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Abstract: Making decisions and deducing control actions in manufacturing environments requires
considering many uncertainties. The ability of fuzzy logic to incorporate imperfect information into
a decision model has made it suitable for the optimization of both productivity and final quality.
In laser surface texturing for wettability control, in fact, these aspects are governed by a complex
interaction of many process parameters, ranging from those connected with the laser source to those
concerning the properties of the processed material. The proposed fuzzy-based decision approach
overcomes this difficulty by taking into account both the random error, associated with the process
variability, and the systematic error, due to the modelling assumptions, and propagating such sources
of uncertainties at the input level to the output one. In this work, the laser surface texturing was
carried out with a nanosecond-pulsed laser on the surfaces of AISI 304 samples, changing the laser
scanning speed, the hatch distance, the number of repetitions, and the scanning pattern. A significant
change of the contact angle in the range 24–121◦ is observed due to the produced textures. The fuzzy
maps highlight the inherent uncertainty due to both the laser texturing process and the developed
model.

Keywords: soft computing; fuzzy logic; genetic algorithms; laser texturing; wettability.

1. Introduction

During the last decades, research in surface engineering has been mainly focused
on the development of innovative technologies for the functionalization of components’
surface [1]. In fact, it is recognized that the surface characteristics can control the spe-
cific functional performance requested [2]. However, the relationship between surface
properties, technology, and application field, requires a deeper comprehension.

To date, many technologies and strategies have been adopted and/or developed
to fabricate functionalized surfaces [3], especially on commercial metals, given the large
number of applications, both industrial and civil [4]. Among them, surface texturing
techniques are considered the most promising due to their low processing costs and
adequate production rate [5–7]. In particular, laser surface texturing is appeared to be a
valid solution to produce tailor-made topographies on the surface of the components by
precisely controlling the size and the shape of the texture features [8,9]. Nowadays lasers
have demonstrated to be flexible, selective, accurate and efficient technology, that can be
successfully used for a wide variety of processes, from cutting [10], to welding [11], to
2D and 3D metal sheet forming [12], to surface heat treatments [13] and for a wide range
of materials, from polymers [14] and metals [15], to ceramics [16] and composites [17].
However, the use of laser technology for surface texturing is limited by two main aspects,
i.e., the relatively low texturing speed [18] and the residual stress due to the thermal
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effect of the laser treatment [19]. The application of ultrafast lasers, from picosecond to
femtosecond pulsed lasers, can mitigate these limitations [20,21], but increases the cost
and the complexity of the laser system. On the other hand, nanosecond pulsed lasers can
lead to similar results with a less complex system and a less expensive process, therefore
suitable for industrial applications [22].

Among the potential applications of laser technology for surface engineering that have
been investigated so far, many of them have been devoted to the laser texturing of metals to
produce surface patterns for the control of their wettability. This is due to the many fields
in which they can be applied, i.e., chemical sensing and painting [23], biomedicine [24],
microfluidics [25], heat transfer [26], anti-corrosion [27], aeronautics [28], and so forth.
Therefore, controlling laser-induced surface wettability represent an attractive topic from
both the academic and the industrial point of view. However, obtaining the required
textures for wettability control, with lasers as well as for any other surface texturing
technique, is critical due to the transition between hydrophilicity and hydrophobicity that
the surface can experience even for small changes in the surface pattern and/or surface
chemistry [29].

Therefore, the definition of the optimal process window in order to reach the requested
wetting behavior is still a partially solved task. In fact, during the laser treatment, the
process parameters, i.e., those related to the laser source and to the material of the sample
under processing, interact with each other in a complex manner, thus complicating the
decision-making process [30]. This is of crucial relevance especially for those manufac-
turing processes deemed to be “advanced” and/or “innovative”. In fact, most of them
lack clear and well-defined guidelines in terms of operational parameters and resulting
properties, as it is for the laser texturing for surface wettability control [29]. This can
cause uncertainty during the manufacturing process, therefore lengthening the produc-
tion time and increasing the production costs. In this context, research in laser surface
texturing processes optimization plays a critical role in advancing such technology and its
knowledge.

To advance these technologies, and for their knowledge to be taken up by industry,
researchers and manufacturers follow two approaches, i.e., run experiments and/or de-
velop predictive models. During experiments, the parameters are adjusted empirically, i.e.,
through trial and error, to obtain the quality desired [31,32]. However, this approach can be
very expensive, can involve a lot of human resources, can take a long time, remaining at the
end unable to provide an adequate estimate of the final quality. For this reason, computa-
tional methods for manufacturing optimization problems appear to be a potential solution
to support and improve the decision-making process. In fact, in several studies [32–35],
both analytical and/or numerical models were developed with the aim to find the optimal
relationship between the process parameters and the process outcomes. However, it is
worth noting that each method is limited to the context of the relative study, therefore, a
deeper investigation is required for more general applications.

The aim should be the development of a physical model able to simulate accurately
the entire process, but such computational simulations are very complex, requiring many
different models and very often a high computational cost [36]. For this reason, analytical
and empirical modelling can be considered suitable solutions. In particular, the analytical
models are obtained through a mathematical analysis of the physical laws and the relevant
physical processes involved, but they are limited by the underlying assumptions that can
be sometimes very restrictive. While the empirical models, which are the outcome of
several experiments, require minimum effort, and once chosen, they can be verified by
further tests and used to find out the relationship between the operational parameters able
to guarantee the optimal process outputs [37].

Therefore, empirical modelling can be considered a fast and easy solution for estab-
lishing a relationship between inputs and outputs of manufacturing processes. However,
choosing the best model is not a straightforward task when there are many input vari-
ables and the data set adopted for the development of the empirical model is affected
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by dispersion, which is typically due to the process variability. In this context, genetic
algorithms have been successfully implemented for optimization purposes in a robust and
efficient way [38–40]. However, their effectiveness can be compromised by the fact that the
variability of the process together with the approximation introduced in the model lead to
a discrepancy between the results of the model and the process outcomes [41]. In particular,
the uncertainty due to the process variability is usually aleatoric and can be modelled
with stochastic methods, while, the other source of uncertainty is a systematic error for
which statistics cannot be used fruitfully. In this context, fuzzy arithmetic represents a
valuable solution able to model at the same time both the aleatoric (i.e., statistical) and
the epistemic (i.e., systematic) uncertainties [42], and propagate them at the input level to
the output quantities [43,44]. The use of soft computing techniques, i.e., fuzzy logic and
genetic algorithms, represents therefore a practical way for developing nonlinear control
systems which are difficult to design using traditional methods [45].

This work aims to propose a fuzzy-based approach for the optimization of the laser
surface texturing of stainless steel for wettability control. The activity consisted of two steps:
a first experimental campaign aimed at identifying the effect of the process parameters, i.e.,
laser scanning speed, hatch distance, and number of repetitions, on the contact angle and
the surface roughness [35]; then, based on the acquired data, a genetic algorithm-optimized
fuzzy (GAF) regression model was developed and successfully applied to describe the
inherent uncertainties related to the investigated process. In particular, the use of the
genetic algorithm, previously adopted for the definition of the optimal empirical regression
model [35], now is used to find the optimal shape of the membership function of the
fuzzy numbers. Then, the input uncertainty, represented through the fuzzy regression
coefficients, is propagated to the output variables using the transformation method [46].
The process maps obtained by applying the GAF model are used to select the optimal
process parameters able to guarantee the most performing mechanical properties, provid-
ing, as additional information, how much the uncertainties introduced by the model and
inherently related to the process vary by changing the process parameters themselves.

2. Materials and Methods
2.1. Experimental Investigation

The starting material is a cold-rolled AISI 304 stainless steel sheet with a thickness
of 1 mm and average surface roughness (Ra) of ~0.082 µm. From this, 27 plates with
dimension 75 × 25 mm2 were cut for the experimental tests. Tables 1 and 2 report the
chemical composition and the main mechanical properties, according to the technical data
sheet provided by the producer. On every plate, four squared areas, 225 mm2 each, were
texturized with a 30 W Q-switched ns-pulsed Yb:YAG fibre laser (YLP-RA30-1-50-20-20,
IPG, Oxford, MA, USA), whose main characteristics are reported in Table 3.

Table 1. Chemical composition of the starting material (AISI 304 stainless steel), as declared by
the producer.

Element Weight% Element Weight%

C 0.047 Mo 0.29
Cr 18.1 P 0.029
Ni 8.04 S 0.003
Mn 1.2 N 0.06
Si 0.48 - -

The main control parameters of the laser texturing process that can be managed are
the laser scanning speed, the hatch distance (i.e., the distance between the centres of two
consecutive scan lines), the number of repetitions (i.e., the number of times a pattern is
repeated on the sample), the scanning pattern, and the pulse frequency. The experimental
investigation was therefore carried out on the basis of a multilevel factorial design [47], as
reported in Table 4. It is worth noting that the process parameters and their values have
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been evaluated through a preliminary investigation aimed at reducing the range within
which they could vary. As can be seen in the latter table, the laser scanning speed, the hatch
distance, the number of repetitions, and the scanning pattern were varied while controlling
the pulse frequency at 60 kHz, which allows achieving the maximum pulse energy and
pulse power of 0.5 mJ and 10 kW respectively. Each experimental condition, i.e., 36 (Table 5),
was replicated three times for a total of 108 tests. The scanning pattern consisted of parallel
lines along with two (+90◦, −90◦) and four (+90◦, −90◦, +45◦, –45◦) directions. Therefore,
the number of repetitions is an integer multiple of two. Moreover, each sample was cleaned
with acetone in an ultrasonic bath for 2 min both before and after the laser processing. The
sequence of the experimental tests was performed randomly, but by the same operator
under the same conditions in order to reduce any additional disturbance.

Table 2. Main mechanical properties of the starting material (AISI 304 stainless steel), as declared by
the producer.

Properties Values Units

Elastic Modulus 193 ÷ 200 GPa
Ultimate Tensile Strength 505 MPa

Yield Tensile Strength 215 MPa
Hardness Rockwell B 70 -

Table 3. Main characteristics of the Q-switched ns-pulsed Yb:YAG fibre laser system adopted to
modify the surface topography of the AISI 304 samples.

Parameters Values Units

Wavelength 1.064 µm
Nominal average power 30 W
Maximum pulse energy 1 mJ
Maximum peak power 20 kW

Pulse frequency 30 ÷ 80 kHz
Pulse duration 50 ns

TEM 00 -
Focused spot diameter ∼ µm

Working area 100× 100 mm2

Table 4. Experimental plan. The combination of three values for the laser scanning speed and the
hatch distance, with two values for the number of repetitions and scanning pattern, results in 36
different experimental conditions. Each of them has been replicated three times for a total of 108 tests.
The scanning pattern consisted in parallel lines along two (+90◦, −90◦) and four (+90◦, −90◦, +45◦,
−45◦) directions. Therefore, the number of repetitions is an integer multiple of two.

Process Parameters Values Units

Pulse frequency 60 kHz

Laser scanning speed 400 700 1000 mm/s
Hatch distance 50 100 150 µm

Number of repetitions 8 40 -
Scanning pattern ±90 ±90/±45 -

The quality outputs investigated in this research work [35] were the apparent contact
angle (ϑ) and the surface roughness in terms of arithmetic mean roughness profile (Ra)
and developed surface area ratio (r f ). In fact, the apparent contact angle is suggested to
be of major interest for wettability control [48], together with Ra and r f , which are used
to express the increment of the interfacial surface area and the projected one that can
promote or hinder the penetration of the liquid within the surface asperities thus enabling



Materials 2021, 14, 2379 5 of 20

the establishment of the hydrophilic or hydrophobic behavior [49]. Thus, for r f equal to
1 the surface is flat, while when r f is greater than 1 means that the texture contributes
with an additional surface area. Consequently, the resulting heterogeneity of the textured
surface could lead to the formation of regions which are fully penetrated by the liquid and
others with partial or no penetration at all. In particular, it is possible to distinguish four
wettability states, as shown in Figure 1: (i) superhydrophilic, when there is no equilibrium
and the penetration front of the drop spreads all over the substrate surface forming a liquid
film, i.e., the contact angle is lower than 5◦; (ii) hydrophilic, if the liquid completely wets
the textured surface of the sample with a contact angle lower than 90◦; (iii) hydrophobic, if
the air pockets let the drop to partially siting on the substrate surface and the contact angle
ranges between 90◦ and 150◦; (iv) superhydrophobic, when the drop of the liquid sit on the
textured surface due to the air trapped between the asperities, leading to contact angles
greater than 150◦.

Table 5. Operational parameters’ combinations investigated according to the experimental plan reported in Table 4: three
values of laser scanning speed (SL) and hatch distance (dH), multiplied for two values of the number of repetitions (Rn) and
scanning pattern (SP) results in 36 different experimental conditions.

Combinations SL, mm/s dH , µm Rn SP Combinations SL, mm/s dH , µm Rn SP

1 400 50 8 ±90◦ 19 400 50 8 ±90◦/±45◦

2 700 50 8 ±90◦ 20 700 50 8 ±90◦/±45◦

3 1000 50 8 ±90◦ 21 1000 50 8 ±90◦/±45◦

4 400 100 8 ±90◦ 22 400 100 8 ±90◦/±45◦

5 700 100 8 ±90◦ 23 700 100 8 ±90◦/±45◦

6 1000 100 8 ±90◦ 24 1000 100 8 ±90◦/±45◦

7 400 150 8 ±90◦ 25 400 150 8 ±90◦/±45◦

8 700 150 8 ±90◦ 26 700 150 8 ±90◦/±45◦

9 1000 150 8 ±90◦ 27 1000 150 8 ±90◦/±45◦

10 400 50 40 ±90◦ 28 400 50 40 ±90◦/±45◦

11 700 50 40 ±90◦ 29 700 50 40 ±90◦/±45◦

12 1000 50 40 ±90◦ 30 1000 50 40 ±90◦/±45◦

13 400 100 40 ±90◦ 31 400 100 40 ±90◦/±45◦

14 700 100 40 ±90◦ 32 700 100 40 ±90◦/±45◦

15 1000 100 40 ±90◦ 33 1000 100 40 ±90◦/±45◦

16 400 150 40 ±90◦ 34 400 150 40 ±90◦/±45◦

17 700 150 40 ±90◦ 35 700 150 40 ±90◦/±45◦

18 1000 150 40 ±90◦ 36 1000 150 40 ±90◦/±45◦
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Figure 1. Wettability states: (a) superhydrophilic, when there is no equilibrium and the drop spreads all over the substrate 
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Figure 1. Wettability states: (a) superhydrophilic, when there is no equilibrium and the drop spreads all over the substrate
surface forming a liquid film, i.e., the contact angle is lower than 5◦; (b) hydrophilic, if the rough surface of the sample
is completely wet by the liquid and the contact angle is lower than 90◦; (c) hydrophobic, if the air pockets let the drop to
partially sit on the substrate surface and the contact angle ranges between 90◦ and 150◦; (d) superhydrophobic, when the
drop of the liquid sit on the textured surface due to the air trapped between the asperities, leading to contact angles greater
than 150◦.

The apparent contact angle (ϑ) was calculated according to Equation (1) [50] by
measuring the height of the droplet (h) and the radius projected on the substrate (r), shown
in Figure 2a. The liquid adopted is distilled water at room temperature (i.e., 22 ◦C). A
pipette with a volume of 2–20 µL ± 0.010 µL (Pipetman P20, Gilson Italy, Milan, Italy)
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was used to deposit a 10 µL drop on the textured surface of each sample. The height and
the radius of the droplets were measured by analysing the optical images captured by a
3D digital microscope (KH-8700, Hirox, Tokyo, Japan). The setup for the measurement
of the apparent contact angle is shown in Figure 2b. While the surface topography was
characterized by using a high-resolution 3D profilometer (Talysurf CLI 2000, Leicester, UK)
for the measurement of the average surface roughness (Ra) according to the standard UNI
EN ISO 4288:2000, and optically inspected with the 3D digital microscope.

ϑ = 2arctan
(

h
r

)
. (1)
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2.2. Computational Modelling

In previous works [35,40], an optimization method based on genetic algorithms has
been proposed with the aim to identify the optimal empirical model for the laser texturing
process. Despite the ability of the optimised model to reproduce the measured data
acceptably, the resulting discrepancy can be addressed to two sources of error, i.e., the
simplification introduced by the model, which is of epistemic nature, and the dispersion due
to the variability of the process, which is aleatoric. While the latter source of uncertainty can
be modelled with stochastic methods, the other one is a systematic error for which statistics
does not provide a useful tool. In this context, fuzzy arithmetic represents a valuable
solution able to model at the same time both the epistemic and aleatoric uncertainties [42],
and propagate them from the input level to the output quantities [43]. The use of soft
computing techniques, i.e., fuzzy logic and genetic algorithms, represents therefore a
practical way for developing nonlinear control systems which are difficult to design using
traditional methods [45].

The proposed approach consists of the development of a fuzzy regression model
starting from the regression model previously optimized through the application of the
genetic algorithm, described by Equation (2):

y(SL, dH , Rn, SP) = a·SL
α1 dH

β1 Rn
γ1 SP

δ1 + b·SL
α2 dH

β2 Rn
γ2 SP

δ2 + c·
SL

α3 dH
β3 Rn

γ3 SP
δ3 + d·SL

α4 dH
β4 Rn

γ4 SP
δ4 + e

(2)

where y(SL, dH , Rn, SP) is the output variable expressed as a function of the input pa-
rameters, i.e., laser scanning speed (SL), hatch distance (dH), number of repetitions (Rn),
scanning pattern (SP); while a, b, c, d, e, are the empirical regression coefficients determined
by linear regression analysis based on the whole experimental data set. In particular, in
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order to match the simplest linear model that can be built by considering the effect of the
single parameters, the proposed model is constituted by a number of terms equal to the
number of parameters, i.e., four, plus a constant term, for a total of five terms. Each term is
dependent on all the parameters to the powers αi, βi, γi, δi, for SL, dH , Rn, SP, respectively,
with i = 1, 2, 3, 4, for the first, second, third, and fourth term. The powers were chosen
between −1, −0.5, 0, 0.5, 1.

Starting from the empirical model so optimized (from Equation (2)), i.e., once found
α

opt
i , β

opt
i , γ

opt
i , δ

opt
i , for each output variable, a different fuzzy regression model can be

written, as described by Equation (3):

y∗(SL, dH , Rn, SP) = a∗·SL
α

opt
1 dH

β
opt
i Rn

γ
opt
1 SP

δ
opt
1 + b∗·SL

α
opt
2 dH

β
opt
2 Rn

γ
opt
2 SP

δ
opt
2 + c∗·

SL
α

opt
3 dH

β
opt
3 Rn

γ
opt
3 SP

δ
opt
3 + d∗·SL

α
opt
4 dH

β
opt
4 Rn

γ
opt
4 SP

δ
opt
4 + e∗

(3)

where y∗(SL, dH , Rn, SP) is the fuzzy function determined through the Transformation
Method [46], while a∗, b∗, c∗, d∗, e∗, are fuzzy numbers. Such an approach is proved to
be able to propagate both sources of uncertainty, i.e., the random one due to the process
variability and the systematic one due to the simplification introduced by the model itself,
to the output qualities [51,52]. This is carried out by implementing the fuzzy arithmetic
as a series of interval computations, i.e., α-cut strategy, which are numerically solved by
sampling the interval based on a defined schema. In the previous works, the membership
functions of the fuzzy regression coefficients were represented with a triangular shape,
as shown in Figure 3a. However, due to the inherent linearity of the triangular fuzzy
number, although a decrease in the level of uncertainty, i.e., an increase in the membership
function µ(xi), implies considering a smaller number of data with higher membership
level, the relation between this number and the corresponding membership level is not
strictly defined. For this reason, in this work, such an inherently nonlinear relation is
evaluated through the implementation of a genetic algorithm. The objective is therefore the
identification of nonlinear fuzzy numbers for the regression model, shown in Figure 3b,
with adaptive supports capable of including, at a specific α-level, a specific number of
data points.
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Figure 3. Representation of the fuzzy numbers: (a) triangular; (b) nonlinear. µ(xi) is the membership function, represented
as a gray shaded area, which defines the degree to which the parameter can take a certain value, i.e., as the membership
function decreases, the level of uncertainty increases and the model accommodates a larger number of samples with lower
membership level; mi is the modal value, i.e., the value of the coefficient calculated with the standard linear regression; li
and ui are the lower and the upper bounds of the fuzzy support.

As shown in Figure 3, the fuzzy number is defined through three values, i.e., the
modal value mi, the lower bound li and the upper bound ui. The first is the value of the
coefficient calculated with the standard linear regression, while the other two represent the
bounds of the fuzzy support. The membership function µ is represented as a grey shaded
area varying from white, i.e., µ = 0 and α-level = 1, to black, i.e., µ = 1 at the last α-level.
Therefore, moving from a triangular representation of the fuzzy number to a nonlinear



Materials 2021, 14, 2379 8 of 20

one, the relation between represented data and membership level is more rigorous: e.g.,
100% of data at µ = 0; 90% of data at µ = 0.1; up to 0% at µ = 1, which is the crisp regression
model obtained from the experimental data set. Consequently, the greater the membership,
the more precise the model, but less descriptive of the relation because a lower number of
measured data points fall on.

The use of genetic algorithms is aimed at optimizing the interval at each α-level j. To
this end, the genetic algorithm performs several constrained optimizations to identify the
optimal interval solution that envelops in the output space a defined subset of experimental
data points within the minimum hyper-volume of the envelop (Vj), i.e., the target is the
minimization of the fitness function f j, defined by Equation (4):

f j = min
(
Vj
)
, (4)

The procedure adopted is the same as the optimization of the regression models
described in the previous works [35,40], while here the algorithm is iterated for each fuzzy
number at each α-level, returning as results the optimal bounds of the fuzzy supports,
and the selection operator is performed after the crossover and mutation in order to
further increase genetic variability. Figure 4 shows the flowchart of both algorithms
and how they are linked to each other. Briefly, The genetic algorithms are computed
through four fundamental operations [53]: (i) initialization, with the definition of a set of
chromosomes, i.e., powers of the regression model terms first and supports of the fuzzy
numbers then. Chromosomes are encoded and represented in terms of strings of bit by
means of the binary encoding procedure, which is the most common form of encoding
that maximizes the number of exploitable schemas [54]. Then, the fitness functions are
applied to evaluate the fitness of this population, and if the stop condition is not met, it
evolves into the next generation through the following genetic operators; (ii) crossover,
which increases the variability of populations through the exchange of genes between
two random chromosomes, i.e., parents, operating randomly on a single point of every
chromosome. This allows obtaining different individuals of which the most fitted are kept
by the selection operator; (iii) mutation, which introduces random variation in the genome
of some individuals. This allows avoiding local convergence of the genetic algorithm, thus
promoting diversity and the occurrence of more powerful generations [39]. Moreover, in
this case, this operator is used in parallel with the crossover to emphasize the gains on the
algorithm performance due to the concurrent application of operators with complementary
roles [40]; (iv) selection, which allows transferring a defined number of chromosomes
in the population to the next generation. The selection happens through ranking the
individuals on the basis of their fitness values, keeping the best half, and eliminating the
others. Finally, these steps are implemented in an iterative procedure that continues until
the stop condition is met, i.e., a predefined number of generations.

It is worth highlighting here that even if the proposed genetic algorithm is based on
the classic method of artificial evolution, which simulates the evolution of living things, the
obtained results presented in Section 3.2 should be considered valid only in the solution
space defined in this work, since there is no guarantee to reach the same global optimum
for different operational conditions or processes in general [53]. In fact, some of the key
parameters, i.e., crossover and mutation probability, were chosen in order to guarantee the
global convergence of the algorithm in an affordable computational time.
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number of chromosomes in the population to the next generation.

3. Results and Discussion
3.1. Experimental Findings

In order to consider the wettability states presented in Section 2.1 valid, the drop size
should be at least three orders of magnitude greater than the average roughness [55]. In this
case, in fact, the surface appears uniform to the drop, and the resulting contact angles can be
considered as the most stable [56]. In general, the roughness (Ra) ranged between 1.032 µm
and 10.238 µm, while the diameter of the droplets at the interface with the sample surface,
Figure 2a, between 1.968 mm and 6.514 mm, thus satisfying the mentioned condition.

Figure 5 shows the experimental results in terms of contact angle (ϑ) and developed
surface area ratio (r f ), and how they are affected by the operational process parameters
varied in this investigation, i.e., laser scanning speed, hatch distance, number of repetitions,
and scanning pattern (see Tables 4 and 5). In particular, in the latter figure, the black dots
represent the mean values of the response variables, while the error bars represent the
standard deviations. It is worth noting that only the results related to ϑ and r f are reported,
since the average surface roughness Ra gives the same kind of information of r f in terms
of effect on the surface quality.

As shown in Figure 5, the contact angle (ϑ) and the developed surface area ratio have
a similar trend for three of the four control parameters, i.e., hatch distance, number of
repetitions, and scanning pattern, while the trend is the opposite for the laser scanning
speed. In particular, a higher hatch distance leads to a higher contact angle and developed
surface area ratio, therefore promoting the transition from the hydrophilic to the hydropho-
bic behaviour. In fact, the greater the hatch distance, i.e., the laser scans separation, the
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bigger the portion of the sample surface which is not ablated by the laser, therefore the
more marked the profiles of peaks and valleys, and the higher the roughness and the
developed surface area ratio [49]. Such topography is made of a triple interface between
the stainless steel (i.e., solid), of which the sample is made, the air entrapped into the valley
(i.e., gaseous), and the distilled water (i.e., liquid) [57]. As a result, due to the reduced
surface tension for the high number of peaks and valleys [49], the drop assumes a more
spherical shape. As a consequence, also the scanning pattern affects the wettability of
the surface by promoting the establishment of a hydrophobic behaviour when the laser
scans the surface only along with two directions, i.e., ±90◦. In fact, the greater the number
of laser scans, the smoother the surface, thus the lower the wettability. The same is true
for the number of repetitions, for which the higher the number of times the laser scans
the same portion of the sample surface, the deeper the groove, the more enhanced the
effect peak-valley, therefore the more the hydrophobic behaviour is likely to take place. On
the other hand, an increase in the laser scanning speed results in greater contact angles
but a lower developed surface area ratio and therefore lower surface roughness. This can
be addressed to the fact that by reducing the laser scanning speed, the time duration of
the interaction between the laser and the material surface is greater, therefore removing
a greater amount of material [16]. This can lead to the deposition and re-solidification of
undesired material from the groove to the surface of the sample, resulting in a reduced
average roughness. While, in terms of contact angle, the surface appears to be characterized
by a greater number of peaks and valleys and therefore with lower surface tension, thus
promoting the hydrophobic behaviour. These findings are supported by the drops’ images
recorded for the different process parameters’ combinations, shown in Figure 6.
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Figure 6. Drops images for the evaluation of the contact angles recorded with the setup shown in Figure 2 by adopting the
3D digital microscope: dH = 100 µm, Rn = 8, SP = ±90◦, and (a) SL = 400 mm/s, (b) SL = 700 mm/s, (c) SL = 1000 mm/s;
SL = 400 mm/s, Rn = 8, SP = ±90◦, and (d) dH = 50 µm, (e) dH = 100 µm, (f) dH = 150 µm; SL = 400 mm/s, dH = 100 µm,
Rn = 8, and (g) SP = ±90◦/±45◦, (h) SP = ±90◦; SL = 400 mm/s, dH = 100 µm, SP = ±90◦, and (h) Rn = 8, (i) Rn = 40.

It is worth noting here that this discussion is limited to the average trend of the effect
of the operational parameters, i.e., laser scanning speed (SL), hatch distance (dH), number
of repetitions (Rn), scanning pattern (SP), on the response variables, i.e., contact angle (ϑ)
and developed surface area ratio (r f ). In order to verify the statistical significance of these
results an ANOVA test has been carried out by using the software Minitab. For sake of
briefness, the interactions between the parameters were limited to two. Table 6 reports
the results obtained for the contact angle, while Table 7 for the developed surface area
ratio. As can be seen in the latter, the effect of each process parameter can be considered
statistically significant: p-value < 0.0.5, and F-value > 3.97 for DoF = 1, F-value > 3.12 for
DoF = 2, or F-value > 2.50 for DoF = 4, where DoF is the degrees of freedom. Therefore, the
average trends can be considered representative of the variation of both output variables
for varying values of the process parameters.

Finally, Figure 7 shows the results of the experimental campaign in terms of wettability
states obtained for the different combinations of the control parameters here investigated,
i.e., laser scanning speed, hatch distance, number of repetitions, and scanning pattern
(see Table 4). As can be seen, only six scenarios are characterized by the hydrophobic
behaviour (90◦ < ϑ < 150◦), i.e., 14 to 18 and 35 (Table 5). All of them are obtained by
applying the same number of repetitions, i.e., 40, which is the highest adopted (the other is
8), suggesting them to be the factor that affects the most the wettability of the surface. In



Materials 2021, 14, 2379 12 of 20

fact, as previously highlighted, a greater number of repetitions lead to deeper grooves and
therefore to a sharper difference between peaks and valleys, as demonstrated by the higher
values of the developed surface area ratio. This result is further supported by the values
of the hatch distance, i.e., 100 µm and 150 µm, and the ±90◦ scanning pattern, which,
together with the highest values of the scanning speed, leads to the formation of bigger and
sharper asperities that allow the drop to partially sitting on the air trapped between the
drop itself and the pockets so formed. In particular, Figure 8 shows the surface topography
of a sample textured by adopting the parameters of the condition 18, i.e., SL = 1000 mm/s,
dH = 150 µm, Rn = 40, SP = ±90◦, compared to the typical surface topography that leads
to the hydrophilic state (5◦ < ϑ < 90◦), for example the condition 19, i.e., SL = 400 mm/s,
dH = 50 µm, Rn = 8, SP = ±90◦/±45◦. Neither the superhydrophilic state (ϑ < 5◦) nor the
superhydrophobic one (ϑ > 150◦) were observed.

Table 6. ANOVA table for the contact angle (ϑ). The process parameters, i.e., laser scanning speed (SL),
hatch distance (dH), number of repetitions (Rn), scanning pattern (SP), are considered statistically
significant if p-value < 0.0.5, and F-value > 3.97 for DoF = 1, F-value > 3.12 for DoF = 2, or F-value >
2.50 for DoF = 4. DoF is the Degree of Freedom, Adj.SS is the adjusted sum of squares, Adj.MS is the
adjusted mean sum of squares, Π is the contribution percentage (defined as the ratio between Adj.SS
of the term and the total Adj.SS).

Source DoF Adj.SS Adj.MS F-Value p-Value Π (%)

SL 2 3917.0 1958.48 14.05 0.000 7.90
dH 2 15,094.8 7547.41 54.14 0.000 30.46
Rn 1 5987.8 5987.83 42.95 0.000 12.08
SP 1 8085.6 8085.56 58.00 0.000 16.32

SL × dH 4 1353.6 338.39 2.43 0.056 2.73
SL × Rn 2 931.6 465.82 3.34 0.041 1.88
SL × SP 2 164.3 82.14 0.59 0.557 0.33
dH × Rn 2 937.5 468.75 3.36 0.040 1.89
dH × SP 2 464.4 232.18 1.67 0.196 0.94
Rn × SP 1 16.0 16.01 0.11 0.736 0.03

Error 72 10,037.7 139.41 - - 20.26
Total 107 49,552.4 - - - -

Table 7. ANOVA table for the developed surface area ratio (r f ). The process parameters, i.e., laser
scanning speed (SL), hatch distance (dH), number of repetitions (Rn), scanning pattern (SP), are
considered statistically significant if p-value < 0.0.5, and F-value > 3.97 for DoF = 1, F-value > 3.12 for
DoF = 2, or F-value > 2.50 for DoF = 4. DoF is the Degree of Freedom, Adj.SS is the adjusted sum of
squares, Adj.MS is the adjusted mean sum of squares, Π is the contribution percentage (defined as
the ratio between Adj.SS of the term and the total Adj.SS).

Source DoF Adj.SS Adj.MS F-Value p-Value Π (%)

SL 2 0.019595 0.009797 17.77 0.000 5.76
dH 2 0.089902 0.044951 81.52 0.000 26.41
Rn 1 0.093332 0.093332 169.27 0.000 27.42
SP 1 0.014696 0.014696 26.65 0.000 4.32

SL × dH 4 0.003771 0.000943 1.71 0.157 1.11
SL × Rn 2 0.008065 0.004032 7.31 0.001 2.37
SL × SP 2 0.001436 0.000718 1.30 0.278 0.42
dH × Rn 2 0.050656 0.025328 45.94 0.000 14.88
dH × SP 2 0.000273 0.000137 0.25 0.781 0.08
Rn × SP 1 0.000088 0.000088 0.16 0.690 0.03

Error 72 0.039700 0.000551 - - 11.66
Total 107 0.340417 - - - -
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Figure 8. 3D optical images of the surface topography for the experimental conditions (a) 18, i.e., SL = 1000 mm/s,
dH = 150 µm, Rn = 40, SP = ±90◦, which allows the hydrophobic behaviour to take place; (b) 19, i.e., SL = 400 mm/s,
dH = 50 µm, Rn = 8, SP = ±90◦/±45◦, showing the surface topography that leads to the hydrophilic state.

3.2. Fuzzy Optimization

Figure 5 clearly shows that the discussion made in Section 3.1 about the effect of
the process parameters, i.e., SL, dH , Rn, SP, on the response variables, i.e., ϑ and r f ,
can be considered true for the average trend, highlighted by the black dots. While, if
the standard deviation is taken into account, highlighted by the error bars, for many of
the experimental conditions, the same conclusions cannot be drawn. This discrepancy is
typically attributed to the process variability, thus introducing the first source of uncertainty
which is of aleatoric type, so when developing empirical models in order to relate input(s)
and output(s), this random error can be modelled with stochastic methods by adding an
opportune contribution term within the model. However, the model itself introduces a
new source of uncertainty due to the simplification assumptions, which are epistemic and
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therefore not efficiently describable by statistics [42]. The use of soft computing techniques,
fuzzy logic and genetic algorithms, in this case, represents therefore a practical way for
developing control systems able to consider both sources of uncertainty at the input level
and propagate them at the output level [36].

The first step, before the application of the proposed fuzzy approach, has been the
optimization of the regression models for each output variable (i.e., Ra, ϑ, r f ) through
the genetic algorithm developed on the basis of the previous works [35,40]. So, starting
from the empirical model described by Equation (2), the optimal values of the powers of
the model terms, i.e., α

opt
i , β

opt
i , γ

opt
i , δ

opt
i , have been found and applied to evaluate the

empirical coefficients (aopt, bopt, copt, dopt, eopt) through standard linear regression. The
space of the possible powers is [−1,−0.5, 0, 0.5, 1], therefore discrete and constituted by five
terms. Consequently, it contains 516 models, where 16 is given by multiplying the number
of variables constituting each term with the number of terms, i.e., four in both cases. The
constant term is not considered since the powers are fixed to zero. The set of individuals
was set at 5000. In general, within these conditions, less than 45 generations were needed
to reach the convergence. Therefore, the algorithm solves only 2.25·105 models out of 516

possible. Table 8 reports the obtained values of the powers and the resulting coefficients.

Table 8. Genetic algorithm-optimized powers (αopt
i , β

opt
i , γ

opt
i , δ

opt
i , with i = 1, 2, 3, 4, for the first,

second, third, and fourth term) and regression coefficients (aopt, bopt, copt, dopt, eopt, being the last the
constant term) for the three output variables investigated, i.e., average surface roughness profile (Ra),
contact angle (ϑ), and developed surface area ratio (r f ).

Terms
Values

Ra ϑ r f

[αopt
1 , β

opt
1 , γ

opt
1 , δ

opt
1 ] [0.5, −1, 0, 0] [−0.5, 1, −1, 0] [0, −1, −0.5, 1]

[αopt
2 , β

opt
2 , γ

opt
2 , δ

opt
2 ] [−1, 1, 0.5, 0] [0.5, 0, −1, 0.5] [−0.5, 0.5, 0.5, 0]

[αopt
3 , β

opt
3 , γ

opt
3 , δ

opt
3 ] [0.5, −0.5, 0, 0] [1, 0, −0.5, 0.5] [0.5, −1, 0.5, −0.5]

[αopt
4 , β

opt
4 , γ

opt
4 , δ

opt
4 ] [−1, 0.5, −1, −0.5] [0.5, −0.5, 0.5, 1] [1, 0, 1, –1]

aopt −0.7933 0.6752 −0.0044
bopt −0.0825 0.0574 −0.0754
copt 1.3709 0.6250 −0.0892
dopt 0.0420 0.9752 0.1616
eopt 0.1513 −0.3607 1.0353

The second step concerned the application of the proposed fuzzy approach starting
from the optimal regression models found so far, with the aim to optimize supports of
the fuzzy numbers, and therefore their shapes, by using another genetic algorithm-based
method able to accommodate a varying number of experimental data points according to
the membership level, as described in Section 2.2.

For sake of briefness, in the following, it is reported only the results obtained for the
contact angle as a representative case, described by Equation (5), and able to reproduce
the measured data with a root mean square error of 8.44% (the mean standard deviation
is 8.37%). Starting from the latter equation, the fuzzy numbers a∗, b∗, c∗, d∗, e∗, and the
fuzzy function ϑ∗(SL, dH , Rn, SP) are described by 6 α-cuts. At each of them, the genetic
algorithm evaluates the optimal fuzzy support, while the fuzzy function is computed
through the transformation method. For each α-cut, it requires, in a combinatorial scheme,
the evaluation of the number of points within the α-cut, i.e., 4, to the power of the number
of fuzzy parameters, i.e., 5, leading to a total of 6·45 = 6144 evaluations for each output
variable. Figure 9 shows the nonlinear fuzzy numbers identified by applying the developed
genetic algorithm. In this figure, the x-axis represents the support of the fuzzy numbers,
which are optimized at each α-level, thus obtaining a peculiar shape for each of them,
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while Figure 10 reports the results of the fuzzy model implementation order for increasing
values of the contact angle:

ϑ∗(SL, dH , Rn, SP) = a∗opt·
dH

Rn
√

SL
+ b∗opt·

√
SLSP
Rn

+ c∗opt·SL

√
SP
Rn

+ d∗opt

·SP

√
SLRn

dH
+ e∗opt

(5)
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points, to black at 𝜇 = 1 when the fuzzy number coincides with the empirical coefficients evaluated 
through standard linear regression. Each fuzzy band contains three data points (red asterisks) to 
which correspond a specific experimental condition, for a total of 36. The experimental tests are 
ordered for increasing values of the contact angle. For the experimental condition please refer to the 
parameters’ combinations reported in Table 5. 

From Figure 9 it is evident that the most influencing factors are those associated with 
the first and the last coefficients, i.e., 𝑎௢௣௧∗  and 𝑒௢௣௧∗ . The first is associated with the com-
bination of laser scanning speed, hatch distance, and the number of repetitions, while the 
last is the constant term. The other three terms, i.e., 𝑎௢௣௧∗ , 𝑏௢௣௧∗ , 𝑐௢௣௧∗ , are characterized by 
very small support almost coincident to the corresponding modal value, which is already 

Figure 9. Nonlinear fuzzy numbers (a) a∗opt, (b) b∗opt, (c) c∗opt, (d) d∗opt, (e) e∗opt, obtained starting from Equation (3) and
optimized through the genetic algorithm presented in Section 2.2. The x-axes represent the support of the fuzzy numbers
optimized at each α-level by taking into account a varying number of experimental data points according to the membership
level, i.e., 100% at µ = 0, 80% at µ = 0.2, 60% at µ = 0.4; 40% at µ = 0.6, 20% at µ = 0.8, and 0% at µ = 1.
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Figure 10. Fuzzy process map for the contact angle. The gray shaded area represents the membership function, which
varies from white at µ = 0 while considering 100% of the experimental data points, to black at µ = 1 when the fuzzy number
coincides with the empirical coefficients evaluated through standard linear regression. Each fuzzy band contains three
data points (red asterisks) to which correspond a specific experimental condition, for a total of 36. The experimental
tests are ordered for increasing values of the contact angle. For the experimental condition please refer to the parameters’
combinations reported in Table 5.

From Figure 9 it is evident that the most influencing factors are those associated
with the first and the last coefficients, i.e., a∗opt and e∗opt. The first is associated with the
combination of laser scanning speed, hatch distance, and the number of repetitions, while
the last is the constant term. The other three terms, i.e., a∗opt, b∗opt, c∗opt, are characterized by
very small support almost coincident to the corresponding modal value, which is already
reached at the fourth α-level. This suggests that the regression model optimized through
the genetic algorithm is still lacking some information about the relation between the input
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process parameters and the output, i.e., the contact angle in this example. This is due to the
simplification introduced by the model itself. However, such uncertainty can be taken into
account, with the proposed fuzzy approach, together with the uncertainty associated with
the process variability, and propagated to the output qualities through the transformation
method. The result is a fuzzy process map in which the extent of the fuzzy bands varies
depending on the operational parameters’ combinations used during the experimental
tests (see Figure 10). It is worth highlighting that the extent of the uncertainty bands is
related to both the accuracy of the regression model and the variability of the process.
In particular, the operator is warned of the degree of uncertainty, which is particularly
high for the combinations 10, 13, 16, 28, 29, 30, 31, 33, 32, 34, and 35 (see Table 5 for the
details). As a result of the genetic algorithm optimization, the fuzzy model represents the
optimal “uncertain” description of the relation between the process parameters and the
process outcomes, which accounts for all the sources of uncertainty, i.e., process variability,
approximation due to the linear regression, and for any measurement error during the
characterization of roughness and contact angles. The membership function µ, represented
as greyscale, ranges from 0 (i.e., white) to 1 (i.e., black) and describes the degree of belonging
of a given sample to the model, i.e., from 100% (at µ = 0), which represents a non-precise
model that take into account all the experimental data, to 0% (at µ = 1), that is the crisp
regression model and upon which no measured data point falls on.

Moreover, the fuzzy model can be used to identify the most suitable combination of
the process parameters in order to satisfy a desired requirement. In this case it has been
implemented for the obtainment of a specific wettability state, i.e., hydrophilic (5◦ < ϑ < 90◦)
or hydrophobic (90◦ < ϑ < 150◦), which are the only two wettability states observed during
the experimental campaign. For sake of briefness, Figure 11 shows the fuzzy inverse maps
obtained for the contact angle belonging to the hydrophobic state drawn by considering
the combination of two parameters at a time while keeping the others constant, in this case
at their maximum levels except for the scanning pattern, i.e., SL = 1000 mm/s, dH = 150 µm,
Rn = 40, SP = ±90◦. Moreover, in the latter, the experimental results are highlighted by red
dots and the relative occurrences by green numbers.

From the inspection of Figure 11, if adopted for the control of the surface wettability,
the operator is warned of the variability of the process due to the width of the fuzzy bands
that suggest the level of uncertainty related to the specific parameters’ combination. For
example, Figure 11 suggests that the hydrophobic state can be promoted by adopting a
high number of repetitions, greater than 24, while keeping the hatch distance over 75 µm,
the laser scanning speed over 600 mm/s, and limiting the scanning pattern to ±90◦. In
these scenarios, in fact, the fuzzy areas are darker and narrower, thus representing the
parameters’ combination characterized by the lowest level of uncertainty. In other words,
within these operational conditions, the possibility to obtain the desired quality is the
highest. These findings are also supported by the experimental data. In fact, the highest
number of occurrences (i.e., 3) falls on the darkest areas of the fuzzy inverse maps. In fact, as
reported in Section 3.1, an increasing value of the hatch distance, number of repetitions, and
scanning speed, together with limiting the laser scanning to only two directions (i.e., ±90◦),
results in a higher contact angle. This happens because in such conditions the profiles
of peaks and valleys are more marked and therefore characterized by a reduced surface
tension that let the drop to assume a more spherical shape [49], which is characteristic of
the hydrophobic state.

These results reveal that the proposed approach based on a combination of soft com-
puting techniques, i.e., genetic algorithms and fuzzy logic, in this case, can be considered a
useful tool in estimating regression parameters when the experimental data set is charac-
terized by a non-negligible dispersion between the data points, thus making the statistical
regression analysis not suitable to suggest a regression model due to the vague relationships
among variables and poor model specification.
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Figure 11. Fuzzy inverse maps for the obtainment of the hydrophobic state (90◦ < ϑ < 150◦) by letting vary two parameters
at a time while taking the others constant at their maximum levels: (a) varying dH and Rn, while SL = 1000 mm/s and SP
= ±90◦/±45◦; (b) varying SL and Rn, while dH = 150 µm and SP = ±90◦/±45◦; (c) varying Rn and SP, while SL = 1000
mm/s and dH = 150 µm; (d) varying SL and dH , while Rn = 40 and SP = ±90◦/±45◦; (e) varying dH and SP, while SL

= 1000 mm/s and Rn = 40; (f) varying SL and SP, while dH = 150 µm and Rn = 40. The gray shaded area represents the
membership function µ, ranging from 0 (white) to 1 (black) and describing the degree of belonging of a given sample to the
model, i.e., from 100% at µ = 0, to 0% at µ = 1. The red dots and the green numbers represent the experimental occurrences.

4. Conclusions

The use of soft computing techniques, i.e., fuzzy logic and genetic algorithms, has
been demonstrated to represent a practical way for developing nonlinear control systems
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which are difficult to design using traditional methods due to the sources of uncertainty
that affect the process to control. In this study, the proposed approach, aimed at finding the
optimal fuzzy regression model through the application of genetic algorithms, has been
successfully applied for the control of the laser-induced surface wettability on stainless
steel substrates.

First, the experimental campaign was carried out to create the starting data set on
which to develop and train the optimized algorithm. To this end, a Q-switched 30 W
nanosecond-pulsed Yb:YAG fiber laser system was adopted on AISI 304 stainless steel
plates by varying the laser scanning speed, the hatch distance, the number of repetitions
and the scanning pattern. The output qualities investigated were the roughness, in terms
of average surface profile roughness and developed surface area ratio, and the wettability,
in terms of contact angle.

The results showed that within the experimental conditions adopted in this work
only two wettability states can be reached, the hydrophilic and the hydrophobic ones,
with contact angles in the ranges 5–90◦ and 90–150◦ respectively. Among the operational
parameters, the number of repetitions and the hatch distance are the most influencing
factors. In fact, they greatly affect the geometry of the texture on the sample surface, i.e.,
the greater the number of repetitions and the hatch distance, the deeper and the larger the
grooves, therefore the greater the distance between two consecutive peaks or valleys.

On the basis of the experimental data set so collected, a genetic algorithm-optimized
fuzzy regression model has been developed and applied to find the relation between the
input parameters, the output qualities, and the uncertainty related to both the process
variability and the simplification introduced by the model itself. The optimal model
suggested by the genetic algorithm can reproduce the measured data with a mean error of
8.44%. Finally, the fuzzy inverse maps suggest, according to the experimental results, that,
in order to promote the hydrophobic state and at the same time ensure the lowest level of
uncertainty, more than 24 repetitions, a hatch distance greater than 75 µm, a laser scanning
speed over 600 mm/s, and the ±90◦ scanning pattern should be adopted.

The method here proposed can be considered of a general nature and applicable in
the manufacturing environment to any type of process for which it is possible to have a
data set on which to develop the model.
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