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Abstract: There is an urgent need to develop catalytic degradation technologies for chemical war-
fare agents (CWAs) that are environmentally friendly and do not require secondary treatment.
UiO-66-NH2 and other metal–organic frameworks (MOFs) based on zirconium have been shown
to promote the catalytic degradation of CWAs. At the same time, MOFs have been studied, and
they have shown interesting properties in CWA removal because of their ultrahigh surface area,
tunable structures, and periodically distributed abundant catalytic sites. However, MOFs synthe-
sized by conventional methods are mostly powdery crystals that are difficult to process and have
poor mechanical stability, which largely limit the development of MOFs in practical applications.
An emerging trend in MOF research is hybridization with flexible materials. Polymers possess a
variety of unique attributes, such as flexibility, thermal and chemical stability, and process ability,
and these properties can be combined with MOFs to make a low-cost and versatile material that
also provides convenience for the subsequent integration of such MOFs into independent substrates
or textiles. In this article, we used a green and simple method to coat the surface of UiO-66-NH2

with polydopamine (PDA), PDA can promote the catalytic hydrolysis of UiO-66-NH2 to DMNP
(a simulant of chemical warfare agents). Additionally, it can adsorb the toxic hydrolysis product
p-nitrophenol, avoiding the trouble of secondary treatment. The half-life of UiO-66-NH2 coated with
polydopamine (UiO-66-NH2@PDA) for catalytic hydrolysis is 8.9 min, and that of pure UiO-66-NH2

is 20 min. We speculate that the surface coated with PDA can improve the diffusion of DMNP to the
active sites of UiO-66-NH2.

Keywords: metal–organic frameworks; chemical warfare agents; catalytic hydrolysis; polymers

1. Introduction

CWAs are some of the deadliest toxins in the world, e.g., organophosphates [1–5]. The
organophosphates currently used as chemical warfare agents have the ability to quickly
inhibit acetylcholinesterase, causing the excessive accumulation of acetylcholine in the
body. This causes serious disorders of the central and peripheral cholinergic nervous
system, and it eventually leads to death [3]. The destruction of these CWAs and other
toxins is an important societal challenge. Currently available CWA degradation techniques
include incineration, water hydrolysis followed by biotreatment, and water hydrolysis
followed by super critical water oxidation. Drawbacks to these techniques include the
selectivity to the analyte, the degradation of the enzyme over extended treatment time, and
the lack of robustness for practical applications.

Nanostructured materials have proven to be suitable for the degradation of a va-
riety of pollutants via heterogeneous catalysis and may be viable for the degradation
of CWAs [6]. MOFs, compounds assembled from the coordination of organic linkers
and metal-containing secondary building units [7–9], have been studied and have shown
interesting properties in CWA removal because of their ultrahigh surface area, tunable
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structures, and periodically distributed abundant catalytic sites [10]. In particular, the
zirconium-based MOF UiO-66-NH2 [11] has been shown to have good reactivity with
CWAs. However, MOFs synthesized by conventional methods are mostly powdery crystals
that are difficult to process and have poor mechanical stability, thus largely limiting the
development of MOFs in practical applications. An emerging trend in MOF research is hy-
bridization with flexible materials. As polymers possess a variety of unique attributes [12],
such as flexibility, thermal and chemical stability, and process ability. Previous work has
shown that assembling a polymer and an MOF is an effective method because a polymer
composite can actually enhance the characteristics of MOFs through framework stabiliza-
tion [13] or the enhanced uptake of a desired analyte [11]. Significant advances have been
made in the field of MOF composites by achieving the covalent integration of MOF and
polymer components.

Dopamine (DA), a neurotransmitter, widely exists in the animal brain [14] and belongs
to a class of catecholamines with excellent biocompatibility. It has drawn great attention
since it contains plenty of amine and catechol functional groups and has the ability to
adhere to the surface of many materials and form adhesive coatings on a wide range of
substrates [15–17]. Notably, it can be self-polymerized to form PDA under mild conditions
(weakly alkaline pH) [18,19]. This process is simple, green, and low-cost. The abundant
functional groups, especially catechol groups [20], of PDA are expected to be the active sites
for heavy metals ions, synthetic dyes, and other organic pollutants through electrostatic,
bidentate chelating, or hydrogen bonding interactions [21,22].

In this work, we used a green and simple method to coat PDA on the surface of
UiO-66-NH2 to form a composite material of UiO-66-NH2@PDA. We took a typical type
of CWA, the organophosphate compound methyl paraoxon (DMNP), as a simulant and
further explored the effect of the UiO-66-NH2@PDA composite material on the catalytic
degradation of DMNP. Studies have shown that the catalytic degradation of the UiO-66-
NH2@PDA composite material has a half-life of 8.9 min, and the catalytic degradation of
UiO-66-NH2 has a half-life of 20 min. In addition, PDA coated on the surface of UiO-66-
NH2 can adsorb p-nitrophenol, the toxic degradation product of DMNP, thus avoiding the
trouble of secondary treatment.

2. Experimental Section
2.1. Chemicals and Materials

2-aminoterephthalic acid (H2BDC-NH2), dopamine hydrochloride, and zirconium(IV)
chloride (ZrCl4) were purchased from Beijing Bailingwei, Beijing, China. Glacial acetic acid
(CH3COOH), dilute hydrochloric acid(HCl), and hydroxymethyl aminomethane (Tris) were
purchased from Shanghai Aladdin Biotechnology Co., Ltd, Shanghai, China. Methanol
and N,N-dimethylformamide (DMF) were purchased from Tianjin Concord Technology
Co., Ltd., Tianjin, China, and N-ethylmorpholine and dimethyl 4-nitrophenylphosphate
(methyl paraoxon, DMNP) were purchased from Shanghai Macklin Biochemical Co., Ltd.,
Shanghai, China. All raw materials were used without further purification.

2.2. Synthesis of UiO-66-NH2

UiO-66-NH2 was solvent thermal synthesized based on the method of Dr. Guang
Lu et al. [23]. Zirconium chloride (ZrCl4; 279.4 g) and 2-aminoterephthalic acid (H2BDC-
NH2; 217.4 mg) were dissolved in a mixed solution of N,N-dimethylformamide (DMF;
140 mL) and glacial acetic acid (CH3COOH; 0.36 mol). Then, the mixture was transferred
into a 250 mL Teflon-lined stainless-steel autoclave for a homogeneous reaction that was
maintained at 393 K for 24 h. It was cooled to ambient temperature and repeatedly washed
three times with DMF and methanol. A white crystal was obtained by drying at 353 K.
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2.3. Preparation of Buffer Solution

Hydroxymethyl aminomethane (Tris, 1.211 g) were dissolved in ultra-pure water (200 mL).
Then, the mixture was transferred into a 1 L volumetric flask, the volume was made with
ultra-pure water, and the pH was adjusted to 8.5 with dilute hydrochloric acid (HCl).

2.4. Synthesis of UiO-66-NH2@PDA Composites

Dopamine hydrochloride (DA, 100 mg) was dissolved in the above-mentioned buffer
solution (200 mL, dilution can get different DA concentration solutions) and stirred for
1 min, the solution turned brown. Additionally, then UiO-66-NH2 (50 mg) were dispersed
in the mixture and subjected to ultrasound for 10 min; afterwards, the solution turned
white-brown and was stirred for 24 h at the room temperature. After the reaction, we
centrifuged the resulting solution to obtain a black solid and washed it three times with
ultra-pure water. The black solid was obtained by drying at 353 K.

2.5. Characterizations

The morphology and microstructure of the samples were characterized using a field
emission scanning electron microscope (JSM-7500F, JEOL, Kyoto, Japan) and a transmis-
sion electron microscope (FEI Talos F200X G2, Philips-FEI, Amsterdam, The Netherlands).
Energy-dispersive X-ray analysis (EDS) was carried out by the model MIRA III (TESCAN,
Shanghai, China). Low-angle X-ray diffraction (XRD) patterns of the samples were detected
by X-ray diffractometer (SmartLab, JEOL, Kyoto, Japan). Powder X-ray diffraction (PXRD)
measurements were taken using a X-ray powder diffractometer (Miniflex 600, Rigaku,
Tokyo, Japan). The FT-IR spectra of samples in the range of the 4000–400 cm−1 wave num-
ber were obtained on a TENSOR II model FT-IR spectrometer (BRUKER, Berlin, Germany).
The X-ray photoelectron spectroscopy (XPS) of the product was shown on applied electron
spectrometers (ESCALAB 250XI, Thermo, Waltham, MA, USA). The thermogravimetric
(TG-DSC) analysis of nanocomposites was conducted on a TA thermogravimeter (Net-
zsch, Berlin, Germany) with air from room temperature to 1200 ◦C and a heating rate of
10 ◦C/min. UV–visible absorption spectra were obtained using a U-4100 spectrophotometer
(Hitachi, Tokyo, Japan).

2.6. Degradation of DMNP

DMNP degradation experiments were carried out at room temperature via a method
similar to that reported by Katz et al. [24]. Initially, 50 mg of a solid sample were introduced
to a 0.45 M aqueous solution of N-ethylmorpholine (100 mL). The mixture was stirred until
the solid completely evenly dispersed in the solution. Then, 400 µL of the above-mentioned
solution were introduced to a 4 mL vial. After that, 100 µL of DMNP (1 mg·mL−1) was
also introduced to the 4 mL vial and continuously stirred (1100 rpm) over the course of
the experiment. 50 µL aliquots were extracted periodically over 120 min. The aliquots
were diluted to 1 mL with 0.45 M aqueous N-ethylmorpholine and measured using UV-vis
spectroscopy. The concentration of DMNP was determined by Lambert–Beer’s law based
on the absorbance at 266 nm. The percent conversion of DMNP was calculated from the
concentration ratio of degraded DMNP to the initial DMNP. Standard control reactions
were performed under the same conditions.

3. Results and Discussion

UiO-66-NH2 and UiO-66-NH2@PDA were characterized by SEM and TEM. It could be
seen that we successfully prepared octahedron UiO-66-NH2 with regular crystal faces and
relatively uniform size, with an average particle size of around 600 nm. In order to better
coat PDA onto the surface of UiO-66-NH2, we explored the coating effect under different
DA concentrations using SEM and TEM (Figure 1a–h). When the DA concentration reached
0.25 mg·mL−1, obvious small spheres began to appear on the surface of UiO-66-NH2,
which was presumably formed by the self-aggregation of DA. When the DA concentration
reached 0.5 mg·mL−1, the polymer pellets on the surface disappeared. According to the



Materials 2021, 14, 2419 4 of 10

SEM and TEM images, it was speculated that the amount of DA was enough to adhere
to UiO-66-NH2 and form a coat of polymer. By comparing the SEM and TEM images of
Figure 1a,b,e,f, we can observe that there was almost no trace of PDA on the surface of
UiO-66-NH2 at this time. This may have been because the concentration of DA was too
low to allow visible polymers to form on the surface of UiO-66-NH2.
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Figure 1. SEM and TEM imaging of (a,e) UiO-66-NH2 and (b,f) UiO-66-NH2@PDA, where the DA concentration is
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the DA concentration is 0.5 mg·mL−1.

UiO-66-NH2 and UiO-66-NH2@PDA (all subsequent tests used a 0.5 mg·mL−1 DA
concentration for UiO-66-NH2@PDA) were characterized by XRD to determine the crys-
talline of the materials. The XRD pattern of the as-synthesized UiO-66-NH2 corresponded
well to those reported previously [10,25], demonstrating the successful synthesis of UiO-
66-NH2. Figure 2a,b shows that the diffraction maximum similarity of UiO-66-NH2 and
UiO-66-NH2@PDA was very high, which proved that PDA coating on the surface did not
affect the crystal structure of UiO-66-NH2.
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The EDS elemental mapping of UiO-66-NH2@PDA showed that the Zr and O ele-
ments were more distributed in the core region, whereas the elements C and N were more
distributed in the peripheral region (Figure 3a). FT-IR was applied to further characterize
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UiO-66-NH2 and UiO-66-NH2@PDA, as shown in Figure 3b. The characteristic peaks
of UiO-66-NH2 were identified as follows. The symmetric and asymmetric N-H stretch-
ing modes were found at 3360 cm−1 and 3465 cm−1, respectively [26]. In addition, the
bonding between aromatic carbon and nitrogen, C–N, could be also observed at 1258 and
1383 cm−1 [27]. The peaks at 1495 cm−1 were the result of aromatic C–C ring stretching,
and those at 656 cm−1 arose from the Zr–µ–Zr stretching inside the node [28]. The broad
absorption of the O–H stretching near 3338 cm−1 became stronger after the PDA coating.
Additionally, the peak of C=O stretching vibrations at 1655 cm−1 decreased largely due to
the reduction of UiO-66-NH2 by PDA, and the peak of C–O–H 1160 cm−1 emerged in the
FT-IR spectrum of UiO-66-NH2@PDA, indicating the presence of UiO-66-NH2 coated with
PDA [29,30]. In the FT-IR spectra of the UiO-66-NH2 and UiO-66-NH2@PDA, not only did
the peaks representing the groups of C–N, N–H, and C–O–H decrease in intensity but also
their location shifted, from which we speculated that PDA was successfully deposited on
the surface of the UiO-66-NH2 with the aid of the metal-binding ability of catechol and
nitrogen-containing groups present in the PDA structure.
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Figure 4 shows that between 30 and 120 ◦C, both UiO-66-NH2 and UiO-66-NH2@PDA
had a similar slight downward trend, which was primarily due to residual organic solvent
in the sample’s pores. The weight loss of the sample was caused by the volatilization of
a small amount of organic solvent. Between 120 and 600 ◦C, the weight loss of UiO-66-
NH2 was primarily due to the collapse of the framework structure, supplemented by the
formation of oxides; after 600 ◦C, the weight loss of UiO-66-NH2 was primarily due to the
formation of oxides, supplemented by the collapse of the framework structure. When the
weight loss of the sample no longer changed, the framework structure of UiO-66-NH2 had
completely collapsed, and all the samples were zirconium oxides. Compared with UiO-66-
NH2 and UiO-66-NH2@PDA, the thermogravimetric curves indicate that the mass change
behavior of UiO-66-NH2@PDA coated with PDA varied from that of pure UiO-66-NH2.
This also demonstrates the presence of PDA on the surface of UiO-66-NH2.

As shown in Figure 5a, UiO-66-NH2 demonstrated O 1s, N 1s, Zr 3d, and C 1s,
while after the deposition of PDA onto UiO-66-NH2, the Zr 3d peak disappeared. This
also confirmed that the surface of UiO-66-NH2 was coated with a certain thickness of
PDA [31]. Additionally, the peaks at 529.4 and 530.5 eV were related to the Zr–O and C–O
bonds in UiO-66-NH2 [25,32], respectively, in Figure 5b. After PDA layer formation onto
UiO-66-NH2, the deconvolution of O 1s was related to C–O and C=O bonds in Figure 5c.
Additionally, the deconvolution of the C 1s region related to UiO-66-NH2 and UiO-66-
NH2@PDA nanostructures was recorded (Figure 5d,e). As seen here, PDA presented
characteristic peaks at 283.5, 284.8, and 287.5 eV that corresponded to the C–C, C–O, C–N,
and C=O bonds (Figure 3e) [33,34], indicating the successful formation of PDA on the
surface of UiO-66-NH2. Furthermore, UiO-66-NH2 demonstrated peaks at 283.5, 284.9,
and 287.5 eV, which were attributed to C–C, C–N, and O–C–O, respectively, in which the
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new O–C–O peak belonged to organic linker carboxylate groups (Figure 5d) [31]. Finally,
the presence of Zr 3d3/2 (184.5 eV) and Zr 3d5/2 (181.7 eV) peaks related to the spin
orbitals of UiO-66-NH2 nanostructures is demonstrated in Figure 5f [35]. The obtained XPS
results were in good agreement with the XRD pattern of UiO-66-NH2@PDA, which clearly
indicated the successful fabrication of targeted samples.
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Figure 5. XPS survey spectra of: (a) UiO-66-NH2 and UiO-66-NH2@PDA nanostructures, (b) high-resolution O 1s core
level for UiO-66-NH2, (c) high-resolution O 1s core level for UiO-66-NH2@PDA, (d) high-resolution C 1s core level
for UiO-66-NH2, (e) high-resolution C 1s core level for UiO-66-NH2@PDA, and (f) high-resolution Zr 3d core level for
UiO-66-NH2.
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The catalytic hydrolysis mechanism of DMNP is shown in Figure 6a. A common
mechanism for the hydrolysis of DMNP is that first, the oxygen in the phosphorus–oxygen
bond binds to the unsaturated coordination site on the Lewis acidic metal cation, which is
accompanied by the attenuation of the phosphorus–oxygen bond [36]. Then, the phosphate
receives a metal-bound or free hydroxide anion. Finally, the catalyst is regenerated by
the dissociation of nontoxic products from the active site. The Zr6O4(OH)4 node contains
enzyme-like bimetallic Lewis acidic metal centers bridged by a hydroxide, which are
effective for the cleavage of P–O bonds, and the amine moiety in UiO-66-NH2, as a Brønsted
base, can enhance the catalytic activity through the transfer of a proton during the catalytic
cycle [36–38]. The reaction requires the presence of N-ethylmorpholine as a buffer solution.
The buffer acts to remove acidic byproducts from the reaction, as well as to deprotonate
water molecules and facilitate the reaction [39].
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We also used UiO-66-NH2@PDA and pure UiO-66-NH2 as examples to compare their
application effects in the degradation of DMNP based on the above-mentioned characteriza-
tion and analysis. During the reaction, the catalyst and DMNP were controlled in the same
amount, and the reaction was carried out at room temperature. The catalytic degradation
half-life and reaction rate of UiO-66-NH2 and UiO-66-NH2@PDA were compared. Katz
et al. reported that UiO-66 powder exhibited a half-life of 45 min for the degradation of
DMNP in 0.45 M N-ethylmorpholine [39]. Figure 6b,c demonstrates how the degradation
efficiency of DMNP differed with time under various conditions, as we diluted the reaction
solution with N-ethylmorpholine/water buffer solution and then measured its absorption
spectrum with a UV–vis spectrophotometer. DMNP has a UV absorption peak of around
266 nm, while p-nitrophenol, a degradation product of DMNP, has a UV absorption peak
of around 403 nm. We can see the presence of p-nitrophenol as a hydrolysate in Figure 6b.
Since PDA adsorbed it, we cannot see the product’s adsorption peak at 403 nm in Figure 6c,
which also confirms that the surface-coated PDA could adsorb p-nitrophenol.
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Within the first 3 min of contact between the UiO-66-NH2 and DMNP, a significant
decrease in the reactant peak at 266 nm was observed, likely due in large part to the
adsorption of DMNP. At the same time, the p-nitrophenol peak at 403 nm increased, as
seen in Figure 6b. There was considerable complexity to the kinetics of the overall reaction,
where it is believed that heterogeneous binding occurs during the adsorption of DMNP [6].
As the reaction progressed, the reaction rate began to decrease by about 20 min and tended
to be flat. We speculate that this was due to the decrease of the DMNP concentration
of the reactant and the close-to-saturation adsorption of DMNP by the catalyst. In this
regard, it seems that the reaction could be promoted by increasing the content of the
catalyst. The half-life of UiO-66-NH2 degrading DMNP at room temperature was found
to be 20 min (the initial concentration of DMNP was 10 mg·L−1), according to the kinetic
calculation results in Figure 6b,c. The half-life of UiO-66-NH2@PDA degrading DMNP
was found to be 8.9 min under the same conditions, which was slightly shorter than
that of UiO-66-NH2, and the degradation performance was faster. Compared with the
half-life of the degradation of neurotoxic agent coated with polyethyleneimine on the
surface of NU-1000, which was 12.7 min, the half-life was improved [40]. By 120 min, the
remaining DMNP concentration in UiO-66-NH2@PDA was 3.0 mg·L−1 (the conversion rate
of DMNP was 70%), while the corresponding UiO-66-NH2 remaining DMNP concentration
was 4.2 mg·L−1 (the conversion rate of DMNP was 58%, ignoring the change in solution
volume caused by taking the point). In addition, the performance of UiO-66-NH2@PDA
was better than UiO-66-NH2. This behavior may have been due to the ability of PDA to
allow DMNP to better diffuse and approach the active site on UiO-66-NH2. In contrast, the
PDA sample without UiO-66-NH2 exhibited a negligible amount of degradation of DMNP,
as seen in Figure 6d, thus indicating these samples are not capable of degrading DMNP
without the presence of UiO-66-NH2. The resulting solution showed a visible yellow color
due to the presence of p-nitrophenol, as seen in Figure 6b.

The UiO-66-NH2@PDA used in this experiment had the benefit of being able to
efficiently degrade DMNP, and it combined PDA with good flexibility, process ability, and
adsorption of DMNP degradation products like p-nitrophenol, which is also toxic, thus
avoiding the need for secondary treatment.

4. Conclusions

In summary, we successfully synthesized a rationally designed UiO-66-NH2@PDA
nanoparticle, with PDA coated on the surface, that exhibited an enhanced catalytic effi-
ciency toward CWA degradation under the same conditions. We speculate that the surface-
coated PDA enhanced the dispersibility of MOF, allowing the reactants to reach the active
site faster. Additionally, the PDA could avoid the secondary treatment of p-nitrophenol and
reduce costs. As-synthesized UiO-66-NH2@PDA samples were characterized using XRD
and FT-IR, thus demonstrating that the structural integrity of the MOF was maintained
during the synthesizing process.
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gation, M.C., S.W. and Y.T.; writing—original draft preparation, M.C. and S.W.; writing—review and
editing, S.W.; visualization, M.C.; supervision, M.C. and Y.T. All authors have read and agreed to the
published version of the manuscript.
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