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Abstract: Within this contribution, a novel benchmark problem for the coupled magneto-mechanical
boundary value problem in magneto-active elastomers is presented. Being derived from an ex-
perimental analysis of magnetically induced interactions in these materials, the problem under
investigation allows us to validate different modeling strategies by means of a simple setup with only
a few influencing factors. Here, results of a sharp-interface Lagrangian finite element framework and
a diffuse-interface Eulerian approach based on the application of a spectral solver on a fixed grid are
compared for the simplified two-dimensional as well as the general three-dimensional case. After
influences of different boundary conditions and the sample size are analyzed, the results of both
strategies are examined: for the material models under consideration, a good agreement of them is
found, while all discrepancies can be ascribed to well-known effects described in the literature. Thus,
the benchmark problem can be seen as a basis for future comparisons with both other modeling
strategies and more elaborate material models.

Keywords: magneto-active elastomers; strong magneto-mechanical coupling; benchmark

1. Introduction

Multi-physics problems are challenging for numerical solutions due to their inherent
non-linearity and the different characteristics of the governing equations for the individual
problems [1]. The non-linearity introduced, e.g., by the dependence of material parameters
of a special problem on its solution, is usually characterized as weak [2], since it will only
alter the solution in a monotonous manner. A strong coupling, however, arises if multi-
ple fields mutually interact via direct coupling terms within the constitutive equations.
Examples of such problems are, among others, a mechanical deformation that is coupled
to solute diffusion according to the approach of Larché and Cahn [3], as well as the magnet-
ically induced mechanical interactions in magneto-active elastomers (MAEs) [4–7]. In both
cases, the systems’ behavior not only changes quantitatively, but also qualitatively under
the influence of the coupling effects. While, within the first example, the chemo-mechanical
coupling yields the phenomenon of inverse ripening that is in contrast to the normal ripen-
ing of precipitates in a metallic matrix [8]—see the work of Darvishi Kamachali et al. [9]
for more details and a benchmark on this problem—the magneto-mechanical coupling
of the second example can cause complex magnetically induced deformations [10–13]
as well as changes of the materials’ stiffness [14–17]. To this end, the effects emerging
from the strong coupling of different fields make the treatment of such problems interesting
but challenging.
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Regarding the solution of strongly coupled problems, numerical simulations usually
have to be applied, since analytical expressions can, at best, be found for simplified
problems with limited validity or modified versions of the problem using, e.g., the method
of manufactured solutions [18]. As the individual problems are highly specialized and,
thus, investigated by rather small research communities, they are normally solved using
the method that is considered best regarding applicability and performance within these
communities. To this end, solution strategies that are well suited for one problem can
perform poorly for another one. Revisiting the two examples mentioned before, spectral
solvers on regular fixed grids are, e.g., frequently applied to deal with micro-mechanical
problems involving a chemo-mechanical coupling, whereas finite element approaches are
often used for the solution of magneto-mechanical problems in a finite strain setting.

To facilitate the communication of different research communities, serve as an entry
to a specific problem type, and allow for a validation of different modeling strategies,
benchmark problems can be of great benefit, as they are often designed to reproduce
characteristic mechanisms by means of a rather simple setup [19–21]. For multi-physics
problems involving strong coupling phenomena, they allow us to analyze and discuss
relevant aspects regarding the modeling as well as numerical simulations: How does a
specific modeling framework perform compared to other, well-established approaches?
Are monolithic or staggered solution schemes preferable to handle the strong coupling?
What is the trade-off between accuracy and efficiency? Since the individual problems
are too diverse, it is almost impossible to give a conclusive answer to these questions
in a general sense. Still, their investigation generates an enhanced understanding of the
underlying problem and provides a basis for the exchange of knowledge between different
communities.

Within the current contribution, a novel, well-defined benchmark problem for the
coupled magneto-mechanical behavior of MAEs is introduced. These materials represent
an example of field-controllable functional polymers in which micron-sized magnetizable
particles are embedded into a compliant polymer network, see [22–24] for a detailed char-
acterization of MAEs. Since the strong coupling of magnetic and mechanical fields allows
us to induce mechanical deformations that are significantly larger than magneto-strictive
effects observed for single-phase materials [25–27], MAEs have attracted considerable
research interest in the fields of micro-robots [28] and -pumps [29], as well as coating
materials with variable shapes [30]. The ability to control their mechanical modulus using
an external magnetic field also allows for technical applications in the areas of actuators
and sensors [31–33], vibration absorbers [34], as well as prosthetic devices with tunable
stiffness [35].

As the modeling of MAEs represents a complex task which requires us to consider
physical phenomena across different scales, the proposed benchmark has to allow for a
validation of different modeling and simulation strategies by means of a not too com-
plex example, but also needs to be easily extendible to be applicable in situations where,
e.g., complex material models are of interest. To this end, the problem introduced here is
derived from the experimental analysis of magnetically induced deformations presented
in [7]. Using the two-particle system described in the aforementioned work, a detailed anal-
ysis of coupling phenomena in MAEs is possible with a manageable number of influencing
factors. Here, two extremes regarding the numerical simulation of the problem under
investigation are compared with respect to their applicability to reproduce the observed
behavior in a simplified setting: an implicit finite element framework based on a monolithic
solution of the governing equations as well as a staggered, explicit scheme using a spectral
solver on a regular, fixed grid. The organization of the paper is as follows: in Section 2,
the benchmark problem is presented—relevant equations are briefly summarized, and the
setup of the benchmark is illustrated. The subsequent Section 3 provides an overview of
the pursued modeling strategies, while their results for different scenarios are compared
in Section 4. Finally, the paper is concluded by a short summary and an outlook to future
enhancements in Section 5.
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2. Benchmark Problem

Within the proposed benchmark problem, the behavior of two magnetizable particles
embedded into an elastomer surrounding is analyzed for applied magnetic fields with
varying angles. It is based on the study of field-induced interactions in magneto-active
elastomers presented in [7] and, thus, originally describes a relevant physical problem
that is applicable to validate modeling strategies for MAEs with experimental data. With
a primary focus on a systematic comparison of different numerical solution schemes,
the problem presented in the following is slightly modified.

2.1. Setup

The geometrical setup of the problem is illustrated in Figure 1: two spherical in-
clusions of diameters ∅d1 = 208 µm and ∅d2 = 223 µm and an initial distance [d12] =

[329 µm,−29 µm, 0 µm]T are placed into the center of a non-magnetizable elastomer matrix
with a quadratic cross section of length l and a height of h = 2 mm. The choice of the
sample size l has to ensure that the assumptions of a homogeneous external magnetic
field Bext and vanishing mechanical displacements on the boundary do not affect the
particle interactions in the center of the sample. This can be achieved by following the
propositions of Bíró and Preis [36] as well as Fetzer et al. [37] and using l ≥ lc, with lc
being the characteristic length of the analyzed structure. Here, the two particles in the
center yield lc ≈ 800 µm, i.e., l ≥ 8 mm. However, the strength of the interaction highly
depends on the materials under investigation so that smaller lengths l can also ensure
unaltered results, see the study on the influence of the sample size performed in Section 4.1.
Since both, the geometry of the sample as well as the applied magnetic field, feature a
symmetry with respect to the x1-x2-plane, the computational effort is already reduced in
the general three-dimensional case. If the additional assumption of cylindrical inclusions
with their cylinder axis along the x3-direction is made, a further reduction to a simplified
two-dimensional problem is possible.

Bext

α

� l

h/2 = 1mm

∅d1
∅d2

|d12|

x1

x2

Figure 1. Setup for the proposed benchmark problem: top-view on the center plane of the sample and
a magnification of the two magnetizable particles embedded into its center—the global coordinate
system is indicated within the magnified area. The problem is symmetric with respect to the depicted
x1-x2-plane and the sample is loaded with an external magnetic field Bext of varying angle α—for the
mechanical boundary conditions, see Section 4.

The external magnetic field Bext has a magnitude of Bext = 170 mT, see [7]. After it is
applied for an initial angle α = 0°, it is rotated clockwise in the x1-x2-plane while its norm
is fixed. For the investigations performed in this contribution, the overall rotation is 180°.

2.2. Governing Equations

The system under investigation represents a strongly coupled problem, in which
effects of the mechanical fields have to be considered in the governing magnetic equations
and vice versa. For a detailed presentation of all relevant relations regarding this coupled
magneto-mechanical boundary value problem, the authors refer to [13,38–40] and refer-
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ences therein—here, only the results of the aforementioned contributions with respect to
the equations to be solved are briefly outlined.

By introducing B0 = JF−1 ·B as well as H0 = FT ·H and M0 = FT ·M as the reference
counterparts of the magnetic induction B, the magnetic field H and the magnetization M,
the stationary magnetic part of the coupled problem is given by the Maxwell equations

∇0 · B0 = 0 (1)

∇0 ×H0 = 0 (2)

and their corresponding jump conditions on a surface of discontinuity [38]. In the pull-back
operations above, F and J denote the deformation gradient and its determinant, while
∇0(·) in Equations (1) and (2) indicates the Nabla operator with respect to the reference
configuration. Since current densities and surface currents are of no relevance for the
proposed benchmark problem, they are omitted here. Furthermore, the connection between
the magnetic quantities is established via the linking equation

B0 = µ0 JC−1 · (H0 + M0) (3)

with C = FT · F being the right Cauchy–Green deformation tensor.
Regarding the stationary mechanical part of the problem, the presence of magnetic

fields yields additional body force fpon = (∇B)T ·M and couple cpon = M×B densities [41]
which have to be considered within the balances of linear and angular momentum:

∇ · σ + fpon = 0 (4)

e : σ + cpon = 0 (5)

Again, potential mechanical body force densities are of no relevance for the proposed
benchmark problem and are thus omitted in Equation (4). Moreover, the third-order tensor
e in Equation (5) represents the Levi-Civita, i.e., permutation, symbol, and for the required
jump conditions, the authors refer to [39].

2.3. Constitutive Behavior

The aim of the original study [7] was a systematic analysis of experimental and theo-
retical predictions of field-induced interactions in MAEs and, hence, restricted to material
models which reproduce the behavior of the individual constituents as closely as possible.
However, focusing on a comparison of different numerical solution strategies regarding
their performance—especially their results—for a benchmark problem, now allows for a
broad range of constitutive models. If the main aspect of the comparison is the question
whether different approaches can yield similar or even the same results for a complex nu-
merical problem as, e.g., the coupled magneto-mechanical boundary value problem stated
here, the material models can be rather simple. This allows us to compare the numerical
frameworks without any additional difficulties that arise if material non-linearities are
considered. The benchmark can then be extended to more elaborate constitutive models
in order to identify, e.g., implementation errors.

In terms of a first comparison of a Lagrangian finite element framework and a grid-
based Eulerian approach using a spectral solver for the solution of the benchmark problem
under investigation, an application of linear material models is proposed here. Using the
magnetic field H as well as the infinitesimal strain ε as independent variables, this allows
for the following formulation of the Helmholtz free energy Ψ:

Ψ(H, ε) = Ψmag(H) + Ψmech(ε) = µε : ε +
λ

2
tr(ε)2 − µ0

2
(µr − 1)H ·H (6)
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see [42] for a similar approach using the magnetic induction B as the independent magnetic
variable. In Equation (6),

µ =
E

2(1 + ν)
and λ =

Eν

(1 + ν)(1− 2ν)
(7)

represent Lamé parameters, whereas µr denotes the relative permeability of the individual
constituents. To obtain the solutions presented in Section 4, the elastomer matrix is charac-
terized by Em = 35 kPa, νm = 0.49 as well as µm

r = 1. For the stiff magnetizable particles,
Ep = 35 MPa, νp = 0.3 and µ

p
r = 6 are applied.

3. Numerical Approaches

In the following, the frameworks for the numerical solution of the benchmark are
briefly presented to point out characteristics concerning the handling of the strong magneto-
mechanical coupling inherent to the problem.

3.1. Finite Element Approach

For a solution of the proposed benchmark problem with a continuum-based finite
element framework, the equations presented in Section 2.2 are slightly modified. To allow
for a simultaneous solution of both Maxwell Equations (1) and (2), the scalar potential
ϕ with H = −∇ϕ is introduced [43]. Regarding the mechanical part of the problem,
an approach using the total stress σtot = σ + σpon with fpon = ∇ · σpon automatically
satisfies the balance of angular momentum [38,39]. To this end, the weak form of the
coupled magneto-mechanical boundary value problem is given by:

0 =
∫
B

B · ∇v dV +
∫
B

σtot : ∇w dV (8)

with v and w being suitable weighting functions for the magnetic and mechanical parts
of the problem and B indicating the simulation domain, see [39] for more details on the
implementation. Within the finite element simulations, a combined vector {u, ϕ} of nodal
displacements u and values of the scalar potential ϕ is solved using a monolithic solution
scheme, i.e., the coupling of the magnetic and mechanical subproblems is accounted for
with appropriate tangent operators [16].

For the results shown in Section 4, the simulations have been performed using the
open-source software tools FEniCS [44] and—for the mesh generation—Gmsh [45].

3.2. Grid-Based Spectral Approach

Within the spectral approach, the calculation of the magnetic field and the deformation
is separated into two subproblems, which are then solved sequentially. All quantities are
discretized on a fixed regular Cartesian grid.

To calculate the magnetic field, a finite difference approach is used to obtain a system
of linear equations. Again, a scalar potential ϕ is used. Applying H = Hext −∇ϕ with the
external magnetic field Hext = Bext/µ0 and ∇ ·Hext = 0, yields

∆ϕ−∇ ·M = 0 (9)

As a linear magnetization behavior is considered here, the magnetic susceptibil-
ity χv is applied to determine the magnetization via M = χvH. It is calculated as the
weighted average of the particle and matrix susceptibilities χv = φχ

p
v + (1− φ)χm

v using
the interpolation function

φ =


1 if r < R− η/2
1
2 − 1

2 sin
(

π
η (r− R)

)
if R− η/2 ≤ r ≤ R + η/2

0 else

(10)
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in which R and η denote the particle radius and the interpolation width, respectively.
Inserting the magnetization behavior into Equation (9) gives the relation

(1 + χv)∆ϕ +∇χv · ∇φ +∇χv ·Hext = 0 (11)

for the solution of the scalar magnetic potential ϕ. It is discretized using a finite difference
scheme, and the resulting system of linear equations is solved by applying a biconjugate
gradient method [46].

With known magnetic field quantities, the ponderomotive magnetic force density fpon

can be used to determine the deformation within the mechanical subproblem. Therefore,
the stress tensor σ = C : ε with C being the linear elastic material stiffness tensor has to be
calculated. Using the same weighting procedure as for the magnetization in the magnetic
subproblem, i.e., C = φCp + (1− φ)Cm, the equation

∇ · (C : ε)− fpon = 0 (12)

remains to be solved. This is achieved using an iterative spectral solver—for details on a
possible implementation as well as the solver, see [47].

For the results shown in Section 4, the simulations have been performed using the
open-source software library Open-Phase [48,49].

4. Results

Within this section, results for the proposed benchmark are presented and a compari-
son of the addressed simulation frameworks is carried out for the general three-dimensional
as well as the simplified two-dimensional case. In a first study, the influence of the sample
size l is analyzed for the chosen set of material parameters. Since solution strategies in-
volving spectral solvers, as the grid-based method introduced in Section 3.2, are preferably
applied for problems that can be analyzed using periodicity constraints, the influence of
the choice of boundary conditions (BCs) is investigated as well.

4.1. Influence of the Sample Size

In the general setup of the proposed benchmark, see Section 2, the sample length l
has not been specified. Only the restriction that its choice should not alter the particle
interactions in the center of the sample was discussed. To this end, l is analyzed here in
terms of its influence on the resulting change of the inter-particle distance ∆d12 using the
finite element approach presented in Section 3.1. For these simulations, only the sample
length l is varied, while all other parameters remain unchanged.

Figure 2a shows that—if Dirichlet BCs are applied on all outer surfaces of the sample—
the length l has no influence on the resulting particle interactions. For the investigated
set l ∈ {10, 5, 2}mm, the predicted change of the inter-particle distance ∆d12 due to the
external magnetic field coincides over the whole range of angles α. As already discussed in
Section 2, this can be ascribed to the applied material models. Here, linear models for the
magnetic as well as the mechanical part of the coupled problem are used: the specific choice
of their parameters results in rather weak interactions which rapidly decrease towards to
sample boundaries. It is notable that, for the simplified two-dimensional case, the behavior
is identical. However, the observed interactions are increased as it is indicated by the
dotted gray line in Figure 2a. This is in good agreement with the results of other studies in
the field of magneto-active elastomers [7,39].

Regarding the case of periodic BCs, the results are absolutely identical. Here, the
external magnetic field is prescribed in a macroscopic, i.e., averaged, sense while period-
icity constraints are enforced for the scalar potential as well as the displacements on the
sample boundaries. In agreement with the BCs of the original problem, the macroscopic
displacement gradient, i.e., the strain, is set to 0. As depicted in the comparison of both
loading scenarios in Figure 2b, their deviation is negligible: close to the peak of ∆d12 for
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α ≈ 95°, the difference between simulations performed with l = 10 mm using Dirichlet
BCs and with l = 2 mm applying periodic BCs is less than 0.5 %.

As a result of this study, the subsequent comparison of the presented simulation
frameworks can—for the chosen material models and parameters—be performed for the
smallest sample size using periodic boundary conditions without introducing additional
boundary effects or changes in the observable coupling phenomena. The computational
effort can, thus, be significantly reduced.

a b

2D

90 95 100

α /◦

1.65

1.70

1.75

∆d
12
/

µm

0 30 60 90 120 150 180

α /◦

−6

−4

−2

0

2

4

∆d
12
/

µm

l = 10mm l = 5mm l = 2mm

Dirichlet BCs
Periodic BCs

Figure 2. Study on the influence of the sample size. Results obtained using the finite element method
for different length parameters l: (a) Dirichlet BCs according to the setup described in Section 2, and,
(b) comparison of the results obtained for Dirichlet and periodic BCs close to the peak of ∆d12. The
dotted gray lines in (a) represent the results for the simplified two-dimensional case.

4.2. Comparison of the Numerical Simulation Frameworks

For the comparison of the finite element and grid-based spectral approaches, the
benchmark problem is solved in its modified version: a sample with a quadratic cross
section of length l = 2 mm is exposed to the external magnetic field Bext, while peri-
odicity constraints are applied for the displacement u as well as the scalar potential ϕ,
see Section 4.1. As both numerical frameworks have already been described in Section 3,
only their discretization of the problem remains to be discussed. In order to ensure a good
resolution of the simulation domain—especially its center comprising the magnetizable
particles—200 equidistant grid points resulting in a grid size of 10 µm are used in each
spatial direction within the spectral approach. For the two- and three-dimensional bench-
mark simulations, this results in a total degree of freedom (DOF) of 1.2× 105 and 3.2× 107,
respectively. Within the finite element simulations, only the center of the sample is highly
refined, whereas the mesh size is increased significantly towards its boundaries. Here, an
exponential function similar to the probability density function of a normal distribution
is applied to ensure a number of 54 quadratic tetrahedral elements along the particles
circumferences. This results in a minimum mesh size of approximately 12 µm and total
DOFs of 1.85× 104 as well as 3.98× 105 for the 2D and 3D problems.

Figure 3a shows the results for the comparison of the two-dimensional setup. It is
apparent that both numerical frameworks show a good agreement for all angles α of
the external magnetic field—the deviation for their maximum values of ∆d12 is ca. 15 %.
However, a slight shift of the simulation results can be observed: compared to the finite
element results, the predictions of the staggered, grid-based approach are delayed by
about ∆α = 5°. For the three-dimensional setup depicted in Figure 3b, the situation is
different. Here, the staggered, grid-based approach shows increased coupling effects for
all angles α of the external magnetic field. While the results of both approaches are in
a good qualitative agreement —the slight phase-shift of about 5° is the same as in the
two-dimensional problem—their maximum discrepancy is in the range of 40 % for α = 10°.
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Figure 3. Comparison of the presented numerical frameworks: change of the inter-particle distance
∆d12 in a rotating magnetic field for (a) the simplified two-dimensional setup, and, (b) the general
three-dimensional case. For both cases, the simulations have been performed using periodic BCs and
a sample length l = 2 mm.

In order to assess these differences of the two numerical approaches, a closer look
on the course of the magnetic field H along the x1-axis of the simulation domain can be
helpful. As shown in Figure 4a,b for α = 0° and α = 90°, respectively, the normalized
magnetic field H/Hext, with Hext = Bext/µ0, is comparable for the finite element and
grid-based simulation frameworks. Within both materials, the elastomer matrix as well
as the magnetizable particles, the course of the field is qualitatively the same—for α = 0°
in Figure 4a it almost coincides. As the ponderomotive magnetic body force density fpon

is proportional to the gradient of the magnetic field as well as the magnetization, the
magneto-mechanical interaction is restricted to the magnetizable particles. Following
the argumentation of Vogel et al. [50], this interaction can be basically accounted to the
bulk effect of fpon within the magnetizable material as well as its jump across material
discontinuities. Naturally, the FE approach allows for steep gradients and a sharp transition
between the two materials. Compared to that, the diffuse interface of the grid-based
approach artificially increases the size of the particles and smoothens the jump across
the particle matrix interface. To this end, the bulk effect of fpon is increased within the
grid-based approach, whereas contributions from tractions across the material interfaces
are significantly decreased, see Figure 4a,b. This results in the observable differences of the
predicted effects for both simulation frameworks and can only be reduced if results with
an even higher resolution are compared.

a b
FE solution (monolithic) grid-based solution (staggered)
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t

Figure 4. Plot of the normalized magnetic field along the x1-axis of the sample: (a) results for α = 0°,
and, (b) for α = 90°. The embedded surface plots show the distributions of the field within the whole
sample using the same scale as indicated in the plots.

5. Conclusions

Within this contribution, a novel, well-defined benchmark for the strong coupling of
magneto-mechanical interactions in magneto-active elastomers has been presented. With
only minimal adaptations, the proposed problem allows for a comparison of different
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modeling and solution strategies using a wide range of different material models. Here, the
basic setup has been defined and—for the most simple set of material models—a monolithic
finite element approach as well as a staggered finite difference framework based on a
fixed grid and the application of a spectral solver are investigated with regard to their
predictions for the resulting magneto-mechanical interactions. After a thorough analysis of
the influence of the sample size and the effect of different kinds of boundary conditions
on the results, the performed comparison of these simulation strategies shows a good
agreement. Qualitatively, the frameworks yield the same results while all quantitative
discrepancies can be ascribed to comprehensible effects that result from the discretization
of the problem itself.

With that, the proposed benchmark has proven to be an adequate tool which can
serve as an entry to the specific problem of the strong magneto-mechanical coupling in
MAEs, but also allows researchers of different communities to exchange their knowledge
on various modeling and simulation techniques by means of a rather simple setup with
only few influencing factors.
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