA with respect to the aggregate formation of the inverted micelle of DEHPA. This
study was based on a simple vibration phenomenon of interfacial tension, and is extremely important
for clarifying the predominant factors that cause fluctuations in the free interface energy, which has
been ambiguous.

Keywords: pendant-drop method; self-oscillation; Marangoni effect; self-organization; interfacial instability

1. Introduction

Various rhythmic oscillating phenomena resulting from the periodic variation of inter-
facial tension are observable in biphasic systems with clear boundaries between aqueous
and oil phase. These periodic oscillations, caused by the surfactant adsorption onto the
oil–water liquid interface, are one of the typical self-organization phenomena in systems
far from equilibrium. Several investigations on the oscillation phenomenon induced by the
Marangoni effect in an oil–water biphasic system have been reported [1–5]. The Marangoni
effect is the mass transfer along a liquid–liquid interface caused by the nonequilibrium
interfacial tension attributable to the chemical or thermal gradient [2]. Considerable inter-
est exists for understanding the rhythmic phenomena in living organisms and the direct
conversion of energy from chemical to mechanical or electrical energy. To date, both nu-
merical simulation and experimental investigation have been conducted to understand the
interfacial-tension oscillations [6–8]. Shioi et al. observed a traveling wave at an oil–water
interface and the oscillation of interfacial tension in a nitrobenzene–water biphasic system
with di-(2-ethylhexyl)phosphoric acid (DEHPA) [9]. The variation of interfacial tension was
explained by the adsorption–desorption cycle of the surfactant at the oil–water interface
owing to the Marangoni effect. Ban et al. reported that a pendant droplet containing a
phosphoester surfactant was periodically alternated between expansion and contraction via
the oscillations of interfacial tension in buffered aqueous solutions [10]. The mechanisms
for the oscillation phenomena of interfacial tension were suggested enough through these
previous reports as follows. However, very few discussions for the predominant factor
of these oscillation phenomena were reported. Elucidation of the controlling factors is
indispensable when considering industrial application, in particular, for liquid/liquid ex-
traction, stability of foams and emulsions, correct measurement of dynamic surface tension,
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and chemical motors for microfluidic devices. In this study, to clarify the predominant
factor of Marangoni effect in the pendant droplet, DEHPA behavior in a pendant droplet
with periodic expansion–contraction oscillation will be discussed in detail. The effect
of various experimental conditions on the oscillation characteristics, such as induction
period and interfacial-tension oscillation frequency, was considered. The interfacial tension
in some previous reports was measured using the Wilhelmy method, which is likely to
be sensitive to interfacial instability. For the pendant-drop system, the interfacial ten-
sion can be ascertained from the image of the droplet using drop-shape analysis via the
pendant-drop method.

2. Materials and Methods

Wako Pure Chemical Industries, Ltd. (Osaka, Japan) supplied nitrobenzene, DEHPA,
sodium carbonate, sodium hydrogen carbonate, methanol, ethanol, and acetone. Aqueous
phases with each additive were prepared using Milli-Q water (resistivity of 18.2 MΩ cm
at 25 ◦C). The oil phase was nitrobenzene, and the concentration of surfactant DEHPA
was adjusted at 100 mM in the oil phase. The pH of aqueous solution was adjusted to
10.2 by adding a sodium hydrogen carbonate buffer. In this study, organic solvents—such
as methanol, ethanol, and acetone—were added in the aqueous phase to vary the polarity
of the aqueous phase. The concentration of methanol, ethanol, and acetone in the aqueous
solution was adjusted to 0–4 mol L−1.

In this study, the experiment on various contents such as measurement of dynamic
interfacial tension, measurement of static interfacial tension, estimation of surface excess of
DEHPA, and determination of nitrobenzene elution. The oil pendant droplet was formed
on the tip of a capillary (15G) in the prescribed aqueous phase stored in a quartz cell
(20 × 20 × 30 mm). The aqueous phase was adjusted to a predefined temperature using
a temperature control system (4VT; Kyowa Interface Science Co. Ltd., Niiza-City, Japan).
The concentration of nitrobenzene dissolved in the aqueous phase was measured after
a 2000-s observation of oscillation phenomena using absorption photometry (UV-1280;
Shimadzu Corp., Kyoto, Japan). The interfacial tension was measured using a contact
angle meter (Drop Master DM-501; Kyowa Interface Science Co. Ltd., Niiza-City, Japan).
The dynamic interfacial-tension measurement for the pendant-drop system with DEHPA
was conducted under aqueous phase polarities. We also conducted the dynamic interfacial
tension measurement under different temperatures with no organic additives. Based on the
results of dynamic interfacial tension, the induction period before starting oscillation and
the amplitude of interfacial-tension variation were estimated. The static interfacial-tension
measurement for the pendant-drop system without DEHPA, defined as ‘initial interfacial
tension’, was also conducted under different temperatures and aqueous phase polarities.
The surface excess of DEHPA on the oil–water interface was estimated from the interfacial
tension variation depending on DEHPA concentration.

3. Results and Discussions
3.1. Interfacial-Tension Oscillation

A droplet hangs from the tip of the capillary when the oil phase is pushed out ver-
tically. From Video S1 presented in Supplementary Materials (5× speed replay; 2 min
after the droplet formation), the droplet started to be contracted in a while after pendant-
droplet formation (20–30 s in Video S1). Subsequently, the droplet expanded suddenly
(47 s in Video S1) and then contracted gradually. Thereafter, the pendant droplet period-
ically repeated the contraction and expansion cycles. Figure 1 shows the representative
variation of interfacial tension. The increase–decrease cycle of the interfacial tension was
synchronous with the repetitive contraction–expansion cycle, respectively. This synchro-
nization indicated that the droplet’s oscillating motion depends on the interfacial tension of
the pendant-drop biphasic system. In this oscillation phenomenon, the periodic variation
of the interfacial tension has characteristics such as the amplitude, frequency, and induction
periods. We defined the time from the droplet formation to the first sudden expansion
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as the induction period of this oscillation phenomenon. Our preliminary investigations
demonstrated that the amplitude of interfacial tension’s periodical variation depended
on the DEHPA concentration and the pH of the aqueous solution. The pH dependence
was discussed in a previous report based on the dissociation of DEHPA [10]. In this study,
the amplitude was constant because the DEHPA concentration and pH were kept constant
at 100 mmol L−1 and 10.2, respectively. For clarifying the predominant factor of these
oscillation characteristics such as frequency and induction period, we investigated the
effect of some conditions of the biphasic system, such as the polarity and temperature of
the aqueous phase.
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Figure 1. (a) Representative variation of interfacial tension synchronized with repetitive cycles of
pendant droplet between contraction and expansion. (b) Series of images of the contracting and
expanding process of the pendant-droplet (33 ms interval).

3.2. Effect of Interfacial Tension

In general, the interfacial tension of the oil–water biphasic system strongly depends
on the polarity of the aqueous phase. The interfacial tension of the hanging droplet without
DEHPA, defined as the initial interfacial tension, was measured to eliminate the complexity
of the interfacial instability. Consequently, the obvious involvement of the interfacial ten-
sion in the oscillation phenomenon was observed (Figure 2). The reproducibility for these
dynamic interfacial tension by two-times experiment and the reproducibility of both char-
acteristics were sufficiently high. The induction period and interfacial-tension oscillation
frequency decreased with increasing initial interfacial tension. Furthermore, we assessed
the effect of the temperature of the aqueous phase on the oscillation phenomenon. Figure 3
shows the relation between the oscillation characteristics and temperature. The induction
period of the oscillation phenomenon decreased and the frequency increased with increas-
ing temperature. These tendencies found in Figure 3 were different from those presented in
Figure 2, although the interfacial tension depends on the temperature. Based on the general
theory that the interfacial tension may decrease with increasing temperature, the relations
between frequency and interfacial tension as well as temperature (Figures 2b and 3b) can
be explained via the effect of the initial interfacial tension. By contrast, the induction period
may be dependent on a different predominant factor. Therefore, the discussion on the
inflection point observed in the relation between induction period and initial interfacial
tension as shown in Figure 2a was difficult. A detailed discussion regarding induction
period and frequency will be described later section.
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additive in aqueous phase. •: no additive, •: ethanol, •: methanol, •: acetone. Each plot was based
on duplicate experiments.
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Figure 3. Relation between the temperature of biphasic system and the oscillation characteristics;
(a) induction period and (b) frequency. Only DEHPA was added in these pendant-drop systems, not
organic additives. The error bar indicates standard deviation based on triplicate experiments.

3.3. Surface Excess Concentration of DEHPA

Most previous investigations have explained the periodic variation of the interfacial
tension based on the repetition between adsorption and desorption of the surfactant [1,3–12].
Based on this information, the concentration of surfactants adsorbed on the oil–water interface
may control the oscillation characteristics. We estimated the surface excess Γ (mol m−2) of
DEHPA in the biphasic system based on the Gibbs adsorption equation as described below.

Γ = − 1
RT

(
∂γ

∂ ln C

)
, (1)

where C denotes the DEHPA concentration in the pendant-drop phase, γ represents the
initial interfacial tension, R is the gas constant (8.314 J K−1 mol−1), and T denotes the tem-
perature of the biphasic system (room temperature, 298.15 K). These results demonstrated
that the DEHPA concentration on the oil–water interface was not the primary factor for
controlling the oscillation characteristics (Figure 4). Different tendencies were found in
Figure 4 with respect to each pendant-drop system in the aqueous phase with different
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organic additive. Although the existence of DEHPA was necessary for this oscillation
phenomenon, the simple repetition process between DEHPA adsorption and desorption on
the interface was unreasonable.
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3.4. Elution of the Droplet Phase

In previous reports [5,12,13], the solute concentration in either phase affected the
characteristics of the interfacial oscillation phenomenon in the biphasic system because the
interfacial instability was induced by the cross-boundary mass transfer. Thus, we assessed
the mutual solubility between biphasic systems. We determined that the nitrobenzene
concentration dissolved in the aqueous phase affected the polarity of the aqueous phase.
The nitrobenzene elution from the droplet to the aqueous phase increased with increasing
amounts of organic solvent in the aqueous phase. In each biphasic system with different
organic additives, the pendant-drop oscillation frequency increased with increasing solvent
concentration in the aqueous phase. This increase was derived from the cross-boundary
mass transfer. However, no correlation existed between the concentration of dissolved
nitrobenzene and oscillation characteristics (Figure 5). However, the results indicated
that the cross-boundary mass transfer did not control this oscillation phenomenon, which
should have been a significant factor affecting interfacial instability.
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characteristics; (a) induction period and (b) frequency; Each symbol indicates the additive in aqueous
phase. •: no additive, •: ethanol, •: methanol, •: acetone. Each plot was based on duplicate
experiments.

3.5. Visual Observation

In the previous reports [9–11], the decrease–increase cycle of interfacial tension was
explained simply by the adsorption–desorption cycle of disassociated DEHPA ion on an
oil–water interface. In fact, the interfacial tension of an oil–water biphasic system should
be decreased via DEHPA adsorption owing to the interfacial activity. In this regard, the os-
cillation phenomenon was not observed in the biphasic system with surfactants other than
DEHPA. A previous investigation proposed that the dissociated DEHPA that was adsorbed
on the oil–water interface diffused into the aqueous phase [10]. Based on this information,
surfactants other than DEHPA should show the same behavior. As shown in Video S1,
the first slow contraction of the pendant droplet occurred simultaneously with the oil phase
becoming turbid within the pendant droplet. The turbidity was observed only inside the
droplet and not in the pendant-drop system without DEHPA. In our study, this process
was observed in each pendant-drop system at the beginning of the oscillation phenomenon.
An intensive movement of the turbidity was observed synchronously with the convection
inside the droplet. This convection flow was expected to be the Marangoni convection
that was induced by the gradient of interfacial tension of biphasic pendant-drop system.
This convection was observed synchronously with the droplet expansion process in the
oscillation cycles. A nonuniform distribution of the turbidity seemed to be uniformized via
convection. Consequently, the turbidity may be due to the aggregates of reverse micelle
of DEHPA; DEHPA aggregation was previously reported [14,15]. The aggregation com-
prising dissociated DEHPA was affected by the pH of the aqueous phase because DEHPA
dissociated at a pH above its pKa of 1.90 in the benzene system [16,17]. This correlated well
with the pH dependence results of a previous study [10]. In addition, the involvement of
reverse micelle was supported by the results showing that the oscillation phenomenon was
observed when the DEHPA concentration above its critical micelle concentration.

3.6. Mechanism of the Oscillation Phenomenon

The results obtained in this study enabled us to explain the mechanism of the oscil-
lation phenomena (described below). After the droplet formation, the DEHPA inside the
droplet gradually adsorbed on the biphasic interface and then dissociated. This resulted
in the initial decrease of the oil–water interfacial tension (before 250 s in Figure 1). Sub-
sequently, the dissociated DEHPA desorbed from the interface into the droplet with the
simultaneous formation of inverted micelles. The increased micelles coalesced and formed
aggregates inside the droplet. Concomitantly, the biphasic interface tension increased and
came close to the oil–water interfacial tension without DEHPA, which was initial interfacial
tension defined in this study. The interfacial tension reached a critical state for the oscil-
lation phenomenon (at ~600 s in Figure 1). The time from the droplet formation to this
moment was represented as the induction period. The duration of induction period may
be affected by the rate of DEHPA desorption associated with the reverse micelle formation.
The Marangoni convection occurred owing to the interfacial tension difference between
the conditions with and without DEHPA. The interface with and without the dissociated
DEHPA had high and low interfacial tensions, respectively. The subsequent DEHPA was
supplied immediately from the fresh oil phase in the capillary via the Marangoni convec-
tion. The renewed DEHPA adsorption on the oil–water interface induced a precipitous
decrease in the interfacial tension. These results correlated well with the numerical simula-
tion reported in a previous investigation [18]. Based on the results obtained in this study,
we concluded that the predominant factor of the oscillation phenomena was the difference
in the interfacial tension with and without surfactant. We interpreted this to indicate that
the intensity of Marangoni convection such as convection velocity was affected by the
interfacial tension. Further investigations on the quantification of Marangoni convection
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in the pendant droplet are required to clarify the relation between Marangoni effect and
the interfacial tension in this pendant-drop system. The velocity of Marangoni convection
may increase with the initial interfacial tension of pendant droplet because the Marangoni
convection would be induced by the gradient of interfacial tension. The oscillation fre-
quency of interfacial tension may decrease with increasing Marangoni convection velocity
in the pendant droplet. Based on the suggestion that the DEHPA desorption associated
with the reverse micelle formation results in the increasing the interfacial tension, the
clearance of droplet surface was induced more efficiently by the Marangoni convection
with higher intensity. Subsequently, the droplet interface needed a longer time to be a
recurrent condition for the next oscillation.

4. Conclusions

The interfacial-tension oscillation of an oil–water interface was observed concurrently
with the periodic repetition of the expansion and contraction of a pendant droplet. We found
that the expansion occurred simultaneously with the Marangoni convection induced by
the interfacial-tension gradient resulting from the DEHPA adsorption–desorption cycle
associated with the aggregate formation of inverted micelles. The induction period of oscil-
lation was interpreted as the time until the biphasic interface lost DEHPA via desorption
and reached a critical state for inducing the oscillation phenomenon. The frequency of
oscillation was controlled by the interfacial tension of the pendant-drop system without
DEHPA. These results demonstrate that the periodic Marangoni convection was induced
via the molecular behavior of surfactant in the oil–water biphasic system.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/ma15010239/s1, Video S1: Movie of the oscillating pendant droplet at 2 min after the droplet
formation. The movie replays in 5× speed.
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