
materials

Article

Elastic Properties and Energy Dissipation Related to the
Disorder-Order Ferroelectric Transition in a Multiferroic
Metal-Organic Framework [(CH3)2NH2][Fe(HCOO)3] with
a Perovskite-Like Structure

Zhiying Zhang 1,*, Xin Shen 1, Hongliang Yu 1, Xiaoming Wang 2, Lei Sun 1, Shumin Yue 1, Dongpeng Cheng 1

and Hao Tang 1

����������
�������

Citation: Zhang, Z.; Shen, X.; Yu, H.;

Wang, X.; Sun, L.; Yue, S.; Cheng, D.;

Tang, H. Elastic Properties and

Energy Dissipation Related to the

Disorder-Order Ferroelectric

Transition in a Multiferroic

Metal-Organic Framework

[(CH3)2NH2][Fe(HCOO)3] with a

Perovskite-Like Structure. Materials

2021, 14, 2403. https://doi.org/

10.3390/ma14092403

Academic Editor: Michela Alfè

Received: 28 February 2021

Accepted: 2 May 2021

Published: 5 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China;
shenxin1221@126.com (X.S.); yuhongliang2021@126.com (H.Y.); sunlei15171@163.com (L.S.);
yueshumin1216@163.com (S.Y.); chengdongpeng93@163.com (D.C.); tanghao202103@163.com (H.T.)

2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of
Sciences, Beijing 100190, China; wangxiaomingteemo@163.com

* Correspondence: zhiyingzhang@whut.edu.cn

Abstract: The elastic properties and the coupling of ferroelasticity with ferromagnetism and ferroelec-
tricy are crucial for the development of multiferroic metal-organic frameworks (MOFs) with strong
magnetoelectric coupling. Elastic properties and energy dissipation related to the disorder-order
ferroelectric transition in [(CH3)2NH2][Fe(HCOO)3] were studied by differential scanning calorime-
try (DSC), low temperature X-ray diffraction (XRD) and dynamic mechanical analysis (DMA). DSC
result indicated the transition near 164 K. XRD showed the first-order structural transition from

rhombohedral R
−
3c to monoclinic Cc at ~145 K, accompanied by the disorder-order transition of

proton ordering in the N–H . . . O hydrogen bonds in [(CH3)2NH2]+ as well as the distortion of
the framework. For single crystals, the storage modulus was ~1.1 GPa and the loss modulus was
~0.02 GPa at 298 K. DMA of single crystals showed quick drop of storage modulus and peaks of loss
modulus and loss factor near the ferroelectric transition temperature ~164 K. DMA of pellets showed
the minimum of the normalized storage modulus and the peaks of loss factor at ~164 K with weak
frequency dependences. The normalized loss modulus reached the maximum near 145 K, with higher
peak temperature at higher frequency. The elastic anomalies and energy dissipation near the ferro-
electric transition temperature are caused by the coupling of the movements of dimethylammonium
cations and twin walls.

Keywords: metal-organic framework (MOF); ferroelectric transition; X-ray diffraction (XRD); dy-
namic mechanical analysis (DMA); elastic property; energy dissipation

1. Introduction

Metal-organic frameworks (MOFs) have attracted a lot of attention, and they have po-
tential applications in gas storage, separation, catalysis, photoluminescence, sensors, mag-
netic and electric devices [1–8]. Multiferroic MOFs have drawn special interest due to tune-
able properties and the coexistence of ferroelectricity/ferromagnetism/ferroelasticity [9–15].
In [NH2NH3][M(HCOO)3] (M = Mn, Fe, Co), electric phase transitions and structural phase
transitions occur from non-polar Pnma (No. 62) to polar Pna21 (No. 33) near 347 K (M = Fe,
perovskite) and 350 K (M = Mn, perovskite), from polar P63 (No. 173) to non-polar P212121
(No. 19) near 336 K (M = Fe, chiral) and 380 K (M = Co, chiral), or from polar P63 (No.
173) to non-polar P21 near 296 K (M = Mn, chiral), and magnetic phase transitions occur at
7.9–13.9 K (Mn: 7.9 K, Fe: 12.5 K, Co: 13.9 K) [9,10]. In [CH3NH2NH2][M(HCOO)3] (M =
Mn, Fe), second-order structural phase transitions from nonpolar R3c to polar R3c occur at
310 K, and first-order structural phase transitions occur at 180–225 K, and magnetic phase
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transitions occur at 9–21 K [11]. In [NH4][M(HCOO)3] (M = Mn, Fe, Co, Ni), electric phase
transitions and structural phase transition from non-polar P6322 to polar P63 occur at 191–
254 K, and magnetic transitions occur at 8.4–29.5 K [12–15]. In [(CH3)2NH2][M(HCOO)3]
(M = Mn, Fe, Co, Ni), electric phase transitions and structural phase transition from rhom-
bohedral R3c (No. 167) to monoclinic Cc occur at 160–185 K, and magnetic transitions occur
at 8.5–35.6 K with spin reorientation transitions at 13.1–14.3 K [16–21].

The elastic properties and the coupling of ferroelasticity with ferromagnetism and
ferroelectricy are crucial for the development of multiferroic MOFs with strong mag-
netoelectric coupling [22–27]. There are a few reports about the elastic properties of
[(CH3)2NH2][M(HCOO)3] (M = Mn, Co, Ni) [22–27]. The Young’s modulus of [(CH3)2NH2]
[M(HCOO)3] (M = Mn, Co, Ni) at room temperature was 19–25 GPa as determined by
nanoindentation [22]. Resonant ultrasound spectroscopy (RUS) was used to investigate the
elastic properties and the coupling of ferroelasticity with ferromagnetism and ferroelectricy
in [(CH3)2NH2][M(HCOO)3] (M = Mn, Co, Ni) [23,24], and dynamic mechanical analysis
(DMA) was used to study the elastic properties and the coupling of ferroelasticity with
ferroelectricy in [(CH3)2NH2][Mn(HCOO)3] [25]. [(CH3)2NH2] [M(HCOO)3] (M = Fe) has
received intensive attention due to its strong magnetoelectric coupling [28–34]. The elastic
properties of [(CH3)2NH2][Fe(HCOO)3] have rarely been reported. Jain et al. pointed out
due to twining, the low temperature XRD patterns of [(CH3)2NH2][M(HCOO)3] (M = Mn,
Fe, Co, Ni) were difficult to be well refined [17]. Sanchez-Andujar et al. reported that the
structure of [(CH3)2NH2][Mn(HCOO)3] at 100 K was monoclinic Cc [35]. Maczka et al.
reported that the structure of [(CH3)2NH2] [M(HCOO)3] (M = Fe) below ~160 K was mon-
oclinic Cc [32], but Ma et al. reported that the structure at 100 K was monoclinic C2/c [34].

The present work studied the temperature and frequency dependences of elastic
properties of [(CH3)2NH2][Fe(HCOO)3] using DMA and investigated the elastic anomalies
and energy dissipation associated with ferroelectric transition and structural transition
with relaxation time 0.1–2 s. Our findings make contributions to the understanding of
phase transition mechanisms.

2. Materials and Methods
2.1. Material Synthesis

Single-crystals of [(CH3)2NH2][Fe(HCOO)3] were prepared using a solvothermal
method under the protection of N2 as reported in reference [17]. 5 mmol FeCl2·4H2O was
dissolved in the mixture of 30 mL deionized water and 30 mL N,N-dimethylformamide,
and the solution was placed in a Teflon-lined stainless-steel autoclave. The autoclave was
kept at 413 K for 3 days and then slowly cooled to room temperature. Next, the supernatant
was transferred into a tube and sealed in N2 filled environment. After 5 days, transparent
crystals formed were collected by filtering the mother liquid and washing using ethanol.
The crystals were kept in a desiccator.

2.2. Room Temperature Powder X-ray Diffraction (XRD)

Crystals of [(CH3)2NH2][Fe(HCOO)3] were ground to powder. A D8 Advance diffrac-
tometer (Bruker, Billerica, MA, USA) was used to collect the room temperature powder
XRD. The diffraction angle 2θ was in the range of 10–60◦ and the step size was 0.02◦. The
Rietveld fit of XRD pattern was achieved through GSAS.

2.3. Differential Scanning Calorimetry (DSC)

A DSC 200F3 calorimeter (Netzsch, Selb, Germany) was used to perform the DSC mea-
surements of [(CH3)2NH2][Fe(HCOO)3] crystals (around 16 mg) in a N2 filled environment
from 140 K to 300 K at the heating rate of 5 K/min.

2.4. Low Temperature Powder XRD

A Smartlab powder XRD system (Rigaku, Tokyo, Japan) was used to collect the
powder XRD patterns from 300 K to 10 K. 2θ was between 10◦ and 70◦, and the step size
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was 0.02◦. The temperature step of 20 K was set between 300 K and 180 K, step of 5 K
between 180 K and 120 K, step of 20 K between 120 K and 20 K, and step of 10 K between
20 K and 10 K. The temperature accuracy was 0.1 K using a Lakeshore temperature sensor.
Low temperature XRD patterns were refined using GSAS.

2.5. DMA

The temperature and frequency dependences of elastic properties and energy dis-
sipation of [(CH3)2NH2][Fe(HCOO)3] single crystals were determined using DMA8000
instrument (PerkinElmer Instruments, Waltham, MA, USA) in the single cantilever mode
from 150 K to 320 K at the rate of 2 K/min at frequencies of 1, 5 and 10 Hz.

Pellets of [(CH3)2NH2][Fe(HCOO)3] were obtained by pressing powder, as reported
in reference [25]. The temperature and frequency dependences of elastic properties and
energy dissipation of [(CH3)2NH2][Fe(HCOO)3] pellets were determined using a Diamond
DMA (PerkinElmer Instruments, Waltham, MA, USA) in the compression mode from 130 K
to 300 K at the rate of 2 K/min at frequencies of 0.5, 1, 2, 5 and 10 Hz.

3. Results and Discussion
3.1. Room Temperature Powder XRD

Figure 1 shows the experimental and simulation powder XRD patterns of [(CH3)2NH2]
[Fe(HCOO)3] at room temperature, as well as the Rietveld fit of XRD pattern. The exper-
imental pattern is consistent with the simulation pattern of space group rhombohedral
R3c (CCDC 780885) [17]. The obtained lattice parameters α = β = 90◦, γ = 120◦, a = b =
8.2510(1) Å, c = 22.5611(7) Å, and the fitting parameters Rwp = 4.52%, Rp = 3.47% and
χ2 = 1.648.
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They are in good agreement with the results reported by Jain et al. (α = β = 90°, 
γ = 120°, a = b = 8.241(2) Å, c = 22.545(6) Å [17]), the results reported by Zhou et al. (α 
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Figure 1. Powder XRD patterns of [(CH3)2NH2][Fe(HCOO)3] at room temperature, (a) the experi-
mental and simulated XRD patterns, (b) Rietveld fit of XRD pattern. The simulated XRD pattern was

for rhombohedral R
−
3c structure (CCDC 780885) [17].

They are in good agreement with the results reported by Jain et al. (α = β = 90◦,
γ = 120◦, a = b = 8.241(2) Å, c = 22.545(6) Å [17]), the results reported by Zhou et al.
(α = β = 90◦, γ = 120◦, a = b = 8.249 Å, c = 22.556 Å with Rwp = 4.849%, Rp = 3.462%
and χ2 = 8.733 [33]), and the results reported by Ma et al. (α = β = 90◦, γ = 120◦,
a = b = 8.2312(12) Å, c = 22.506(5) Å [34]). It was reported that the crystals usually grow
along the [012] direction according to single crystal XRD analysis [28–31]. As shown in
Figure 2, the structure of [(CH3)2NH2][Fe(HCOO)3] is ABX3 perovskite-like, in which A is
[(CH3)2NH2]+, B is Fe2+, and X is HCOO−. The skeleton is formed by Fe2+ linked with
HCOO−, and [(CH3)2NH2]+ is located in the central cavity. Hydrogen bonds are formed
between the hydrogen atoms of [(CH3)2NH2]+ and the oxygen atoms of HCOO−.
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−
3c structure [17] of [(CH3)2NH2][Fe(HCOO)3] at room temperature.

3.2. DSC

As shown in Figure 3, DSC curve of [(CH3)2NH2][Fe(HCOO)3] from 140 K to 300 K
indicated an endothermic peak at 164 K. The average enthalpy ∆H was 1202 J mol−1,
and the average entropy ∆S was 7.2 J mol−1 K−1. The ratio of the configuration numbers
in the disordered and ordered systems, N, was 2.35. N would be 3 for a simple 3-fold
order-disorder model. Therefore, the transition in [(CH3)2NH2][Fe(HCOO)3] near 164 K
was more complicated than a simple 3-fold order-disorder model for [(CH3)2NH2]+. For
[(CH3)2NH2][Fe(HCOO)3], the temperature dependences of dielectric and pyroelectric
properties showed a sudden jump near 164 K with a hysteresis in the transition tempera-
ture during heating and cooling processes [17,28,34], indicating a first order ferroelectric
transition from paraelectric to antiferroelectric caused by the disorder-order transition of
the hydrogen bonding. The polar hydrogen bonds were antiparallel in the antiferroelectric
state [34]. Maczka et al. reported anomalies in the temperature dependences of Infra-
Red and Raman spectra near 160 K [32], due to the first-order structural transition from
rhombohedral R3c at high temperature to monoclinic Cc at low temperature, accompanied
by the disorder-order transition of proton ordering in the N–H· · ·O hydrogen bonds in
[(CH3)2NH2]+ as well as the distortion of the metal-formate framework. Below the transi-
tion temperature, the ordered phase showed proton ordering in the N–H· · ·O hydrogen
bonds in [(CH3)2NH2]+ [32].



Materials 2021, 14, 2403 5 of 12
Materials 2021, 14, x FOR PEER REVIEW 5 of 12 
 

 

 
Figure 3. DSC curve of [(CH3)2NH2][Fe(HCOO)3] at the heating rate of 5 K/min. 

3.3. Low Temperature Powder XRD 
The powder XRD patterns of [(CH3)2NH2][Fe(HCOO)3] in the range of 10–300 K are 

shown in Figure 4. Structural transition occurred near 145 K. Compared with XRD pat-
terns between 145 K and 300 K, XRD patterns between 10 K and 140 K show extra peaks 
with diffraction angle 2θ near 14.9°, 21.2°, 24.4°, 30.2°, 32.7°, 39.5° and 48.7°. The structure 
transition is from rhombohedral R3തc to monoclinic Cc, which is associated with the coop-
erative ordering of the dimethylammonium cation, the tilting of the octahedral [FeO6], 
and the distortion of the flexible [Fe(HCOO3)]- framework [17,32].  

  
(a) (b) 

Figure 3. DSC curve of [(CH3)2NH2][Fe(HCOO)3] at the heating rate of 5 K/min.

3.3. Low Temperature Powder XRD

The powder XRD patterns of [(CH3)2NH2][Fe(HCOO)3] in the range of 10–300 K
are shown in Figure 4. Structural transition occurred near 145 K. Compared with XRD
patterns between 145 K and 300 K, XRD patterns between 10 K and 140 K show extra
peaks with diffraction angle 2θ near 14.9◦, 21.2◦, 24.4◦, 30.2◦, 32.7◦, 39.5◦ and 48.7◦. The
structure transition is from rhombohedral R3c to monoclinic Cc, which is associated with
the cooperative ordering of the dimethylammonium cation, the tilting of the octahedral
[FeO6], and the distortion of the flexible [Fe(HCOO3)]− framework [17,32].
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Figure 4. Powder XRD patterns of [(CH3)2NH2][Fe(HCOO)3] between 10 K and 300 K, with diffraction angle 2θ in the
range of (a) 10–70◦, (b) 14–15.5◦, (c) 19–34◦.

The differences in the transition temperatures determined by DSC and low tem-
perature XRD may be due to the different heating rates employed. The temperature
dependences of lattice parameters obtained by Rietveld refinement of low temperature
XRD patterns are shown in Figure 5.
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Above 145 K, Rietveld refinements of XRD patterns are consistent with rhombohe-
dral R3c with fitting parameters Rwp ≤ 11.19% and Rp ≤ 7.76%. Below 145 K, Rietveld
refinements of XRD patterns are in agreement with monoclinic Cc with fitting parameters
Rwp ≤ 24.22% and Rp ≤ 15.97%. Jain et al. reported that due to twinning, XRD patterns of
[(CH3)2NH2][M(HCOO)3] (M = Mn, Fe, Co, Ni) below the ferroelectric transition temper-
atures could not be well refined, but the low temperature structure was monoclinic [17].
For [(CH3)2NH2][Mn(HCOO)3] at 110 K, α = γ = 90◦, β = 120.88(1)◦, a = 14.451(8) Å,
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b = 8.376(3) Å, c = 8.952(4) Å, and for [(CH3)2NH2][Ni(HCOO)3] at 10 K, α = γ = 90◦,
β = 120.879(7)◦, a = 14.451(8) Å, b = 8.376(3) Å, c = 8.952(4) Å [17]. Sanchez-Andujar
et al. tried two possible space groups monoclinic C2/c (centrosymmetric) and Cc (non-
centrosymmetric) for the structure of [(CH3)2NH2][Mn(HCOO)3] at 100 K, and found that
Cc structure was better for the refinement, with β = 120.694(2)◦, a = 14.345(2) Å, b = 8.323(1)
Å and c = 8.879(1) Å [35]. [(CH3)2NH2]+ is different in the rhombohedral and monoclinic
structures. C–O distances of all formate ions are the same in the rhombohedral structure,
and they are slightly different in the monoclinic structures [35]. Ma et al. reported that
for [(CH3)2NH2][Fe(HCOO)3], the structure at 120 K is monoclinic C2/c, α = γ = 90◦,
β = 122.81◦, a = 14.100(3) Å, b = 8.3781(17) Å, c = 8.8983(18) Å [34].

3.4. DMA

The storage modulus E′ is the real part of the complex modulus of the viscoelastic
material, and it is related to the elastic energy storage. The loss modulus E” is the imaginary
part of the complex modulus, and it is related to the internal energy dissipation. The loss
factor tanδ is the ratio of the loss modulus to the storage modulus.

Figure 6 shows the changes of storage modulus E′, loss modulus E” and loss factor
tan δ of [(CH3)2NH2][Fe(HCOO)3] single crystals with temperature from 150 K to 320 K
at frequencies of 1, 5, and 10 Hz. Near the ferroelectric transition temperature ~164 K,
the storage modulus dropped quickly, and the loss modulus and loss factor reached
the maximum. For [(CH3)2NH2][Fe(HCOO)3] single crystals, the storage modulus was
~1.1 GPa, the loss modulus was ~0.02 GPa, and the loss factor was ~0.015 near 298 K.
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of 2 K/min. The vertical dash-dotted line indicates the ferroelectric transition temperature Tc ~ 164 K.
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For [(CH3)2NH2][Fe(HCOO)3] pellets, the storage modulus was ~55 MPa, the loss
modulus was ~3.5 MPa, and the loss factor was ~0.065 near 298 K. Figure 7 shows the
changes of the normalized storage modulus, i.e., the ratio of storage modulus at tem-
perature T to that at 298 K, E′T/E′298, the normalized loss modulus, i.e., the ratio of loss
modulus at T to that at 298 K, E”T/E”298, and loss factor tanδ of [(CH3)2NH2][Fe(HCOO)3]
pellets with temperature from 130 K to 300 K at frequencies of 0.5, 1, 2, 5, and 10 Hz. The
normalized storage modulus gradually dropped with the increase of temperature, from
~1.25 at 130 K to ~0.45 at ~164 K, and then gradually increased with temperature. The
minimum in the normalized storage modulus occurred near the ferroelectric transition
temperature ~164 K, and the softening reached ~64%. With the increase of temperature, the
normalized loss modulus gradually increased and then decreased. The peak temperature
for the normalized loss modulus was near 145 K, and the peak temperature increased
with the increase of the frequency, from 144.5 K at 0.5 Hz to 152.4 K at 10 Hz. With the
increase of the temperature, loss factor gradually increased and then decreased. The peak
temperature for the loss factor was near the ferroelectric transition temperature ~164 K
with weak frequency dependences, which is the feature of first-order phase transition. The
peak height of the normalized loss factor and loss factor increased with the increase of
the frequency.
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Figure 7. Temperature dependences of (a) the normalized storage modulus, E′T/E′298, (b) the normalized loss modulus,
E”T/E”298, and (c) loss factor tan δ of [(CH3)2NH2][Fe(HCOO)3] pellets at frequencies of 0.5–10 Hz determined by DMA during
heating at the rate of 2 K/min. The vertical dash-dotted line indicates the ferroelectric transition temperature Tc ~ 164 K.

The anomalies near 280 K and 310 K in Figure 6 and the anomalies around 220–270 K
in Figure 7 have no physical meaning, and they may be caused by the instability of the
DMA measurements after the samples were under low frequency and high stress and
strain conditions for some time.

Figure 8 shows the fitting of ln(f) vs. 1/T for the peaks of the temperature dependences
of the normalized loss modulus near 145 K as shown in Figure 7b, using Arrhenius
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equation f = f0exp[−Ea/(RT)], where R is the gas constant, T is the peak temperature for
the normalized loss modulus near 145 K, and f is the frequency. The activation energy Ea
was ~63 kJ/mol.
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Figure 9. Double logarithmic plot ln(tan δ) vs. ln(f) for the peak height of tan δ near 164 K for
[(CH3)2NH2][Fe(HCOO)3] pellets fitting by power law tan δ = Afn.

The peak height of tan δ near 164 K was obtained using two methods. The first was
relative to zero base line, i.e., no base line correction was used. The second was relative to
the baseline, which was tangential to data points near 130 K and 180 K. n was determined
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to be between 0.026 and 0.114. The reported n value for [(CH3)2NH2][Mn(HCOO)3] was
between −0.382 and −0.078 [25]. The elastic anomalies and energy dissipation detected by
DMA near the ferroelectric transition ~164 K with relaxation time 0.1–2 s are due to the cou-
pling of the movement of dimethylammonium cations and the mobility of twin walls. The
relaxation processes in [(CH3)2NH2] [Fe(HCOO)3] pellets were similar to those reported for
[(CH3)2NH2][Mn(HCOO)3] pellets investigated by DMA [25], with the minimum of storage
modulus and the maximum of loss modulus and loss factor near the ferroelectric transition
temperature ~190 K. For both E” and tan δ of [(CH3)2NH2][Mn(HCOO)3], the peak tem-
perature was independent of frequency, and the peak height decreased with the increase
of the frequency. The relaxation processes in [(CH3)2NH2][Fe(HCOO)3] pellets were also
similar to the reported dielectric spectroscopy analysis of [(CH3)2NH2][Fe(HCOO)3] [28],
with the peaks of the dielectric constant and the dielectric loss near 164 K, and the increase
in the peak temperature at higher frequency.

4. Conclusions

DSC analysis of [(CH3)2NH2][Fe(HCOO)3] from 140 K to 300 K showed an anomaly
near 164 K, presumed to be due to the first order antiferroelectric to paraelectric transition
accompanied by the first order structural transition from monoclinic to rhombohedral,
related to the disorder-order transition of proton ordering in the N–H· · ·O hydrogen bonds
in [(CH3)2NH2]+. The ratio of the configuration numbers in the disordered and ordered
systems, N, was 2.35, indicating that the transition in [(CH3)2NH2][Fe(HCOO)3] near 164 K
was more complicated than a simple 3-fold order-disorder model for [(CH3)2NH2]+.

Low temperature powder XRD analysis of [(CH3)2NH2][Fe(HCOO)3] showed struc-

tural phase transitions near 145 K from monoclinic Cc to rhombohedral R
−
3c related to the

cooperative ordering of the dimethylammonium cation, the tilting of the octahedral [FeO6],
and the distortion of the flexible [Fe(HCOO3)]− framework. Due to twinning, the low tem-
perature XRD patterns were not well refined. For [(CH3)2NH2][Fe(HCOO)3] single crystals,
the storage modulus was ~1.1 GPa, and the loss modulus was ~0.02 GPa near 298 K from
DMA measurements. They are lower than Young’s modulus of [(CH3)2NH2][M(HCOO)3]
(M = Mn, Co, Ni) at room temperature, 19–25 GPa, determined by nanoindentation [22]
due to the different loading methods between DMA and nanoindentation. DMA studies
of [(CH3)2NH2][Fe(HCOO)3] single crystals and pellets showed elastic anomalies and
large energy dissipation near the ferroelectric transition temperature ~164 K. Near the
transition temperature, the normalized storage modulus reached the minimum, and the
normalized loss modulus and the loss factor reached the maximum. The softening in
normalized storage modulus reaches ~64%. When the frequency increases from 0.5 Hz to
10 Hz, the peak temperature for the normalized loss modulus increases from 144.5 K to
152.4 K, and the activation energy is ~63 kJ/mol. The peak temperature for the loss factor
showed weak frequency dependences, which is a feature of first-order phase transitions.
The elastic anomalies and energy dissipation are caused by the coupling of the movements
of dimethylammonium cations and twin walls.

The relaxation processes in [(CH3)2NH2][M(HCOO)3] (M = Fe, Mn) pellets through
DMA were similar under low frequency and high stress and strain conditions, with relax-
ation time of 0.1–2 s, with strong coupling of ferroelasticity and ferroelectricity. Through
RUS analysis, the relaxation processes in [(CH3)2NH2][M(HCOO)3] (M = Mn, Co, Ni)
showed similar features under high frequency and low stress and strain conditions, with
relaxation time of 10−6 s [23,24], and strong coupling of ferroelasticity, ferroelectricity and
ferromagnetism were reported for [(CH3)2NH2][M(HCOO)3] (M = Ni) [24]. It is expected
that RUS studies of the relaxation processes in [(CH3)2NH2][M(HCOO)3] (M = Fe) would
also show strong coupling of ferroelasticity, ferroelectricity and ferromagnetism. Tailoring
the strain, the metal ions and the hydrogen bonding may lead to the design of different
functionality. The investigation of temperature dependences of elastic properties and elas-
tic anomalies and energy loss related to ferroelectric transitions and magnetic transitions
in MOFs are beneficial for the development of MOFs with good mechanical properties
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and strong coupling among ferroelasticity, ferroelectricity and ferromagnetism and their
applications in sensors, data storage, magnetic and electric devices.
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