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Abstract: Alcohol detection plays a key role in food processing and monitoring. Therefore, we present
a fast, high reproducibility and label-free characteristics alcohol photochemical sensor based on the
surface plasmon resonance (SPR) effect. By growing ZnO nanoflowers on Au film, the SPR signal red-
shifted in the visible region as the alcohol concentration increased. More interestingly, the sensitivity
improved to 127 nm/%, which is attributed to the ZnO nanoflowers/Au structure. The goodness of
the linear fit was more than 0.99 at a range from 0 vol% to 95 vol% which ensures detection resolution.
Finally, a practical application for distinguishing five kinds of alcoholic drinks has been demonstrated.
The excellent sensing characteristics also indicate the potential of the device for applications in the
direction of food processing and monitoring, and the simple structure fabrication and economic
environmental protection make it more attractive.

Keywords: SPR; ZnO nanoflowers/Au structure; alcohol sensor; photochemical sensor

1. Introduction

Surface plasmon resonance (SPR) occurs when a photon of incident light hits a metal
surface (typically a gold surface) [1–4]. At a certain angle of incidence, a portion of the
light energy couples through the metal coating with the electrons in the metal surface
layer, which then move due to excitation. The electron movements are now called plasmon,
and they propagate parallel to the metal surface. Because of its good local field enhance-
ment properties [5,6] and its ability to detect changes in refractive index (RI) through
intermolecular interactions, SPR is regarded as a universal detection technique with good
prospects in many bio-detection and sensing applications which is low cost, high repro-
ducibility and label-free characteristics [7–13]. Therefore, the SPR technique has frequently
been used for high-quality sensors.

Au film is commonly used for preparing SPR sensors due to the unusual optical
properties, generating strong SPR signals at visible frequencies [14]. The SPR sensors based
on Au are generally limited by their lack of high selectivity. One of the solutions is to
modify sensing materials on the surface of Au film. ZnO has been widely investigated as
a kind of sensing material due to its excellent properties with rich oxygen vacancies and
low preparation cost [15,16]. The abundant vacancies on the surface of ZnO can adsorb
molecules existing in the environment, such as H2O and alcohol, having an effect on the
electrical conductivity of ZnO [17–22]. Therefore, modifying ZnO on the Au film can
achieve a photochemical sensor for detecting alcohol concentration.

In this paper, a photochemical sensor for detecting alcohol concentration based on SPR
has been realized. By growing ZnO nanoflowers on the Au film, the vacancies on the surface
of ZnO will adsorb a large number of alcohol molecules. When the SPR phenomenon occurs,
a large number of alcohol molecules will gain charge from the Au film, enhancing the SPR
intensity and improving the sensitivity. The detection sensitivity is 127 nm/%, much higher
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than the sensor with Au films alone. Finally, the device is used for detecting the alcohol
concentrations of five drinks. The excellent sensing characteristics show the potential
application in food processing and monitoring at room temperature, and the simple and
economical manufacture makes it attractive for a wider range of applications.

2. Materials and Methods
2.1. Materials

Zinc nitrate hexahydrate (Zn(NO3)2·6H2O) was purchased from Macklin Inc. (Shanghai,
China), ammonia solution (25~28% NH3·H2O), anhydrous ethanol (99%), and acetone
(99.5%) were supplied by Sinopharm Chemical Reagent Co. (Tianjin, China). Au target
material (99.99%) was purchased from Shenyang Kejing Auto-instrument Co. (Shenyang,
China). All chemicals were analytic pure and utilized without further purification.

2.2. Synthesis of ZnO Nanoflowers/Au

The ZnO nanoflowers/Au structure on the prism was synthesized in two steps as
shown in Figure 1. In the first step, the Au film was coated on the surface of the semi-
cylindrical prism. First, the semi-cylindrical prisms (3 cm × 0.5 cm × 2 cm) are ultrasonic
cleaning with a mixture of acetone and deionized water for 30 min and then dried in an
oven. Afterwards, the cleaned semi-cylindrical prisms were coated with Au (50 nm) using a
magnetron sputter coater. The sputtering conditions were set to the vacuum < 1 × 10−2 Pa,
current ~10 mA, and vacuum evaporation time for 3 min. Finally, the device was dried in
an oven for 2 h to enhance the adhesion.
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Figure 1. Schematic diagram of synthesis process.

In the second step, ZnO nanoflowers were synthesized on the Au film. The above
device was placed in a solution containing 38 mL of deionized water, 0.8 g of zinc nitrate
hexahydrate, and 2.3 mL of ammonia at 90 ◦C for 30 min [23–25]. Then the surface was
cleaned with water several times to remove residual reagents. Finally, the photochemical
alcohol sensor was dried with nitrogen gas.

2.3. Device Fabrication

A container (2.5 cm × 0.5 cm × 2 cm) was printed by 3d printer to hold liquid to be
measured. The solution to be measured was prepared with a volume fraction.

2.4. Characterization and Measurement

The microstructure of the material was examined by scanning electron microscopy
(SEM, Hitachi S4800, Tokyo, Japan). The crystalline phase of the material was characterized
by X-ray diffraction (XRD, Dmax 2550 V, Cu Kα radiation, Osaka, Japan).

The measurement system consisted of a light source (Fiber optics tungsten halogen
lamp, RLE-CP, Beijing, China), polarizer, diaphragm, rotatable carrier table, and spec-
trometer (Fiber spectrometer, RLE-SA03, Beijing, China). The spectrometer was used to
measure the reflection intensity. The data received by the alcohol spectrometer at different
concentrations was recorded by a computer. The tested temperature is ~5 ◦C.
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3. Results

SPR is a surface electromagnetic mode at the metal-dielectric interface and is often
used for detecting the changes in RI [26]. However, the only detecting RI of substances
is hardly sufficient for today’s needs. In this paper, a ZnO nanoflowers/Au structure is
designed to enhance the sensitivity to alcohol concentration. The ZnO nanoflowers/Au
structures’ growth on semi-cylindrical prisms is shown in Figure 2a. ZnO is an inexpensive
and nontoxic semiconductor metal oxide with abundant oxygen vacancies on its surface
and it is often used as an alcohol sensing material [27]. The Au film has good SPR properties.
Therefore, the structure can enhance the alcohol sensing properties. Figure 2b shows an
optical graph of the device. Figure 2c shows the XRD pattern (Blue) and standard card
(PDF#99-0111) of the ZnO nanoflowers. Peaks appearing at 31.7◦, 34.4◦, 36.2◦, 47.5◦, 56.5◦,
62.8◦, 66.3◦, 67.9◦, 69.1◦, 72.5◦, 76.9◦, 81.3◦ and 89.6◦ corresponding to the (100) (002) (101)
(102) (110) (103) (200) (112) (201) (004) (202) (104) planes can be indexed to ZnO crystal,
respectively. Figure 2d,e shows a top-view SEM image and side-view SEM image of ZnO
nanoflowers/Au structure, respectively. The thickness of Au film can be seen in Figure 2f
and the thickness is ~50 nm. The short reaction time (30 min) is to control the density of
ZnO nanoflowers and the length of ZnO, which can ensure the interactions of the SPR effect.
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Figure 2. Schematic diagram of morphological characterization. (a) ZnO nanoflowers/Au structure.
(b) Optical graph of the device. (c) XRD pattern of ZnO nanoflowers. (d) Top-view SEM image
of ZnO nanoflowers/Au structure. (e) Side-view SEM image of ZnO nanoflowers/Au structure.
(f) Side-view SEM image of Au film.

To determine the elemental composition, the energy-dispersive spectrometry (EDS)
and elemental mapping are shown in Figure 3. Figure 3a shows the EDS image of the
surface of the device. Figure 3b shows the enlarged view of Figure 3a. The peaks of Zn,
O, and Au are attributed to the ZnO nanoflowers/Au structure. The elemental mapping
of ZnO nanoflowers/Au structure is shown in Figure 3c–e, indicating that the materials
contain ZnO and Au elements.

The tests of the contact angle between water and alcohol against Au film and ZnO
nanoflowers/Au structure are shown in Figure 4. Figure 4a shows the water contact angle
of Au film and the water contact angle is 86.9◦. Figure 4b shows the water contact angle of
the ZnO nanoflowers/Au structure and the water contact angle is 10.8◦. Figure 4c shows
the alcohol contact angle of Au film and the alcohol contact angle is 7.7◦. Figure 4d shows
the alcohol contact angle of the ZnO nanoflowers/Au structure and the alcohol contact
angle is 1.3◦. The water contact angle is far larger than the previous report [28]. This result
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may be due to the C contamination during the sputtering/storage process and surface
microstructure by the sputtering process. Unfortunately, C contamination is inevitable
in daily use. But by modifying ZnO nanoflowers can effectively lower the influences on
physical adsorption on the material surface. Under the same exposure time in air, the
water contact angle and alcohol contact angle of the ZnO nanoflowers/Au structure are
both far smaller than that of Au film. The great affinity of the ZnO nanoflowers/Au
structure may adsorb more alcohol molecules. These results suggest that the SPR sensors
by nanoflowers/Au have a long-time life.
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Figure 5a shows the SPR signal against different alcohol concentrations. Table S1
shows the relationship between refraction and various concentration of alcohol. The tested
temperature is ~5 ◦C. With the increasing alcohol concentrations, the absorption valley of
the device with Au film appears to red shifting. Figure 5b shows the fit curves between the
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position of absorption and alcohol concentration. The alcohol sensitivity (S) is defined by
the equation:

S =
∆λ

∆C
, (1)

where the λ represents the position of the plasmon peak and the C represents the alcohol
concentration (%). There is a linear fit at the range from 0 vol% to 95 vol%. The sensitivity
is ~94 nm/% and the goodness of fit is 0.98. As shown in Figure 5c, the SPR signal also red
shifts with the increasing alcohol concentrations. Interestingly, a linear fit at the range from
0 vol% to 95 vol% (Figure 5d). The sensitivity is ~127 nm/% and the goodness of fit is 0.99.
In addition, compared to the SPR signal of Au film and ZnO nanoflowers/Au structure
against 0 vol% alcohol concentration (Figure S1), the plasmon peak has an obvious red
shift, which is attributed to the ZnO nanoflowers modification. As shown in Figure S2, the
LOD of the ZnO nanoflowers/Au structure is 2%. The sensitivities of the two sensors are
lower than the previous reports, which may be due to the impurities on the device surface
in our work [29]. The plasma cleaner was purchased on the way, and we will solve this
problem in our follow-up work.
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Au film against different alcohol concentrations. (b) Linear fit of the device with Au films against
different alcohol concentrations. (c) SPR signal of the device with ZnO nanoflowers/Au structure
against different alcohol concentrations. (d) Linear fit of the device with ZnO nanoflowers/Au
structure against different alcohol concentrations.

4. Discussion

Figure 6 shows the reaction mechanism [30]. The visible light of the SPR takes place
in the interface between alcohol solution and ZnO nanoflowers/Au through the prism
(quartz) [31,32]. In addition, when the visible light propagates the interface, SPR will be
excited, a matching condition expressed by the following equation [33]:

k0ninc sin θinc ∓ m.
2π

Λ
= kspp = k0

√
Re(ε1).ε2

Re(ε1) + ε2
, (2)

where k0 is the free-space propagation wavelength, ninc is the refractive index of the incident
medium, m is the diffracted grating order, and θ is the incident angle, Λ is the grating
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period, ε1 is the complex permittivity of the metal and ε2 is the real permittivity of the
surrounding dielectrics, and kSPP is the wave vector of the excited SPP mode. Therefore, the
tiny changes in RI can be detected by our proposed device. The position of the resonance
peak (λ) is satisfied with the following Equation (3):

λ ∝
1

ωγ
∝
√

1 + 2εm , (3)

where ωγ indicates the resonance frequency and εm is the dielectric constant of surrounding
medium. When the RI increases, the red-shift of the SPR resonance wavelength can be
observed (Figure 5).
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When the device is exposed to the alcohol solution as shown in Figure 6a, the alcohol
molecules are adsorbed on the surface of the Au film [34,35], combined with the electrons
on the surface of the Au film, and rapidly dehydrogenated to produce H+ and C2H5OH−.
When the SPR is exited, the H+ ion will be incident to trap the electrons of Au film and
scatter faster by spillover mechanism [36–39]. Moreover, with the decreasing charge density
of Au, photogenerated electrons of ZnO nanoflowers may flow to Au film, which enhances
the SPR effect [40]. The possible response mechanisms can be represented by the following
Equations (4) and (5):

C2H5OH = C2H5O− + H+, (4)

H+ + e− = H, (5)

Figure 6b shows the results of the COMSOL finite element analysis software. Against
different concentrations of alcohol solution, the device with ZnO nanoflowers/Au structure
has an outstanding performance. With the increase of the alcohol solution concentrations,
the resonance peak is red-shifted. The results match our experiments. The relationship
between concentrations of alcohol solution and resonance wavelength shows a good linear
relationship. Therefore, our proposed device is expected to be an alcohol sensor for food
detection. The linear fit of the simulation result is shown in Figure 6c. The sensitivity
is ~66 nm/% and the goodness of fit is 0.98. However, the result is lower than that in
the experiment. The chemical adsorption process (Figure 6a) enhances the surface local
solution refractive index of ZnO nanoflowers/Au and lowers the conductivity of ZnO
nanoflowers/Au. The effects together may lead to the result that the sensitivity in the
experiment is larger than that in simulation.

To compare the performance of alcohol with ZnO nanoflowers/Au structures, the
sensing performance for formaldehyde and formamide is shown in Figure 7. As shown
in Figure 7a,c, various formaldehyde concentrations are measured by Au film and ZnO
nanoflowers/Au structures, respectively. The resonance peaks are both red-shifted with the
increasing formaldehyde concentrations. Figure 7b,d shows the linear fits of the relationship
between formaldehyde concentrations and resonance peaks. However, the sensitivities are
similar. Figure 7e–h shows the formamide sensing performance of two types of SPR sensors.
The resonance peaks are both red-shifted with the increasing formamide concentrations
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while the sensitivities are no obvious differences. Tables S2 and S3 show the relationship
between the refractive index and concentration of formaldehyde and formamide at 5 ◦C,
respectively. The refractive index increases with the concentration and the sensitivities to the
refractive index are almost the same. Compared with the results in Figure 5, by modifying
with ZnO nanoflowers, the sensors are more sensitive to alcohol than for formaldehyde and
formamide, which is attributed to the chemical adsorption process (Figure 6a). Detailed
data are shown in Table 1. The sensitivity of formaldehyde and formamide are lower than
alcohol. Therefore, the alcohol sensor has a good application prospect in daily life.
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Figure 7. Schematic diagram of formaldehyde and formamide sensing performance. (a) SPR signal
of the device with Au film against different formaldehyde concentrations. (b) Linear fit of the device
with Au films against different formaldehyde concentrations. (c) SPR signal of the device with ZnO
nanoflowers/Au structure against different formaldehyde concentrations. (d) Linear fit of the device
with ZnO nanoflowers/Au structure against different formaldehyde concentration. (e) SPR signal
of the device with Au film against different formamide concentrations. (f) Linear fit of the device
with Au films against different formamide concentrations. (g) SPR signal of the device with ZnO
nanoflowers/Au structure against different formamide concentrations. (h) Linear fit of the device
with ZnO nanoflowers/Au structure against different formamide concentrations.

Table 1. Comparison of the performance of three solutions.

Solutions of Detection Range of Detection Sensitivity to Concentration

Alcohol 0–95% (vol%) 127 nm/%

Formaldehyde 0–30% (vol%) 97 nm/%

Formamide 0–50% (vol%) 89 nm/%

The comparisons with other sensors have been shown in Table 2. The SPR sensors
based on hollow-core fiber structures exhibit a high sensitivity of refractive index with
4125 nm/RIU [41]. However, this kind of SPR sensor has no performance improvement.
The SPR sensors based on fiber Bragg grating also have no performance improvement,
and the sensitivity is lower than that in this work [42]. These results suggest that the SPR
sensors designed in this work demonstrate a potential application in food processing.

Finally, an application in detecting different alcohol drinks has been demonstrated.
Five kinds of alcoholic drinks with different alcohol concentrations were purchased from a
store and the alcohol concentration was achieved from nutrition information (Snowflake
Pure Draft Beer: 2.5 vol%, Delirium Nocturnum: 8.5 vol%, Heiwen Shochu: 19 vol%,
Original Sorghum: 38 vol%, Niulanshan Erguotou: 56 vol%). The SPR signals against
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different drinks are shown in Figure 8a. According to the linear fit, the results are shown in
Figure 8b. The blue line represents the test results and the red line represents the standard
value. It can be clearly seen that the test results are similar to the standard value, which
exhibits great potential in alcohol sensing. In future applications, this technology will be
used to accurately measure the amount of alcohol for food processing and monitoring and
medical instrumentation.

Table 2. Comparison of performance of three sensors.

Structure of Detection Limit of Detection Sensitivity to
Concentration Sensitivity for RI Improving the

Sensitivity for Alcohol Reference

Hollow-core fiber - - 4125 nm/RIU - [40]

Fiber Bragg grating - - 500 nm/RIU - [41]

ZnO nanoflowers/Au 1.333
(2 vol/%) 127 nm/% 2825 nm/RIU Alcohol This work
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and standard concentration.

5. Conclusions

In this paper, a highly sensitive photochemical alcohol sensor was achieved from the
ZnO nanoflowers/Au structure. Due to the abundant vacancies on the surface of ZnO,
alcohol molecules were easily absorbed, enhancing the SPR effect. The sensitivity to alcohol
improved to 127 nm/% at an alcohol concentration range from 0 vol% to 95 vol%. The
simple fabrication of the structure and its economic and environmentally friendly nature
made it more attractive.
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.3390/ma15010189/s1, Figure S1: SPR signal of water (0 vol%) by Au film and ZnO nanoflowers/Au
structure, respectively. Figure S2: The LOD of the ZnO nanoflowers/Au structure. Table S1. Com-
parison of measurement results between refraction and various concentrations of alcohol. Table S2.
Comparison of measurement results between refraction and various concentrations of formalde-
hyde. Table S3. Comparison of measurement results between refraction and various concentrations
of formamide.
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