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Abstract: Carbon-fiber-reinforced plastic materials have attracted several applications, including
the fused deposition modelling (FDM) process. As a cheaper and more environmentally friendly
alternative to its virgin counterpart, the use of milled recycled carbon fiber (rCF) has received much
attention. The quality of the feed filament is important to avoid filament breakage and clogged nozzles
during the FDM printing process. However, information about the effect of material parameters on the
mechanical and physical properties of short rCF-reinforced FDM filament is still limited. This paper
presents the effect of fiber loading (10 wt%, 20 wt%, and 30 wt%) and fiber size (63 µm, 75 µm, and
150 µm) on the filament’s tensile properties, surface roughness, microstructure, porosity level, density,
and water absorptivity. The results show that the addition of 63 µm fibers at 10 wt% loading can
enhance filament tensile properties with minimal surface roughness and porosity level. The addition
of rCF increased the density and reduced the material’s water intake. This study also indicates a
clear trade-off between the optimized properties. Hence, it is recommended that the optimization of
rCF should consider the final application of the product. The findings of this study provide a new
manufacturing strategy in utilizing milled rCF in potential 3D printing-based applications.

Keywords: recycled carbon fiber; fused deposition modelling; composite recycling; 3D printing;
reinforced filament composite

1. Introduction

With the growth of science and technology over recent decades, composite materials
made of fiber-reinforced plastics (FRP) have started to receive vast attention as alternatives
to those conventional materials [1]. The reinforcement, such as carbon, glass, or any natural
fiber, can be embedded within low-density plastic to improve material strength and reduce
the fabrication cost.

The global market for innovative products with complex designs and intricate detailing
in industrial sectors, such as construction and transportation, has evolved through the usage
of 3D printing technology [2]. Interest in additive manufacturing (AM) with thermoplastic
material has increased rapidly on account of its low cost and does not require additional
tooling and molding [3]. AM or 3D printing is a process of amalgamating materials, creating
physical objects generated from a fitting process in Computer-Aided Design (CAD) [4]. This
technology has the ability to fabricate structures with complex geometries with minimal
aid, which is often impracticable with traditional manufacturing machines [5].

Among several 3D printing technologies available, fused deposition modelling (FDM)
has been of particular interest due to its special ability to build fully functional parts with
multi-materials of plastics [6]. FDM prints individual layers from the bottom to the top
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by heating and extruding thermoplastic filament. Low machine cost and ease of setting
up the process parameters to produce a precise part have made this inventive technology
an advantageous means for manufacturing in industries. However, several problems are
identified related to this process. Improvement in terms of geometric stability, part quality,
and product properties is essential for the FDM process. In addition, the performance
of 3D printing is mostly governed by the feedstock or filament properties [7]. A proper
understanding of these traits is crucial to achieving an efficient printing process.

Several findings in the literature have reported the effect of processing parameters in in-
creasing the mechanical properties of FDM printed parts [8–10]. Even though selection and
optimization process parameters affect the final product properties, the improvements are
not substantial. The introduction of fibers into thermoplastic material to achieve optimum
mechanical and functional properties is a promising solution to these problems [11].

Some studies have focused on the parameters used in the production of filaments with
optimal diameter and homogeneity for the FDM method [12]. This knowledge would be
important for the development of new filament materials. Despite that, achieving good
interfacial adhesion between the fiber and the thermoplastic matrix in the FDM process
is very challenging. As reported in the literature, fiber additives can be easily coagulated,
which can to clogged nozzles, as well as non-uniformity, and porous filament [13]. To ensure
superior performance of FDM product, the properties of the filaments need to be optimized
through proper selection of particle size and weight loading of the reinforced fiber. Despite
these issues, the number of studies focusing on parametric analysis of filament production
is very limited. It is crucial to investigate optimum filament process parameters to ensure
strong fiber-matrix interfaces, hence better product qualities.

The commonly applied reinforcement material in the FDM filament is short or contin-
uous fibers. Generally, the high strength-to-weight ratio, stiffness, and corrosion resistance
that can be attained from fiber reinforcement are inherited by these composites [13]. Several
reinforcement materials have been introduced into the thermoplastic filaments, such as
carbon nanotubes, graphene, copper, and carbon fiber. Carbon, glass, and Kevlar are known
as thoroughly used high-performance fibers, while flax, basalt, wood, and bamboo are
among popular natural fibers in the FDM composites industries [14]. The performance and
defects of the filaments are influenced by both matrix and fiber.

One of the recent emerging fibers for the FDM process is recycled carbon fiber (rCF),
as an alternative to virgin carbon fiber (vCF). From the literature, rCF which has been recov-
ered from pyrolysis and chemical recycling methods has comparable performance with its
virgin precursor and could be used an alternative material to vCF [15]. This is on account of
the cheaper price of rCF as well as its excellent mechanical properties compared with its vir-
gin counterpart. vCF typically has higher embodied energy (198–595 MJ/kg) compared to
the energy demand in the recycling process of carbon fiber composites (0.27–90 MJ/kg) [16].
The advantages highlight the potential of rCF as a competitive alternative material to vCF.
However, studies on the potential usage of rCF are rare as most studies focused on us-
ing vCF.

The 3D printing of vCF-reinforced thermoplastic has already been documented in
several studies [17–20]. Short carbon fibers are commonly used as reinforcement to enhance
the properties of carbon fiber filament [21–23]. Previous studies have primarily concen-
trated on the development of filament composite materials for 3D printing. Comprehensive
studies have been conducted on the incorporation of carbon fibers into the Acrylonitrile
Butadiene Styrene (ABS) matrix for the development of innovative filaments [22,24,25].
There is also a growing interest in reinforcing polylactic acid (PLA) plastic with carbon
fibers [26,27]. PLA is a biodegradable material made from renewable sources, which is ideal
for environmental friendly application. Omar, et al. [28] reported that the incorporation of
short or powdered carbon fiber in PLA samples can provide up to 350% improvement in
terms of tensile strength, compared to only 150% and 23% in nylon and ABS, respectively.

Certain specifications need to be fulfilled for fiber-reinforced 3D printing filament
in order for it to be processed by FDM. These include types of fiber and matrix, good
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fiber-to-matrix bonding, fiber homogeneity, and minimal porosity [29]. The requirement
generally depends on the fiber length and fiber content.

Another important factor when considering a fiber-reinforced filament composite is
fiber loading, because the mechanical performance of the composite is mainly affected
by the reinforcement. There is a considerable variation, such as fiber distribution and
interfacial bonding strength to achieve the optimum improvement of the mechanical
properties. In general, high fiber content is needed to attain a high-performance filament
composite. It is frequently noted that increased fiber content could lead to an incremental
increase in the tensile properties. However, materials with higher fiber content can clog
the nozzle during the printing process [30]. Besides that, a composite with higher fiber
loading is difficult to fabricate into continuous filaments for FDM because of low toughness.
Therefore, the properties of some final products of composite filament are limited by low
fiber weights. Poor fiber wettability is expected, and increasing fiber weight would increase
the porosity. Particle size is another important factor that has a significant effect on the
properties of composite filaments. Different sizes of carbon fiber particles greatly modify
surface characteristics and interface between carbon fiber and a thermoplastic matrix [31].

Compared to vCF, rCF is mostly used in the form of milled or short fiber as a result of
shredding and cutting processes during the recycling procedure [15]. The addition of short
fiber into the thermoplastic matrix has shown encouraging results in significantly improving
the mechanical properties [18,32]. Nonetheless, the use of a fiber composite feedstock in
3D printers may be limited due to nozzle tip clogging caused by the agglomeration of
the reinforcement material [33]. The addition can also cause porosity of the 3D printed
products, resulting in a reduction of strength and possibly filament breakage during the
printing process. To prevent this from happening, or at least reduce its rate of occurrence,
the properties of the filament composite need to be optimized by achieving the best particle
size and weight loading of the reinforced fiber. Despite these issues, the number of studies
focusing on the optimized parameters in filament production is still low. Most studies
are only based on the printed products, of which the final properties may have been
affected by the selection of FDM processing parameters. Comprehension of how well the
filament can accomplish its intended purpose and what developments can be made when
reinforcement is applied is important is necessary for improvements to be made. To the
current knowledge, there are limited extensive studies on the properties of rCF-reinforced
thermoplastic polymer filaments. It is imperative to investigate interfacial bonding between
the thermoplastic matrix and rCF in a reinforced FDM filament to understand the effect the
rCF has on mechanical properties.

From the literature, studies on the effect of fiber length and fiber size in carbon fiber
reinforced filament only focused on the 3D printed parts, not the filament. Considera-
tion of the effect of these parameters on the filament, particularly rCF composite, is still
insufficient. None of the studies considered other important aspects such as the surface
quality and porosity of the reinforced filament. More studies are required to understand
the mechanical and physical properties of thermoplastic filament under different fiber sizes
and loadings. Apart from that, it is also important to investigate other physical properties
of rCF-reinforced filaments, such as water absorptivity. This is to enhance the commercial
viability of rCF in potential sectors, such as sport and marine applications.

This study investigates the effects of different fiber loadings (10%, 20%, and 30%)
and fiber lengths (63 µm, 75 µm, and 150 µm) on the tensile properties, density, water
absorptivity, and surface roughness of rCF-reinforced PLA FDM filaments.The fractured
surfaces were also examined at a microscopic level using scanning electron microscopy
(SEM). The findings of this study provide information to FDM users so that they are able to
make informed decisions about the best strategy in using short or milled rCF for a better
mechanical performance and surface quality of their products.
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2. Materials and Methods
2.1. Material Spesification

The rCF used in this study was supplied by ELG Carbon Fibre Ltd., Coseley, United
Kingdom, as shown in Figure 1. The rCF was recovered from carbon fiber composite waste
via a pyrolysis process. As a post recycling step, the rCF was milled into a powder form.
The PLA material was supplied by Mecha Solve Engineering (Selangor, Malaysia). The
selection of this thermoplastic was based on its compatibility with the FDM process, which
requires materials with a low melting point. The properties of the reinforcement fiber, as
taken from the material data sheet, are listed in Table 1, alongside the PLA matrix.

1 
 

 

Figure 1. rCF recovered from a pyrolysis process.

Table 1. Properties of rCF and PLA as provided in the manufacturer sheet.

Properties rCF PLA

Tensile strength (MPa) 3470 53
Elastic Modulus (GPa) 246 3.5

Tensile Strain (%) - 6
Density (kg/m3) 1800 -

Carbon Content (%) >95 -
Diameter (µm) 7 -

2.2. Recycled Carbon Fiber Specification

Particle size fractions of rCF were classified using a mechanical sieving process. The
sieving was carried out using a TI Motorised mechanical sieve shaker. The sieve mesh
apertures were 150 µm, 75 µm, and 63 µm in diameter. Once the sieving process was
completed, the quantity of each group of particles was measured using an electronic
weighing balance. Material retained on the sieve was grouped into three sizes in the ranges
of 63 µm, 75 µm, and more than 150 µm.

2.3. Fiber Length Measurement

Measurement of the length distribution of rCF is necessary for determining the perfor-
mance of reinforcement when incorporated into a new matrix. When measuring the fiber
length, double-sided sticky tapes were placed on a paper with a length scale. A batch of
rCF from each group after the sieving process was randomly selected and distributed onto
the sticky tapes. As displayed in Figure 2, an image of the fibers was captured using an
optical microscope and transferred to a computer. The fiber length was manually measured
using ImageJ software. The fiber length distribution graph was plotted for each group.
Mean and standard deviation were also calculated.
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Figure 2. Image of rCF under an optical microscope.

2.4. Fabrication of Reinforced Filament

The rCF acted as a filler and was mixed homogenously with PLA pellets to produce
six compositions which each weighed 200 g. The mixing was based on weight loading and
thes size of the particles of rCF, as presented in Table 2. For the investigation of the weight
loading effect, a constant particle-size group of 63 µm was used. For the effect of particle
size, a weight loading of 10% was chosen. This choice was made based on the optimum
weight loading found in previous studies by Allawi, et al. [34], Salleh, et al. [35], and Yang,
et al. [18], as well as mixing efficiency during the extrusion process.

Table 2. Compositions of particle size and weight loading of rCF and PLA mixtures.

Particle Size (µm) Weight Loading of
rCF (% (g))

Weight of PLA
Matrix (g) Sample Name

63 10 (20) 180 63/10
63 20 (40) 160 63/20
63 30 (60) 140 63/30
75 10 (20) 180 75/10

150 10 (20) 180 150/10

The rCF and the PLA pellets were mechanically mixed using a LabTech twin screw
extruder. The process began when the materials were fed into the hopper of the extruder.
The speed screw was set to 160 rpm, with a feeding screw of 20 rpm at a temperature
of 200 ◦C. After the materials were extruded, the process was continued with a palletizing
process using a cutter. The rCF/PLA pellets, as shown in Figure 3, were collected in a bin.
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The rCF/PLA filaments were fabricated using a Wellzoom filament extruder. The
machine is a single screw extruder that converts pellets of plastic into a filament form
which can be used for the FDM process. After the extruder was heated, the rCF/PLA
pellets were fed into the hopper. The plastics melted and were extruded through a nozzle
with a diameter of 1.75 mm. The temperature used for the rCF/PLA pellets was 200 ◦C.
Pure PLA filament was also fabricated to act as a control product in comparison with the
rCF-reinforced filaments. The resulting filaments are displayed in Figure 4.
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2.5. Testing and Characterization of rCF Reinforced Filament
2.5.1. Tensile Test

The tensile strength and elastic modulus of the filament samples were determined
using a 50 kN Shimadzu Universal Testing Machine. The test used a crosshead speed
of 1 mm/min. Five specimens were tested for each product, and the average value was
calculated. Filament samples with a 75 mm length size were tested according to the ISO 527
standard, and the gauge length was set to 50 mm. The samples were clamped between two
plates at each end. The tensile properties were calculated and recorded using Trapezium X
Material Testing Software.

2.5.2. Microscopy and Porosity Characterization

A TM3000 Table Top Scanning Electron Microscope was used for the scanning electron
microscopy (SEM) analysis. The analysis was carried out to compare the surface conditions
of rCF and vCF. For the composite filament, the characterization included fracture portions
of the tensile samples. Prior to the test, all samples were mounted on aluminium stubs to
undergo platinum sputtering coating to avoid surface charging. Images of the fractured
samples were captured by subjecting them to a voltage of 3–5 kV and magnification up to
1000× in high vacuum mode. The fiber pull-out and porosity of the fractured sample were
observed and subsequently analyzed.

2.5.3. Water Absorption Test

The water absorptivity of the samples was determined based on the ASTM D570
standard. The weight of the samples before water immersion, Mo was measured after they
were oven-dried at 60 ◦C and then placed in a room at room temperature of 25 ◦C for
24 h. Then, the filaments were immersed in a container consisting of tap water at room
temperature. Weight gain monitoring was recorded once a day for 14 days. For each type
of filament, five samples were used, and an average value was calculated. Moisture content
or percentage water absorptivity, ∆W, was determined according to Equation (1).

∆W =
Mt − Mo

Mo
× 100 (1)
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where Mo = weight of the sample before water immersion, and Mt = weight of the sample
after water immersion.

2.5.4. Density Test

The density of a material is defined as mass per unit volume. The test method to
determine the density of the composite filament was performed according to standard
ASTM D792-91. The density was calculated using the weight of the filaments measured in
air and water. The density of air was assumed negligible. The density of distilled water
was taken as 0.9975 g/cm3 at 23 ◦C.

2.5.5. Surface Roughness Test

In determining the surface roughness of the rCF/PLA filament specimens, a Mitutoyo
F-3000 surface-roughness-measuring instrument with software FORMTRACEPAK was
used. The size of the contact stylus used was 0.2 mm. The sample was clamped onto
the stage platform, and the stylus was located to touch the sample surface manually. The
software initiated the movement of the stylus on the surface in a range of 10 mm. The
arithmetic mean deviation of the surface roughness, the Ra value, was measured at three
different positions in a transversal path on the sample surface. After the screen output
and Ra value were displayed, the position of the same sample was changed to obtain the
average value and the procedures were repeated.

3. Results and Discussion
3.1. Fiber Length Distribution

Fiber length distribution analysis was carried out to determine the efficacy of the
sieving process. The distribution of different fiber sizes could affect the properties of the
composite filaments. The measured rCF length distribution before and after the sieving
process is plotted in Figure 5.
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From Figure 5, it can be seen that the fiber length is well distributed according to the
mesh sizes, compared to the fibers before sieving. It is evident from the graph that the
sieving process in this study is capable of separating fibers into several size categories. A
high number of fibers has a size of lower than 100 µm (0.1 mm). For the non-sieved group,
the fiber is well distributed across different size groups. When analyzing the mechanical
properties, fiber distribution is relevant because strength and Young’s modulus are affected
by fiber size and weight.
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3.2. Analysis of the rCF/PLA Composite Filament
3.2.1. Tensile Properties

The tensile test evaluated tensile strength, tensile modulus, and elongation at failure
of the rCF/PLA samples. The results are depicted in Figures 6–8, respectively. The strength
and ductility of the composite filament were found to be dependent on the filler weight
loading. Figures 6 and 7 show that the filament containing 63 µm fibers and 10 wt% loading
has the highest tensile strength. However, further addition of the filler reduced the ductility
of the filament. This result is in agreement with Yu, et al. [36], who reported the effect of
carbon fiber concentration on sample elasticity. That study showed that the specimens with
a greater carbon fiber concentration showed lower ductility.
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The addition of rCF in PLA increases the individual strength of the filament composites.
In Figure 6a, as the fiber loading increases above 10%, the samples exhibit a rather obvious
decline in the tensile strength. This can be explained by the reduction of fiber–matrix
contact, as higher fiber loading increases the fiber–fiber contact. According to the rule of a
mixture of a composite, increasing fiber loading should result in the improvement of the
tensile strength, if the fiber–matrix bonding interphase is pronounced.

Similar trends were reported by Ning, et al. [37], who investigated CF/ABS with
different fiber contents and lengths. When exceeding a fiber weight fraction of 7.5%,
the strength of the composites decreases. This is attributed to an insufficient amount of
thermoplastic to bind the fiber, thus prompting poor contact between the fibers and the
matrix. Further addition of the fiber weight loading will reduce the ultimate strength of
the composite.

The effect of fiber length for all filaments is shown in Figure 6b. The filament containing
the 63 µm fibers is relatively higher compared to the filaments reinforced with the 75 µm
and 150 µm fibers. The filaments containing smaller fibers require a larger load to reach
their breaking points. Good tensile strength relies more on effective stress distribution.
Hence, it is expected that lower sizes of rCF lead to uniform fiber distribution within the
composite product, hence better stress transfer from matrix to fiber

In Figure 7, the tensile modulus increases with the addition of 10% fiber weight loading
in comparison with the control filament. Further addition of fiber weight loading leads
to a poorer tensile modulus. This reduction can be linked to the brittle behaviour of the
samples with higher filler loading. The effect of different fiber sizes on the tensile modulus
is not significant, as shown by the overlapping error bars in Figure 7. The results agree
with a finding by Aji, et al. [38], which showed that the incorporation of different lengths of
natural fibers did not indicate any improvement of the modulus as result of fiber attrition.

Figure 8 exhibits the tensile strain of rCF-reinforced PLA filament composites. The
tensile strain represents the elongation of the sample during the failure. From Figure 8, all
filaments have a lower elongation compared to the control filament.

This result is supported by Junaedi, et al. [39] on short-carbon-fiber-reinforced
polypropylene composites. That study showed that the incorporation of carbon fiber
into thermoplastic improved the tensile strength and the elasticity of the composites, with
the opposite reaction for the tensile ductility. This appears to have occurred due to the
significant amount of fiber loading in the composite, which caused the molecular chain to
be hampered. The matrix molecule chain is only achievable when there is a matrix continu-
ity. In this study, the presence of rCF in the PLA matrix disrupted the matrix continuity,
causing the premature failure of the material.
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3.2.2. Morphology and Porosity Analysis of the Tensile Fractured Specimen

The SEM images of the filament composites with different fiber loading after the
fracture under the tensile load are shown in Figure 9. The images show the nature of
rCF and the interaction at the fracture. Closely packed interfacial bonding between the
fiber and the matrix, as displayed in Figure 9a, correlated with the excellent tensile per-
formance of the filament. The number of fiber pull-out regions is less because of strong
fiber/matrix adhesion.
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filament samples.

More fiber pull-out regions can be observed for the 20 wt% and 30 wt% samples, as
indicated in Figure 9b,c, respectively. The existence of fiber pull-out is most likely due to
the poor wettability and matrix dispersion of the fiber, which resulted in reduced interface
bonding. At high fiber loadings, entanglement between fibers can also be the reason for a
reduction in the strength of fiber holding.

Figure 10 shows SEM images of the tensile fracture surface of filaments for different
fiber sizes. The pull-out can be observed for the filaments with 75 µm and 150 µm fibers as
shown in Figure 10b,c, respectively. The SEM micrographs in Figure 10a also reveal that the
fibers are attached to the matrix, which indicates that the low viscosity PLA thermoplastic
has good bonding with the fibers. Fiber breakages are noticeable in Figure 10a, explaining
the strong interfacial bonding between the two constituents. For the shorter fiber, its high
surface area contributes to adequate adhesion between rCF and the matrix. The pull-out
regions in Figure 10b,c correlate with the reduction in the tensile strength shown in Figure 6.



Materials 2022, 15, 190 11 of 16Materials 2022, 15, x FOR PEER REVIEW 12 of 17 
 

 

  

Figure 10. SEM images of rCF/PLA tensile fractured surface; (a) 63/10, (b) 75/10, and (c) 150/10 fila-
ment samples. 

The difference in the nature of the fiber and the matrix causes hollow spaces to form. 
The PLA material is ductile with a lower strength in nature, compared with the rCF which 
is more brittle. The interfacial shear stress between the rCF and the PLA matrix is usually 
insufficient to allow fiber breakages. The lower interfacial stress could be related to the 
fiber length, which, in this study, was less than the specified length required to induce a 
significantly greater interfacial bonding strength. Non-polar fibers are inherently incom-
patible with the PLA matrix during impregnation. However, the porosity has increased 
the permeability of the fibers, resulting in high melting-plastic uptake during the extru-
sion process. The internal porosity of the filaments is also indicated by the impregnated 
fibers, which are not uniformly dispersed in some areas. 

3.2.3. Water Absorptivity 
Water absorptivity refers to the ability of a material to absorb moisture from its sur-

roundings. This property is vital for a water-exposed environment or application. The 
water absorption level was calculated based on the weight gain relative to the dry weight 
of the specimens. Figure 11 presents the water absorptivity by percentage for the filament 
composites. The figure reveals that the filament that was 63 µm in size and had 10 wt% 
loading had the highest water intake, followed by the control product. 
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filament samples.

The difference in the nature of the fiber and the matrix causes hollow spaces to
form. The PLA material is ductile with a lower strength in nature, compared with the
rCF which is more brittle. The interfacial shear stress between the rCF and the PLA
matrix is usually insufficient to allow fiber breakages. The lower interfacial stress could
be related to the fiber length, which, in this study, was less than the specified length
required to induce a significantly greater interfacial bonding strength. Non-polar fibers
are inherently incompatible with the PLA matrix during impregnation. However, the
porosity has increased the permeability of the fibers, resulting in high melting-plastic
uptake during the extrusion process. The internal porosity of the filaments is also indicated
by the impregnated fibers, which are not uniformly dispersed in some areas.

3.2.3. Water Absorptivity

Water absorptivity refers to the ability of a material to absorb moisture from its
surroundings. This property is vital for a water-exposed environment or application. The
water absorption level was calculated based on the weight gain relative to the dry weight
of the specimens. Figure 11 presents the water absorptivity by percentage for the filament
composites. The figure reveals that the filament that was 63 µm in size and had 10 wt%
loading had the highest water intake, followed by the control product.
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Figure 11. Water absorptivity of pure PLA and rCF/PLA filament based on (a) fiber loading and
(b) fiber length.

As reported by Zhai, et al. [40], carbon fiber in the composite does not absorb water
when immersed in water. This is because of the non-polar nature of carbon fiber. The polar
water of the molecule is unable to enter the fiber and affects its performance. The increase
in the weight of composite after immersion in water is due to the hygroscopic nature of
PLA, meaning that the plastics have a strong affinity to attract moisture into their internal
molecular structure. When the filaments are exposed to the water, the brittle filaments will
experience micro-cracking, because of the swelling of the PLA matrix. This behaviour also
adds to the additional water penetration into the fiber–matrix interphase, causing stress
concentration and composite failure. As more micro-cracking develops, water transfer
through these cracks becomes active. Water molecules pass through the capillary fissures
and continuously damage the interface, causing the fibers and the matrix to debond.

Furthermore, water absorption is also affected by the density of filaments. The higher
percentage of water absorption in sample of rCF/PLA is attributed to a loosening in the
packing of the filaments, which created a void in the specimens allowed more water intake.
The formation of voids and spaces allows water to pass through pores in the samples. This
explains that the fiber loading and the fiber length also affect the water intake of filaments
when subjected to the formation of voids. From Figure 11, it can be seen that the addition
of rCF can reduce the amount of water absorbed by the PLA-based products. This signifies
the potential application of rCF filler in PLA matrices in a water-exposed environment.

3.2.4. Density

Figure 12 presents the density of the rCF/PLA filament composites based on fiber
loading and the fiber size parameters. The filament that contained 63 µm fibers and 20 wt%
loading had the highest density value at 1.87 g/cm3 and the lowest density was the filament
that contained 63 µm fibers and 10 wt% loading at 1.30 g/cm3, which is almost similar
to the control filament. In Figure 12b, it can be noticed that the density increases as the
filler size increases from 63 µm to 75 µm, but the density reduces as the filler size further
increases to 150 µm. The density also marginally reduces when fiber loading is increased
from 20 wt% to 30 wt%, as shown in Figure 12a.
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Figure 12. The density of pure PLA and rCF/PLA filament based on (a) fiber loading and
(b) fiber length.

It can be inferred that the density value has a trade-off effect between the presence of
the fibers and the voids. The lower density of filament samples is related to the presence of
voids and spaces in samples. Voids are formed mainly because of air entrapment during
extrusion and moisture absorbed during material storage. A low density indicates a higher
void content that could cause weaker adhesion between the fiber and the matrix. This poor
adhesion results in weaker interfacial strength, which reduces the strength of the filament.
Comparing Figures 6 and 12, the tensile strength of the filament that contained 63 µm fibers
and 10 wt% loadings (63/10) is the highest despite its lower density. This can be related to
a low number of pores in the filament, as shown in SEM images in Figures 9a and 10a.

The increment of density for the filaments with higher loadings (20 wt% and 30 wt%)
may be attributed to the addition of the fiber. However, the number of voids or porosities
is also significant in those higher fiber-loading filaments, hence the deterioration of the
strength of the samples. This is confirmed based on Figure 10c, which shows the presence
of large amount of voids in the filament containing the 150 µm fibers. Mutual abrasion
of fiber also led to fiber fracture and crack initiation due to void coalescence. Generally,
the density of the filament composites is significantly influenced by both particle size and
weight loading parameters.

3.2.5. Surface Roughness

Apart from the mechanical properties, the surface quality of FDM-printed products is
vital in achieving the specific requirements of their applications. The filament must also
have a smooth surface condition, to avoid any disruption or clogged material when the
filament is travelling in the machine tube and nozzle.

In this study, surface roughness was measured using arithmetical mean roughness, Ra.
The lower value of Ra indicates a smoother surface. As shown in Figure 13, the filament
with 63 µm fibers and 10 wt% loadings has the lowest Ra value. The surface roughness
is ascribed to the presence of rCF adhering to the surfaces. For the effect of fiber weight
loading, the increase in the fiber loading of up to 30 wt% resulted in the agglomeration of
excess fiber near the surface of the filament. This leads to a rougher surface. In terms of
fiber size, longer fiber sizes also lead to poor surface quality as a result of the agglomeration
and the possibility that the fibers did not uniformly disperse in the matrix. This finding
is consistent with that of Wang, et al. [41], who reported that the surface quality of PEEK
composites deteriorates as CF fiber weight volume increases from 5% to 15%. With the
addition of fiber, the high viscosity of the mixture leads to a greater flow resistance, which
leads to a roughened surface of the extruded filaments.
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Figure 13. Surface roughness of rCF/PLA filaments based on fiber loading and fiber length.

4. Conclusions

This study set out to analyze the effect of rCF-fiber weight loading and fiber size in
the FDM filament-fabricating processes on the mechanical and physical properties of the
product. This initiative is to ensure mechanical performances and quality of FDM filaments,
particularly when a relatively new reinforced material can be optimized. The information
can minimize challenges during the printing process, such as filament breakage and nozzle
clogs. From here, properties of rCF-based filament feedstock for FDM method as well as
the overall performance of the subsequent printing process can be well understood.

The results of this study indicate that the material parameters in the filament produc-
tion significantly affect the properties of the composite filament. The addition of rCF with a
63 µm fiber size and up to 10 wt% into the PLA matrix increased the tensile properties of
the filaments. It can be said the parameters were the best choice for excellent mechanical
strength and good surface quality. The addition of more than 10 wt% rCF and the usage
of fiber size greater than 63 µm caused the tensile strength and modulus to reduce. The
greater rCF weight loading and size could act as a stress raiser in the filament. In terms
of the water exposure condition, the presence of rCF could avoid high water intake. For a
mechanical-demanding application, reinforcement with rCF is desirable in increasing the
density of the product.

The findings of this study also highlight a clear trade-off between optimized properties.
It is important to understand the final application of the product in order to determine
which properties are important to be optimized and which can be moderated.

Overall, this study provides underpinning scientific-based research in addressing the
grand challenges of reusing CF composite waste. The findings of this study contribute
some knowledge about transforming waste into added-value 3D printed products with
excellent mechanical performance. With the knowledge of optimized material parameters,
composite users can now take a scientifically informed decision regarding the potential use
of milled rCF in 3D printing processes. With a cheaper price and lower embodied energy
compared to vCF, rCF could be a favourable option or substitute in the future.
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